COMPUTER SUPPORTED SOFTWARE INSPECTION

SUBMITTED TO THE DEPARTMENT OFCOMPUTER SCIENCE,
UNIVERSITY OF STRATHCLYDE, GLASGOW
FOR
THE DEGREE OFDOCTOR OFPHILOSOPHY.

By
Fraser Macdonald
October 1998

www.manharaa.com

THE
NIVERSITY OF
TRATHCLYDE

IN GLASGOW

The copyright of this thesis belongs to the author under the terms of the United
Kingdom Copyright Acts as qualified by University of Strathclyde Regulatidf.
Due acknowledgement must always be made of the use of any material contained in,
or derived from, this thesis.

(© Copyright 1998

www.manharaa.com

Abstract

For over twenty years, software inspection has been adedeat a simple, cost-effective
technique for defect detection in all types of documentseBSally, a number of participants
review a document with the aim of discovering defects. Mangijive experience reports
have been published demonstrating its benefits, and theneosr a number of variations on
the basic inspection method.

In recent years, there have been a number of attempts taefurtbrease inspection ef-
ficiency by the introduction of tool support, resulting in amber of prototype systems. In
general, however, existing systems tend to suffer frometin@jor shortcomings. The first
concerns their inability to easily support a number of déf& inspection processes, as well as
the inspection of a variety of document types. Existings@d$o treat the move to computer-
based inspection as a simple change of medium, when themppoetunities to greatly en-
hance the process. Finally, evaluation of the effectiveinéshese tools is sparse.

This thesis describes work tackling these deficiencies. pSugor multiple inspection
processes was achieved by developing a high-level proesssigtion language which can be
used as inputto an inspectiontool. A prototype tool was ldgezl which implements this lan-
guage and also provides a simple mechanism for supportspgation of multiple document
types. This tool was also used to investigate a number ofedstfor increasing the efficiency
of inspection, including cross-referencing within andvietn documents, active checklists
and automatic collation of defect lists. In addition, twantrolled experiments comparing
paper-based and tool-based inspection were performedirshef their kind. These experi-
ments could reveal no performance difference between rdstho

www.manaraa.com

Acknowledgements

I am indebted to my supervisors Dr. James Miller, Dr. Marc &agnd Dr. Murray Wood
for their invaluable advice and criticism. Without themghihesis would genuinely not have
been completed. Thanks also to Dr. Andrew Brooks for hissugien during the early stages
of my research.

Thanks to Computer Science System Support personnel pagirasent — lan Gordon,
Gerry Haran, David Lloyd, Tony Povoas and Gordon Ritchie -eWwhlped with various tech-
nical problems.

ASSIST uses with permission a modified version of the PythB& Rnechanism devel-
oped by Daniel Larsson. Python dialogue code by David Redistiso used. The code
implementing the Porter stemming algorithm was based orddJawva implementations made
freely available by IDOMENEUS. Some material used in theeexpents described in this
thesis was originally written by Gary Perlman, Christophett and Eric Kamsties. This
material is used with permission.

Finally, some personal acknowledgements. As ever, my page a constant source of
support and encouragement. Their efforts do not go unrahtened are greatly appreciated.
Last, but certainly not least, | am also indebted to my datfd Fiona for her support and
understanding.

The research contained within this thesis was supported Gyaduate Teaching Assistant
position with the Department of Computer Science, Unitgrsi Strathclyde. Travel to con-
ferences was supported by the Department, the Faculty enh8ej and Software Research
Institute, San Francisco, CA. Their support is gratefulligrsowledged.

www.manaraa.com

Publications

The research contained within this thesis has resulted imzber of publications. These are
as follows:

e [78] contains an initial review of tools available to suppsoftware inspection. This
paper was presented by the author at the Seventh Interabtarkshop on Computer
Aided Software Engineering, July 1995.

e [80] is an expanded version of the above review paper, imctud framework for
research in software inspection support tools.

e [73] describes the initial version of the process definitammguage (IPDL) described in
this thesis. This paper was presented by the author at thé Trelernational Software
Quality Week, May 1997.

e [74] describes the final version of IPDL and an initial versad ASSIST, the prototype
tool used to implement this research.

e [72] briefly describes IPDL and some of the features of thesdwersion of ASSIST.
This paper was presented by one of my supervisors, Dr. Janilés, Mt the First
International Software Quality Week Europe, November 1997

e [77] reports on the first experiment comparing tool-based paper-based software
inspection.

e [79] explores the application of inspection to object-ntexl code, suggesting possible
areas of exploration with regard to tool support.

e [88] discusses the use of metrics to manage the inspectawegs, and how they are
implemented in ASSIST

A number of papers are currently under review:

e [76] is a review of all inspection support tools availablela time of completion of
this research.

e [75]is an extended overview of the second version of ASSIST.

e [89] describes both experiments comparing tool-based aebrgbased inspection,
comparing the results.

www.manaraa.com

Vi

A number of technical reports were also produced:

e [71] describes the initial version of IPDL and the inspegtprocesses on which it is
based.

e [69]is the manual for the first version of ASSIST.

e [70] is the manual for the second version of ASSIST.

www.manharaa.com

Vi

Contents

1 Introduction 1
1.1 Background 1
1.2 Contributionsof Thesis., 4
1.3 ThesisOutline. 4

2 A Review of Major Inspection Processes 6
2.1 Faganinspection. e 6
2.2 Structured Walkthroughs. Lo oL 8
2.3 Humphrey'sInspectionProcess. 10
2.4 Gilband Graham Inspection. o L. 11
2.5 Asynchronouslinspection. o ... 14
2.6 ActiveDesignReviews. L oo 17
2.7 PhasedlInspection e 18
2.8 N-FoldInspection. 19
29 Conclusions. 21

3 Existing Tool Support for Software Inspection 22
3.1 Tool Support for Paper-based Inspection 22

3.1.1 COMPAS . . . e 22
3.1.2 QualityGroup4000. 23
3.1.3 Inspection Process Assistant 24
3.1.4 Comparison of Tools to Support Paper-based Inspectio. 25
3.2 On-linelnspectionTools 25
321 ICICLE 27
322 InSpeQ. 30
3.23 Scrutiny 31
324 CSl .. 34

www.manaraa.com

viii

3.25 CAIS. . . . e 35
326 AISA. . 36
3.2.7 Noteslnspector. e 37
328 CSRS 37
329 TAMMI 40
3.2.10 InspectA. 41
3.2.11 hyperCode 42
3.212 WIP . . 42
3.2.13 Distributed Code Inspection. 43
3.2.14 Comparison of On-lineTools., ... 44
3.3 Research Framework. o L. 47
Supporting a Generic Software Inspection Process 49
4.1 Inspection Process Definition Language 50
4.1.1 Implementation Technologies Considered 50
4.1.2 Derivation of GenericProcess. 57
413 IPDLDefinition. o 63
4.1.4 |IPDL Example - Fagan Inspection. 73
415 Conclusions. 75
4.2 Introductionto ASSIST. 75
4.2.1 Using ASSIST to ExecutetheProcess 76
4.2.2 Inspection Facilities. oo oL 77
Evaluation of Basic Tool Support 80
5.1 IPDLEvaluation. 80
51.1 Scrutiny e 80
512 CSRS e 82
51.3 Conclusions. e 84
5.2 Comparing Basic Tool-based and Paper-based Softwspedtion 85
5.2.1 Evaluations of Existing Inspection SupportToals. 86
5.2.2 ExperimentDesign. 87
5.2.3 ResultsandAnalysis. L. 92
524 Conclusions. 105
Enhancing the Software Inspection Process 107
6.1 Automatic Cross-referencing. 108

www.manaraa.com

6.2 ActiveChecklists 110
6.3 A C++Inspection Environment. Lo L. 113
6.4 Automatic Defect ListCollation 117
6.5 Conclusions. 120

7 Evaluation of Enhanced Tool Support 122
7.1 Comparing Enhanced Tool-based and Paper-based Seftvegrection. . . 122
7.1.1 Introduction. 122

7.1.2 ExperimentDesign. 123

7.1.3 ResultsandAnalysis. L. 124

7.1.4 Conclusions. 137

7.2 Automatic Defect ListCollation 138
7.21 Introduction. 138

722 Method 138

723 Results 139

7.24 Conclusions. 146

8 Conclusions 148
8.1 Summary. e e 148
8.2 ContributionsandResults L o L. 149
8.3 FurtherWork. 151
8.4 ConcludingRemarks oo 152
Bibliography 154
A Future Directions in Computer Supported Software Inspecton 165
A.1 Applying Inspection to Object-Oriented Code. 165
A.2 DataCollectionand Analysis. 169
A.2.1 ProcessMeasurement. 169

A.2.2 General ProcessFeedback 171

A.2.3 Checklist Formation and Improvement 173

A.2.4 Estimating Defects Remaining. 174

A.2.5 Inspector Experience and Behaviaur L. 175

A3 Conclusions. L 175

www.manaraa.com

B ASSIST V2.1 User Manual 177
B.1 Introduction 177
B.1.1 Requirements. 177
B.1.2 |Installation. 177
B.1.3 StartingtheServer oL 179
B.1.4 StartingtheClient. 179

B.2 Preparing foraniInspection. oL oo oL 181
B.2.1 Introduction. 181
B.2.2 TheDocumentDatabase. 182
B.2.3 ThePersonnel Database. 184
B.2.4 TheProcessDatabase. 186
B.2.5 StartingaNew lInspection 189

B.3 Executing Anlnspection L oo 190
B.3.1 TheExecuteWindow. 191
B.3.2 DocumentBrowsers oo 192
B.3.3 ProcessPhases. 207

B.4 Writing IPDL Processes. 211
B.4.1 ProcessOutline. 211
B.4.2 Declarations. 212
B.4.3 Process Definitiono 216
B.4.4 Putting It All Together. 221

B.5 IPDLReference. 222
B.5.1 Structure of Process Description 222
B.5.2 Inspection Document, Participant and Respongjiilléclarations . 223
B.5.3 TheOrganisationProcess. 226
B.5.4 TheDetectionProcess. 227
B.5.5 TheCompletionProcess. 230

B.6 Formats 232
B.6.1 Checklists, Criteria, ReportsandPlans. 232
B.6.2 HelpDocuments 235

B.7 Metrics Availablein ASSIST 237
B.8 Customising and Extending ASSIST. 237
B.8.1 Alteringthe PrinterSetup. 237
B.8.2 The.assistrc file 237
B.8.3 AddingNewBrowsers 238

www.manaraa.com

C

B.8.4 Adding New Classification Schemes

IPDL Processes

C1l
Cz2
C3
c4
C5
C.6
C7
C.8

Structured Walkthrough.
Humphrey Inspection Process.
GilbandGraham
Asynchronous Inspection.
Active DesignReviews
Phased Inspection
N-Fold Inspection.

Experiment Materials

D.1
D.2
D.3
D4
D.5

D.6

D.7

D.8

Timetable
C++Checklist. L.
Individual Defect Report Form
Master Defect ReportForm.

Training Prograntount.cc
D.5.1 Specification for programount.cc
D.5.2 Library functions used inount.cc
D.5.3 count.cc
D.5.4 Defects ircount.cc
Training Prograntokens.cc
D.6.1 Specification for progratokens.cc
D.6.2 Library functions used itokens.cc
D.6.3 tokens.cc
D.6.4 Defects iiokens.cc
Training Progransimple _sort.cc
D.7.1 Specification for prograsimple _sort.cc
D.7.2 simple _sort.cc
D.7.3 Defects irsimple _sort.cc
Training Progranseries.cc
D.8.1 Specification for prograrseries.cc
D.8.2 Library functions used iseries.cc
D.8.3 series.cc
D.8.4 Defects in prograrseries.cc

Xi

www.manaraa.com

Xii

D.9 Experiment Prograranalyse.cc 300
D.9.1 Specification for programnalyse.cc 300
D.9.2 Library functions used ianalyse.cc 303
D.9.3 analyse.cC 303
D.9.4 Defects in prograranalyse.cc 307

D.10 Experiment Programraph.cc Lo L. 308
D.10.1 Specification for progragraph.cc 308
D.10.2 Library functionsused igraph.cc 311
D.10.3graph.cc 311
D.10.4 Defects in programraph.cc 314

D.11 Questionnaires 316
D.11.1 Questionnaire 1. 316
D.11.2 Questionnaire 2. 319
D.11.3 Questionnaire 3. 322
D.11.4 Questionnaire4. 324

Raw Data 328

E.1 Comparing Paper-based and Tool-based Software Ingpect 328
E.1.1 Experimentl 328
E.1.2 Experiment2 334

E.2 Automated Defect ListCollation. 339
E.2.1 Experimentl 339
E.2.2 Experiment2 342

www.manaraa.com

Chapter 1

Introduction

1.1 Background

he chequered history of software engineering is well-dasuted. Spectacular failures,
Tsuch as the Ariane 5 launch [107] still occur. Systems whiehlate and over-budget,
such as the UK's new air traffic control system [45], are comphece. Unfortunately, even
the most carefully written software contains defects. KFigdhese defects is difficult, time-
consuming and therefore expensive.

Despite over 30 years of research, software engineeritgigaes which receive univer-
sal acclaim and acceptance are the exception rather thanléhe&oftware inspection is such
a technique. Originally described by Michael Fagan oventygears ago [37], it has become
well-known as an effective defect finding method. The basibhique is simple: a number of
participants review a document with the aim of discoveriaedts. The approach is effective
because of the involvement of people other than the authtireoflocument. These partic-
ipants are not intimately familiar with the document, hetioey tend to find more defects.
Inspection can be used on any type of document, includingfigeions, designs, code and
test plans.

The original inspection process defined by Fagan employsstiosix people, each with
specific roles. Thenoderatoris the person in overall charge of the inspection. During the
inspection meeting, eeaderis required to paraphrase the document amecardernotes all
defects found along with their classification and sevefltye authorof the document under
inspection is another team member. Any remaining partitipare cast as inspectors, whose
only duty is to look for defects in the document. The processduconsists of five phases.
During overviewthe author presents the document undergoing inspectidmetoeist of the

www.manaraa.com

SECTION1.1: BACKGROUND 2

team. Each team member then carriesindividual preparation consisting of studying the
document to gain an understanding of it. Checklists of comihefect types can be used to
aid inspectors. Arinspection meetings then held. The reader paraphrases the document,
while inspectors raise any issues they have discoveredieltme then discuss the issue until

a consensus is reached. If an issue is agreed to be a defeat|assified and noted by the
recorder. No attempt is made to find a solution to the defbig;i$ carried out later. After the
meeting, the moderator writes a report detailing the inspe@nd all defects found, which

is passed to the author. Duringwork the author carries out modifications to correct defects
detailed in the moderator's report. The moderator theropm afollow-upphase, ensuring
that all required alterations have been made.

There are now many variations of the basic inspection metkod example, Active De-
sign Reviews [95] are intended to associate responsédlitiith each reviewer. N-Fold in-
spections [82] aim to increase inspection effectivenesgplycating the inspection a number
of times using independent teams. Formal Technical Asyraus review method (FTArm)
[117] is an asynchronous review method which removes the medave group meetings.
The variation used will depend on the document being inggkegtast experience of inspec-
tion, team preference, criticality of inspection, and so on

The benefits of inspection are generally accepted, withesscstories regularly pub-
lished. In addition to Fagan's papers describing his egpeés [37, 38], there are many
other favourable reports. For example, Doolan [31] repiordsistrial experience indicating a
30 times return on investment for every hour devoted to ioSpe of software requirement
specifications. Russell [103] reports a similar return off@®irs of maintenance saved for
every hour of inspection invested. Gilb and Graham [41] @nésnany positive experience
reports. The benefits of inspection are a direct consequahite ability to be applied early
in the software development lifecycle. The longer defeetaain in the system, the more
expensive they are to remove: the cost of removing a defeenwitie system is operational
is up to 1000 times the cost of removal during the requiresistage [41]. Inspections are
cited as one of nine best practices for software managertiéhaipd appear at Level 3 of the
Capability Maturity Model [50].

The manner in which inspections are performed has remaissehéally unchanged over
its lifetime. Inspection is a low-tech, paper-based teghej and as such has met resistance
[103]. Some feel that such a simple approach has no placelayte advanced development
environments. Inspection is also labour intensive, réqgithe simultaneous participation of
three or more people. As a consequence, recent researctattas $0 explore the application

www.manaraa.com

SECTION1.1: BACKGROUND 3

of tool support to software inspection. By automating soraggof the process and pro-
viding computer support for others, the inspection prot¢essthe capability of being made
more effective and efficient, thus potentially providinge\greater benefits than are otherwise
achieved.

There are many possible benefits from moving to a compufgpated inspection. One
desirable attribute of an inspection is rigour. The procasst be rigorously followed to en-
sure repeatability, which is essential if feedback fromphacess is to be used to improve it,
as advocated by Gilb and Graham [41]. Rigour is also impottaensure the inspection is
as effective as possible. At the same time, some descriptibimspection can be ambiguous
or misleading. It therefore becomes difficult to enforce pin@per inspection process, since
the interpretation of guidelines will differ between indtiuals. Using computers to support
the process can help provide this rigour. Most documentpiar@uced electronically, hence
on-line inspection is a natural consequence. If the sugpotts integrated with the version
control systemin use, the most up-to-date version of theighent is then automatically avail-
able. Inspecting an electronic version of the documentallannotation of the appropriate
part of the document, instead of producing a completely rs¢palefect list. Annotations are
stored on-line and can easily be shared amongst participdtiectronic versions of docu-
ments can be presented in ways to enhance the inspectiiiragsmspectors with the defect
finding task. Computer support can also reduce the need édiatte-to-face group meeting,
which is expensive to set up and run. Instead the meetingld®uheld in a distributed and/or
asynchronous fashion. Finally, computer support allowsiocgfrom the inspection to be au-
tomatically gathered for analysis. This is more accuraém tmanual capture and allows more
finely-grained data to be gathered.

A number of prototype tools have been developed to suppfiwace inspection, and are
reviewed in detail in Chapter 3. Although existing systemespnt innovative approaches to
supporting software inspection, in general they suffemfreeveral shortcomings. Primarily,
they support only a single, usually proprietary, inspettwocess. They also only support
inspection of a single document type, while today's soféwhavelopment environments pro-
duce a number of different document types, from plain tex@astScript and other graphical
formats. Support for inspection of all of these formats isidible. Existing inspection tools
tend to treat the defect detection process as a simple clodingedium, assuming that inspec-
tors will use the same process for finding defects in an oadiocument as when inspecting
a paper copy. Moving to a computer supported inspection eliewy gives an opportunity
to provide more active support for finding defects. Finatlg,comprehensive evaluations of

www.manaraa.com

SECTION 1.3: CONTRIBUTIONS OFTHESIS 4

these tools have been carried out to determine their effgudiss in comparison with tradi-
tional paper-based inspection. This issue must be addrégs®l-supported inspection is to
become an accepted alternative to, or even replace, pagedlinspection.

1.2 Contributions of Thesis

The work presented in this thesis is intended to addressiitreeadeficiencies. In particular,
it makes the following contributions:

e A high-level inspection process description language tvitian be used as input to a
supporting tool to allow the support of any inspection pescer simply as a means to
unambiguously communicate inspection processes.

¢ A prototype inspection support tool which implements tlisguage and also allows
support for any type of document.

e An investigation of several facilities which could increamspection efficiency and
make on-line inspection easier, including a method for lauattacally collating multiple
defect lists into a single list, removing duplicates.

e The first reported controlled experiments comparing péyaeed and tool-based soft-
ware inspection.

1.3 Thesis Outline
The remainder of this thesis takes the following form:

Chapter 2: A Review of Major Inspection Processes
The body of the thesis begins with a review of eight of the ntashmon inspection
processes described in the literature, introducing basicepts and terminology in
inspection.

Chapter 3: Existing Tool Support for Software Inspection
A review and comparison of a number of tools currently avdégo support software
inspection is presented in this chapter. A number of wealegs existing tools were
identified from this review, which suggested the main ardaggearch which should
be undertaken.

www.manaraa.com

SECTION 1.3: THESISOUTLINE

Chapter 4: Supporting a Generic Software Inspection Proces
This chapter introduces IPDL, a language designed to albsy definition of inspec-
tion processes. The first version of ASSIST (Asynchronops¢Bronous Software In-
spection Support Tool) is also described, a prototype tdotwvimplements IPDL and
provides a means to compare basic tool-based inspectiopapei-based inspection.

Chapter 5: Evaluation of Basic Tool Support

Two evaluations of the work presented in Chapter 4 are dslisThe first compares
IPDL with other attempts at providing process-independegection tool support. The
second is a controlled experiment comparing paper-basddamt-based inspection.
This experiment shows there is no significant difference/beth methods, and provides

feedback on the usability of the tool.
Chapter 6: Enhancing the Software Inspection Process

Several techniques for improving the efficiency of softwenrgpection are presented.
They include an automatic cross-referencing system, edecklists and automatic

collation of defect lists.
Chapter 7: Evaluation of Enhanced Tool Support

A second controlled experiment, this time comparing enbdnool-based and paper-
based software inspection, is described. An investigatiomthe effectiveness of the
auto-collation mechanism described in Chapter 6 is alsseoried.

Chapter 8: Conclusions

The final chapter summarises the content and contributiohisthesis, considers fur-
ther work related to this research, and presents some cgionki

www.manaraa.com

Chapter 2

A Review of Major Inspection
Processes

s a prelude to describing existing tools for supportingwaft inspection, this chapter
Areviews the most important inspection methods describeatiérinspection literature.
Several are well-known and well-used, while others are\estknown, but provide impor-
tant concepts and ideas on an effective inspection proEes®ach method, background and
a description of the method are provided, along with a surgrogthe process. Except where
absolutely necessary, the description is limited to thaitkeprovided in the original article.
Obvious gaps which occur in the descriptions of some methagls not been filled, and are
noted. The terminology used to describe each process iaskdtin the original description.

2.1 Fagan Inspection

The original inspection process was defined by Michael EaRdg 1976 [37], with an up-
date published ten years later [38]. A Fagan inspection teamsists of four to six people,
with each person having a well-defined role in the inspectibime moderatoris the person

in overall charge of the inspection. It is the moderatorsk t@ invite suitable people to join
the inspection team, distribute source materials and tarosg and moderate the inspection
meeting itself. The inspection requires the presence adtitlieorof the product under inspec-
tion. The author can give invaluable help to the inspectgrariswering questions pertaining
to the intent of the document. Any remaining team membersaseas inspectors. Generally,
their only duty is to look for defects in the document. Howea the inspection meeting,
two inspectors are given special roles. Teaderparaphrases the document out loud. The

www.manaraa.com

SECTION2.1: FAGAN INSPECTION 7

Overview
\
Preparation
\
Inspection
\

Rework

\

Follow-up

Figure 2.1: The original inspection process defined by Métiragan.

recorderis tasked with noting all defects found, along with theirssidication and severity.
Although Fagan indicates that this task is accomplishecheyntoderator, another member
of the team is usually chosen, since the workload involvedeaquite high, though mainly
secretarial.

Fagan describes five stages in the inspection processteepicFigure 2.1. The inspec-
tion begins with aroverview involving the entire team. The author describes the géaesa
of work then gives a detailed presentation on the documentywed. This is followed by dis-
tribution of the document itself, and any necessary relaterk, to all team members. Each
team member then carries out individpatparation consisting of studying the document to
gain an understanding of it. Although defect detection isamexplicit objective here, some
defects will be found. Checklists may be used to help inggedbcus their effort. The next
stage is thenspection meetingnvolving all team members, where defect detection occurs
The reader paraphrases the document, covering all areagghis process inspectors can
stop the reader and raise any issues they have discoveteet,ieipreparation or at the meet-
ing itself. The team then discuss the issue until agreensergaiched. If an issue is agreed
to be a defect, it is classified asissingwrongor extra Its severity is also classifiedh@jor
or minor). At this point the meeting moves on. No attempt is made to dirstblution to the
defect; this is carried out later. After the meeting, the eratior writes a report detailing the
inspection and all defects found. This report is then passede author forework where
the author carries out modifications to correct the defemtsd in the document. £ollow-up
phase then occurs, where the moderator ensures that aifed@lterations have been made.
The moderator then decides whether the document shouldrspested, either partially or

www.manaraa.com

SECTION 2.2: STRUCTUREDWALKTHROUGHS 8

Phase Timing | Participants| Documents used Documents produced
Overview S Moderator | Product
Author Sources
Inspector
Preparation| A Moderator | Product Individual defect logs
Author Sources
Inspector | Checklists
Inspection S Moderator | Individual defect logg Master defect log
Author Product Inspection report
Inspector | Sources
Checklists
Rework - Author Product
Sources
Master defect log
Follow-up - Moderator | Product
Master defect log Follow-up report

Table 2.1: Summary of Fagan inspection phases and the p®$silings, participants, re-
sources and products of each phase. Timing is either synobsx(S) or asynchronous (A).
Documents used indicates documents which are usually maakalae during the phase.
Documents produced indicates those documents which aatedrduring the phase.

fully. Although not explicitly stated by Fagan, it is assudrtéis verdict is presented in a re-
port. It is also unclear whether partial or full reinspeatie a continuation of this inspection,
or whether a new inspection is convened on the same docuifieatatter is assumed.

The Fagan inspection process is summarised in Table 2. kaebrphase the table lists the
phase timing (where appropriate), the participants, tleeideents made available and the doc-
uments produced. “Product” refers to the document undeggimispection, while “sources”
indicates the documents used when creating the producteXanple, a low-level design
document may be the source document for a section of code.

2.2 Structured Walkthroughs

Another popular method is Yourdon's Structured Walkthfo{if24], which has aims similar
to those of inspection, but tends to be less formal and lgssaus. Yourdon defines seven
possible participant roles. Tlwordinatoris the person tasked with planning and organising
the walkthrough, and also takes the role of moderator dufiegvalkthrough meeting. The
role of thescribeis to take notes on the walkthrough, including any defectsméband sug-
gestions made. Thaeresenteis tasked with introducing the product and is usually thdaut

www.manaraa.com

SECTION 2.2: STRUCTUREDWALKTHROUGHS 9

Organisation

\

Preparation

\

Walkthrough

\

Rework

\

Follow-up

Figure 2.2: The Structured Walkthrough process presentedhbrdon.

of the product. The role of presenter is optional. There &e a number ofeviewers whose
task is to find defects in the product. The remaining threesraremaintenance oraclévho
is concerned with future maintenance of the project) stiamdards bearefwhose remit con-
cerns adherence to standards) anduber representativ@vhose task is to ensure the product
meets the user's needs). Although Yourdon describes tiseseparate roles, it can be seen
that they are simply reviewers with special responsileiiti

The Structured Walkthrough process is shown in Figure 22e first phase isrgani-
sationwhich begins with the producer requesting a walkthroughe producer supplies the
appropriate documentation to the coordinator, who thetitdiges it to all participants. The
coordinator also arranges a time and place for the walktifi@nd contacts all participants to
confirm the arrangements. The participants now spend tieygping for the walkthrough by
reviewing the product. During this stage the producer sthbelavailable to answer questions
and help participants familiarise themselves with the deoent. Although this preparation
phase is not explicitly described by Yourdon as a separaasegtit shall be treated as such.
Thewalkthroughitself begins with the presenter providing an overview @ iroduct. The
length of this overview will depend on the familiarity of tiparticipants with the document.
The product is then presented in its entirety and reviewave fthe opportunity to make com-
ments. Comments from the preparation phase which requirxptanation can be passed
straight to the producer and the scribe. As reviewers piestier comments, the producer
may ask for clarification, but should not spend time arguibgu the validity of the com-
ment. As with other review methods, there should be no d&gounn how each defect may

www.manaraa.com

SECTION 2.3: HUMPHREY' SINSPECTIONPROCESS 10

Phase Timing | Participants| Documents used Documents produced

Organisation - Coordinator
Producer

Preparation A Cooridnator| Product Individual lists
Producer
Reviewer

Walkthrough S Coordinator| Product Master list
Producer Individual lists
Reviewer

Rework - Coordinator| Product Summary
Producer Master list

Follow-up - Coordinator| Product

Table 2.2: Summary of the Structured Walkthrough phasedfagossible timings, partici-
pants, resources and products of each phase. Timing is sjthehronous (S) or asynchronous
(A). The documents used and produced by each phase aresish li

be corrected. The walkthrough phase should last betwedy #nd sixty minutes and fin-
ishes with a vote on the status of the product. After the vimtkigh, the coordinator prepares
a management summary and a list of detailed comments. Tloesments are distributed
to all participants. The producer then makes the requirestatlions to the product during
therework phase, deciding on the validity of each comment and seekiidpgce from the
other participants as appropriate. Finallypiow-upphase occurs to ensure that the required
changes have been made to the product. The phases, partsciral documents present dur-
ing a structured walkthrough are summarised in Table 2.2.

2.3 Humphrey's Inspection Process

The inspection process described by Humphrey [50] is vemlai to that described by Fagan;
however, there are some major differences. The inspectiam tconsists of a number of
people with the expected roles, although they are namederator producerandreviewet
The phases described are virtually identical in name toglkdescribed by Fagan, but the actual
process is different.

The process is depicted in Figure 2.3. Tglanningstage allows for selection of partic-
ipants and preparation of entry criteria. Tbeerviewstage is identical to that of Fagan. It
is during thepreparationstage that the first deviation from Fagan's process occuese,H
reviewers are asked to find and log defects, unlike Fagantlsadevhere defect detection is
deferred until the meeting. These defect logs are then gasshe producer for what could

www.manaraa.com

SECTION2.4: GILB AND GRAHAM INSPECTION 11

Plannning
\
Overview
\
Preparation
\
Analysis
\
Inspection
\
Rework
\

Follow-up

Figure 2.3: The inspection process described by Watts Hoegph

be termed thanalysisphase, where the individual logs are analysed and consedidiaio a
single defect list. At the inspection meeting itself, thegwcer addresses each defect and can
ask reviewers to clarify the meaning of each defect. A lisiagifeed defects is then produced.
The meeting is followed by the typical post-inspection\atiis of rework and follow-up.
This inspection process is summarised in Table 2.3, whidtritges the possible timing of
each phase and the documents required and produced.

2.4 Gilb and Graham Inspection

One of the most comprehensive texts on software inspedsdhat of Gilb and Graham [41].
The method they describe is obviously based on Fagan's Wwovkever, it also incorporates
other lessons. One such lesson is the defect preventiorgga@escribed by Jones [59]. This
discussion is limited to the inspection itself.

There are three defined roles in this type of inspection. [Eaderis in overall charge
of the process and is tasked with planning and running theecteon. Theauthor of the
document is a required participant. As well as attendingldigging meeting, the author
should also take part in checking. The remaining team mesrdrecheckerswhose duty is

www.manaraa.com

SECTION 2.4: GILB AND GRAHAM INSPECTION 12

Phase Timing | Participants) Documents used| Documents produced
Planning - Moderator Inspection objectiveg
Producer Participants list
Overview S Moderator
Producer
Reviewer
Preparation| A Reviewer | Product Defect logs
Checklists Preparation report
Standards
Analysis - Producer | Defectlogs Consolidated log
Inspection S Moderator | Consolidated log| Master defect log
Producer Inspection report
Reviewer Inspection summary
Rework - Producer | Product
Master defect log
Follow-up - Moderator | Product
Producer | Master defect log

Table 2.3: Summary of Humphrey inspection phases and th&lgesimings, participants,
resources and products of each phase. Timing is either symatis (S) or asynchronous (A).
The documents used and produced during each phase arestdsb li

simply to find and report defects in the document. During tgging meeting, one of the
checkers is assigned the rolesafribeand logs the issues found during the inspection.

The process is illustrated in Figure 2.4. It begins with emguthat some entry criteria
are satisfied. This ensures that the inspection is not wasteal document which is fun-
damentally flawed. This is followed by inspectiptanning where the leader determines
inspection participants and schedules the meeting. Ttasgproduces a master plan for the
entire inspection. The next phasekiskoff, where the relevant documents are distributed and
the inspectors briefed. Participants are assigned rolégaals are set. Such goals include
checking rates to be met and expected defect rates. The hagephecking is where each
checker works alone to discover defects in the documents@ petential defects are recorded
for presentation in the next phase, thgging meetingThe logging session is a highly struc-
tured meeting where potential defects (“issues”) foundhmy ¢heckers are collected. The
emphasis here is on logging as many issues as possible anid émt the meeting is moder-
ated by the inspection leader, who ensures that discussiepit focused and criticisms are
minimised. In addition to defects found during checkingpastpotential defects may be found
at the meeting itself. The meeting can be followed byr@nstormingsession to record pro-
cess improvement suggestions. After all potential defeat® been logged, the author takes

www.manaraa.com

SECTION 2.4: GILB AND GRAHAM INSPECTION 13

Entry

\

Planning

\

Kickoff

\

Checking

\

Logging

\

Brain-
storming

\

Edit

\

Follow-up

\

Exit

Figure 2.4: The inspection process as described by Gilb aatdaan.

the issue list and performs a&dlit on the product. At this point, the issues are also classed
as defects. Aollow-up phase then occurs where the leader ensures that the edé@ pass
been properly executed. Finally, somdt criteria must be satisfied before the inspection can
be declared complete. These criteria typically consisuchdtems as checking rates, which
must be within certain limits, and predicted number of deféeft in the document.

From the above description it can be seen that the fundahdiffexence between this
process and that of Fagan is the stage where defect detéstianried out, i.e. during an
individual phase rather than in a group phase. The processikr to Humphrey's, but the
similarity is not complete, since the producer is not expeédb analyse defect logs before
the meeting. Instead, each checker simply presents defdeta they are reached in the
document. Process improvement is also not an explicit feaatiHumphrey's process, nor
are the entry and exit phases. A summary of Gilb and Graharategs is given in Table 2.4.

www.manaraa.com

SECTION2.5: ASYNCHRONOUSINSPECTION 14

Phase Timing | Participants| Documents used Documents produced
Entry - Leader Entry criteria
Planning - Leader Master plan
Kickoff S Leader Goals
Author
Checker
Checking A Leader Product Issue lists
Author Sources
Checker Standards
Checklists
Procedures
Master plan
Logging S Leader Product Issue log
Author Sources
Checker Standards
Checklists
Procedures
Master plan
Issue lists
Brainstorming S Leader Process improvements
Author
Checker
Edit - Author Product
Issue log
Follow-up - Leader Product
Exit - Leader Exit criteria

Table 2.4: Summary of Gilb and Graham inspection processing is either synchronous
(S) or asynchronous (A). The documents used and producéthceach phase are also listed.

2.5 Asynchronous Inspection

All the inspection methods described so far have had one @onmetement: a meeting where
the entire team get together to log and discuss defects.niéeting can be expensive and/or
difficult to set up and run, however, since one must ensutath@am members are available
at the same time and the same place, arrange suitable mepting and so on. An alternative
to an inspection meeting is to hold the entire inspectiomalsgonously, by providing some
means of supporting discussion without the entire teamgopiasent at the same place and
time. The simplest example of an asynchronous activity & dif Usenet, the worldwide
electronic news forum. Discussion proceeds by one persetingoan article, which is then
read by many people. Some of these people then reply to ttideaby posting a reply,

www.manaraa.com

SECTION2.5: ASYNCHRONOUSINSPECTION 15

Setup

\

Orientation

\

Private review

\

Public review

\

Consolidation

\

Group Review
Meeting

\

Conclusion

Figure 2.5: The FTArm asynchronous inspection process.

usually containing an edited version of the original agicThis process continues, allowing
discussion to take place without everyone being preseheadme time.

A similar system can be used for inspection. By allowing sderaccess an on-line
version of the document, they can add comments to the dodyindicating potential defects)
using some type of annotation technology. These commentshem be made available to
other inspectors, who can comment on the comments. Thiggure can continue until a
consensus is reached on the status of the original comneeaitheer a defect or a non-issue.
Once discussions have been completed on all comments,gpedition is complete and the
document can enter rework. Such an inspection method hasigémented using a review
tool called Collaborative Software Review System (CSRS).[5The tool implements an
inspection method known as Formal Technical Asynchroneugsw method (FTArm) [55].

As with traditional inspection, FTArm defines several rolesderator producerandre-
viewer The process itself is shown in Figure 2.5 and consists ofrs@hases. The first
phase isetup which involves choosing the members of the inspection teadpreparing the
document for inspection via CSRS. This involves organisirgdocument into a hypertext
structure and entering it into the databa®eientationis equivalent to overview in the Fagan
process, and may involve a presentation by the auBrirate reviewis similar to preparation.

www.manaraa.com

SECTION2.5: ASYNCHRONOUSINSPECTION

16

Phase Timing | Participants) Documents used Documents produced
Setup S Moderator
Producer
Orientation S Moderator
Producer
Reviewer
Private review A Moderator | Product Issues
Producer | Checklists Comments
Reviewer Actions
Public review A Moderator | Product Issues
Producer Issues Comments
Reviewer | Comments Actions
Actions
Consolidation - Moderator | Issues Consolidated issues
Comments Consolidation report
Actions
Review meeting S Moderator | Product
Producer Issues
Reviewer | Actions
Conclusion - Moderator Reports

Table 2.5: Summary of the FTArm asynchronous inspectios@har he timing of each phase
can be synchronous (S) or asynchronous (A). Roles defingddgrocess are moderator (M),
producer (P) and reviewer (R). The documents used and peddiuring each phase are also
listed.

The reviewers read each source node in turn, and have thig &bitreate new nodes contain-
ing annotations. These annotations can include issuesaitnay defects, comments pertaining
to the intention of the document, which may be answered bptbducer, and actions, which
indicate a possible solution to remove a defect. When eadbwer has covered each node
(or sooner, if required), the inspection moves on to the pbzise. Irpublic review all nodes
become public and inspectors can asynchronously examitease and vote on its status.
Votes cast can either confirm the issue, disconfirm the issualate neutrality. Additional
nodes can be created at this stage, immediately becominglywvailable. When all nodes
have been resolved, or if the moderator decides that fuvitierg and on-line discussion will
not be fruitful, the public phase is declared complete. Bgidonsolidation the moderator
analyses the results of the private and public review phasessummarises unresolved is-
sues. The moderator can then decide whetlggoap review meetings to be held to resolve
the remaining issues. The final inspection report is thewyeed by the moderator during
conclusionalong with a metrics report.

www.manaraa.com

SECTION2.6: ACTIVE DESIGNREVIEWS 17

Overview Review Discussion

Figure 2.6: The Active Design Review process.

From this description it can be seen that FTArm is inheretiyputer-based. Computer
support is essential for providing an asynchronous disonggvironment. A summary of the
FTArm process and the artifacts used and created duringtioess is given in Table 2.5.

2.6 Active Design Reviews

The Active Design Review (ADR) process [95] was designedguee thorough coverage of
design documents. The technique differs from traditiongpection processes in that instead
of one review involving a large number of people, severallE@ngviews are held, each one
concentrating on different types of defects and involvinguéaset of reviewers. Reviewers
are chosen based on their specific skills and assigned sathabh section of the document
undergoes each type of review. Although referred to as degigews, the same technique
could be applied to other documents.

Essentially, only two roles are defined for the ADR processeVAewerhas the expected
responsibility of finding defects, while theesigneris the author of the design being scruti-
nised. There is no indication of who is responsible for sgttip and coordinating the review.

The process is different to those discussed so far, in tieanisists of a variable number of
phases (Figure 2.6). It begins withawverviewphase, where the designer presents an overview
of the design and reviewers are assigned review types andot sections, and meeting
times are set. The next phase is te@ewitself, which consists of each reviewer individually
completing questionnaires specific to their assigned dé&fpe. Although each reviewer has
an assigned responsibility, there are also reviewers tgpét the document overall, since the
other reviewers are tightly focused. This phase is the edemt of the checking phase in Gilb
inspection.

The final stagegdliscussionis where the designers read the completed questionnaides a
meet with the reviewers to discuss issues raised. Severmimge are held, usually one for
each reviewer responsibility, involving only that revievasad members of the design team.
Hence the meetings are kept very small; at no point does ttiee énspection team come
together for a meeting. When issues are agreed on, the réviemmplete and the designers
make appropriate changes to the design document. ActiviggiDBgviews are summarised in
Table 2.6.

www.manaraa.com

SECTION2.7: PHASEDINSPECTION 18

Phase Timing | Participants| Documents used Documents produced
Overview S Designer | Product

Reviewer
Review A Reviewer | Product Completed

guestionnaires
Discussion| S Designer | Completed
Reviewer | questionnaires

Table 2.6: Summary of Active Design Review phases. Timingitiser synchronous (S) or
asynchronous (A). The review is based around the completaidiscussion of appropriate
guestionnaires. The documents used and produced durihgpbase are also listed.

Phase 1 Phase2 | e s ¢ o« Phase N

Figure 2.7: The Phased Inspection process.

2.7 Phased Inspection

The Phased Inspection technique was developed by Knighiigeds with the goal of per-
mitting the inspection process to be “rigorous, tailorallécient in its use of resources, and
heavily computer supported” [87]. A phased inspection &is®f an ordered set of phases,
each of which is designed to ensure the product posseshes aisingle, specific property
or a small set of related properties. The phases are orderdthseach phase can build on
the assumption that the product contains properties thia imepected for in previous phases.
The properties that can be checked for are not necessas#gttoncerned purely with defects
of functionality. They can include such qualities as reiu@gpportability and compliance
with coding standards. The process, consisting of a vaaiabiber of phases, is depicted in
Figure 2.7.

There are two types of phasgingle-inspectoandmultiple-inspectorA single-inspector
phase uses a rigorous checklist, with the inspector degidhether the product does or does
not comply with each item. The phase cannot be completed thwetiproduct satisfies all
checks. These phases are carried out by lone inspectorsnirast, multiple-inspector phases
are designed for properties which cannot easily be desthipe¢he binary questions in single-
inspector checklists. The appropriate documents arellyitilistributed to each participant,
who begin by examining this information and generating tjoas which clarify and improve
the documentation. The product is then inspected indiVigbg each inspector. This indi-
vidual checking makes use of a checklist that is both apficspecific and domain specific,

www.manaraa.com

SECTION 2.8: N-FOLD INSPECTION 19

Phase Timing | Documents used Documents produced
Single inspector - Product Defect list
Checklist Completed checklist
Multiple inspector
Examination A Product Question list
Sources
Inspection A Product
Sources
Checklist Completed checklist

Reconciliation S Product
Completed checklist

1°4J

Table 2.7: Summary of the Phased Inspection phases. Aleglae asynchronous (A), except
for the group meeting, which is held synchronously (S). kimbbther inspection procedures,
no roles are defined for participants. The major inspectitifaats are checklists, which are
used for both single and multiple inspector phases. Therdeats used and produced by each
phase are also listed.

though the questions are not binary, as they are in the singfeector phase. The individual
checking is followed by a meeting, calledeconciliation in which the inspectors compare
their findings. Note that although it is not designed to dotke,reconciliation provides a
further opportunity for defect detection.

Phased inspections are designed to allow experts to caatemn finding defects they
have specialised knowledge of, thus making more efficieataisiuman resources. For ex-
ample, it may be more efficient to have domain analysts ingpgecode for reusability, since
they will have expert knowledge in that particular field. Tihleased inspection technique
is summarised in Table 2.7, including the documents reduared produced at each stage.
Computer support for Phased Inspections is discussed tio8ex2.2.

2.8 N-Fold Inspection

The N-Fold inspection process [82] is based on the ideahleaftectiveness of the inspection
can be improved by replicating it. While two teams may indially find 40-50% of the total
number of defects in the document, one team may find defett®uand at all by the other
and vice versa. There will be some overlap between the defeand but the new defects
found can outweigh this disadvantage. By increasing thebmurof teams performing the
inspection, the percentage of defects found overall wébtgially increase, until a point where
the cost of finding more defects (i.e. using more teams) iatgrehan the benefit gained

www.manaraa.com

SECTION2.8: N-FOLD INSPECTION 20

Rework and
Follow-up

Planning and

- Collation [—
Overview

/ Inspection 1 \
N 7

Inspection N

Figure 2.8: The N-Fold inspection process.

from removing those extra defects. The technique was allyidesigned to be used for user
requirements documents, since defects injected here aradbt expensive to fix, but it could
be used any time that removal of defects is of paramount itapoe, such as in safety critical
systems.

In addition to the personnel required to hold each inspactibFold inspection requires
the services of @oordinatort, whose task is to coordinate the teams and collect and eollat
the inspection data. This is achieved by meeting with theeraidr from each team. The
description of N-Fold inspection given in [82] is rather uagg apart from the essential fea-
ture that multiple inspections are carried out by indepehteams. Therefore, the following
description is an extrapolated process, which would bessarg to effectively implement an
N-Fold inspection.

The process is shown in Figure 2.8. It begins with the uswaimhg stage of a traditional
inspection; however, this stage also includes decidingntimeber of teams to participate and
other details relevant to an N-Fold inspection. There wababe an overview stage to fa-
miliarise the participants with the context and contenthef locument and the goals of the
inspection. This is followed by a number of (usually coneut) inspection stages, each
of which is entirely independent. This means they use cotalyiéndependent teams, and
possibly completely different inspection processes. kan®le, one team may use Fagan in-
spection, another may use Active Design Reviews and yehanatay use an asynchronous
inspection. Using different inspection processes impsdbe independence of each inspec-
tion, and will hopefully find more defects in the document. c@reach inspection has been
completed, the process entersadlationphase, where the results of each inspection are tallied
and collated by the coordinator. This stage produces a niagtef defects which are given to
the document's author for the traditiomalvorkphase. This would be followed byfallow-up
phase ensuring the required items have been addressed.

The N-Fold inspection process is summarised in Table 2.8 Nhat many of the details of

' This role was originally termed “moderator”, but since eatspection team already contains a moderator,
and to avoid conflicting terminology the title “coordindttias been adopted.

www.manaraa.com

SECTION2.9: CONCLUSIONS 21

Phase Timing | Participants| Documents used Documents produced
Planning - Coordinator
Overview S Coordinator| Product
Moderator
Inspector
Inspection - - Product Defect lists
Collation S,A | Coordinator| Defect lists Master defect list
Moderator
Rework - Author Product
Master defect list
Follow-up - Coordinator| Product
Master defect list

Table 2.8: Summary of the N-Fold inspection phases. The grdyp phase is the collation
stage, which can be asynchronous (A) or synchronous (Suments and participants of each
phase are listed, except for the inspection stage, wheyedigend on the exact inspection
method(s) being used.

this process depend on the inspection method being usecekrélgnthe inspections produce
defect lists which must be collated into a single list.

2.9 Conclusions

Initially, there appeared to be a large variety of inspatpoocesses. Under closer scrutiny,
a number of these are quite similar, consisting of minoratarns of the individual prepara-
tion/group meeting structure originally proposed by FagEime most radical variations come
in the form of the N-Fold and asynchronous processes. ThelN+{frocess is designed to
increase the confidence in the quality of the document bygusialtiple, independent inspec-
tion teams. Asynchronous inspection is designed to obtiet@eed for a synchronous group
meeting. Most process differences occur in terminologeg: tdrms used for process phases,
participants and documents all vary between methods, wdainltause confusion when com-
paring processes. A standard terminology and means of ggatescription would therefore
be useful, both for communicating and comparing processes.

www.manaraa.com

Chapter 3

Existing Tool Support for Software
Inspection

his chapter begins by describing existing tool support &dtveare inspection. A number
Tof such tools have been described in the literature overalegight or so years. Table 3.1
shows the history of research in computer-supported ingpein terms of the production of
tools. As can be seen, there has been a steady interest opibeftroughout the decade. The
research contained in this thesis began in 1995.

There are two main types of tool: those that provide a meansdpturing data from
paper-based inspections and those that provide on-lipeati®n of documents. As it would
be unfair to compare both types of tools, they are treatedraggly. The chapter ends with a
description of the major weaknesses of existing tools tleaewlecided to be addressed.

3.1 Tool Support for Paper-based Inspection

3.1.1 COMPAS

COMPAS [6] is a development-process support tool which bdda in 1984 as a simple
document management system. In the form described, itsrrifeatures are modification
request management, document management and an inspaudioeview subsystem, along
with various other housekeeping functions.

Initially, a document is entered into COMPAS along with wais attributes about that
document. Each document has a status associated with d@hwainitially set todraft . A

www.manaraa.com

SECTION 3.1: TOOL SUPPORT FORPAPER-BASEDINSPECTION 23

Year | Tools
1990 | COMPAS
ICICLE
1991 | InspeQ
1992 -
1993| CSI

CSRS
Scrutiny
1994 | CAIS
QG4000
1995 | Notes Inspecto
1996 | AISA

TAMMI

1997 | DCI
hyperCode
InspectA

IPA

1998 | WiP

Table 3.1: History of inspection support tools.

general purpose query facility is available to retrieveoimfiation about documents tracked by
COMPAS.

In terms of support for inspection, COMPAS first allows thepaction to be scheduled.
The system allows the required participants to be namedtentirhe and place of the inspec-
tion to be set. An electronic notification can then be senathearticipant. The system can
also generate a set of inspection forms to be used. COMPASatically collects certain
data about each inspection and provides facilities forremgether types of data. Summary
inspection statistics can be extracted from the tool. Fanmgde data concerning one docu-
ment type may be extracted. These statistics include anodumterial inspected, preparation
rates, inspection rates, detection rates and effort.

While details of COMPAS are sparse, it appears to providéuliseetrics collection and
analysis for inspection. These facilities seem to be bdiien those found in many of the
on-line inspection tools.

3.1.2 Quality Group 4000

Quality Group 4000 at Telefonica Investagacion y Deskri62] report on the use of a tool
developed to support software inspections. The tool ismasteially named, but is based on
several simple UNIX tools.

www.manaraa.com

SECTION 3.1: TOOL SUPPORT FORPAPER-BASEDINSPECTION 24

On-line production of comments during reviews is suppoviadgimple text files. A single
command allows the moderator to collect all comments intmgls file. The tool can then
generate a paper report of these comments to be passed taltbefar repair. The author then
marks up the paper copy of the report to reflect the changdsrpexd, and passes it back to
the moderator. The moderator then uses the tool to produlcarege agreement report, which
summarises the author's acceptance or rejection of eacimenmThis report is passed to all
reviewers, who can negotiate with the author about comnwehitsh have not been addressed.
The tool can store data from multiple reviews and providegaursystem allowing access to
the appropriate documents. It can also calculate a numbraetfcs.

3.1.3 Inspection Process Assistant

Inspection Process Assistant (IPA) [16] is a recent addlitiche field of tool support. Its main
use is to allow defects in the product to be entered on-lid&.rmodels a process consisting of
planning (checking work product and organising the inspadieam), individual preparation
(inspectors identify defects), meeting (group discussibdefects found), rework (fixing of
defects), verification (ensuring defects have been cdyréged) and finalisation (moderator
validates results). It allows a database of available icspe to be kept, and also allows
information on documents to be stored.

An inspection begins with the moderator using IPA to seleetdocuments to be inspected
and the participants who will be involved. A viewpoint (atdaesponsibility) can be allocated
to each participant, and the reader and recorder for thepgmeeting set. Finally, a date and
time for the group meeting is set.

When the moderator has defined the inspection, other gaatics must then access IPA
to customise the definition for themselves. IPA can then leel ws record defects for that
inspector. Each defect can have a location, a summary, dedetiescription and a classifi-
cation. When the inspector has finished preparation, theuatraf time spent in preparation
can be entered.

When all inspectors have finished preparation, the modecaiio use IPA to merge the
individual defects together into one single list to be d&s®d at the meeting. Unfortunately,
this is just a simple merge and there is no facility for the eratr to edit this list, e.g. to
remove duplicates.

During the group meeting, IPA is used by the recorder to r@tle disposition for each
defect (e.g. accept, reject, duplicate, etc.) and the dvesult of the inspection (such as
“work product accepted”). The producer then can then useding rework to browse the
defect list and fix the appropriate items. The producer cak each defect as corrected or not

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 25

corrected. During verification, the verifier uses IPA to bsawhe defect list and mark each
item as verified or not verified, commenting on the decisioaggopriate. After verification,
the moderator finalises the inspection and can produce paatisn report. Finally, inspection
data can be exported from IPA for further analysis.

IPA provides fairly comprehensive support for the prodociof defect lists and collection
of some data. One major deficiency is the inability of the natte to edit the merged defect
list before the meeting. This could reduce the size of thetli®reby reducing the length of
the meeting. And of course, like the other tools in this settthe possibilities provided by
on-line document presentation are not exploited.

3.1.4 Comparison of Tools to Support Paper-based Inspection

It is quite obvious that IPA has the most comprehensive sapbthe three tools. COMPAS
only supports the tracking of documents and inspectionytan QG4000 supports individual
comment preparation while IPA supports both individuajamation and the group meeting.
Although comment preparation on-line may make inspectionenefficient, it may also be
inconvenient to work with both paper and on-line materiathet same time. Hence, most
work in tool support for inspection has concentrated on mgvhe entire process on-line.

3.2 On-line Inspection Tools

On-line inspection tools go one stage further than thos=adir discussed: the entire process
is carried out on-line. These tools tend to be far more cornlan their relatives discussed

in the previous section. The features provided by thesedaolbe classed under four broad
categories: document handling, individual preparatiogetimg support and data collection.

Document Handling Paper-based inspection requires the distribution of iplelttopies of
each document required. Apart from the cost and environahésttors associated with such
large amounts of paper, cross-referencing from one docuto@mother can be very difficult.
Since most documents are produced on computer, it is natuaibw browsing of documents
on-line. Everyone has access to the latest version of eaalmaient, and can cross-reference
between documents. Also, the actual presentation of thesentents can be designed to
enhance their inspection.

Computer support allows on-line annotation of documenith annotations linked to the
part of the document to which they refer. They can then be naad#able for all inspectors
to study before and during the inspection meeting. This hasatded advantage of helping

www.manaraa.com

SECTION3.2: ON-LINE INSPECTIONTOOLS 26

to reduce the inaccuracies and mistakes which can occunglthie inspection meeting, in-
cluding the failure to record some comments altogether.s Eiffiect has been observed by
Votta [118] and can occur in several situations, includirfeew inspectors are unsure of the
relevance of their comments. By storing all comments og;linis easier to ensure that each
one is addressed.

Individual Preparation There are several ways in which tool support can assist iiviohd
ual preparation. Tools can be used to find simple standatdtioas. While not as important
as logic defects, these must still be found to produce a cod@cument. If finding them can
be automated, inspectors can concentrate on the more Hitfiefiects that have a potentially
greater impact if not found. This may be achieved by the gurtion of new tools, or the
integration of the inspection environment with existinglg There are various levels of in-
tegration, from simply reporting defects to actually proohg an annotation relating to the
defect for the reviewer to examine.

Generally, inspectors make use of checklists and otheratipg documentation during
preparation. By keeping these on-line, the inspector caityeaoss-reference between them.
On-line checklists can also be used by the tool to ensurestiedt check has been applied to
the document, thereby enforcing a more rigorous inspegivbile on-line standards assist the
inspector in checking a document feature for compliance.

Meeting Support Prior to the group meeting, computer support may be used taitoro
inspectors' effort. The moderator can use this informatiiodecide when is the best time to
move from the preparation stage to the meeting, taking adamiithe amount of preparation
performed by each inspector. The moderator can also exeogene who has not prepared
sufficiently for the group meeting, or encourage them tostweore effort.

Since guidelines state that a meeting should last for a maximf two hours [37], it may
take many meetings to complete an inspection. There is a @argrhead involved in setting
up each meeting, including finding a mutually agreeable tame place, a room to hold the
meeting and so forth. There is also an overhead involveddohn @articipant travelling to the
meeting. By allowing a distributed meeting to be held usiogferencing technology, it may
be easier for team members to “attend” the meeting using aitgtdy equipped workstation.

An alternative solution to the meeting problem is to remadve synchronous meeting
stage altogether, performing the inspectamynchronouslyIn this type of inspection, each
inspector can perform their role independently. The inipaamoves from stage to stage
when every inspector has completed the required task. ¥pésdf inspection can also reduce

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 27

meeting losses which occur when participants fail to regefects.

When a meeting is taking place, it can sometimes be usefwnduct polls to quickly
resolve the status of an issue. This is especially impoitahe meeting is being held in a
distributed environment. Computer support can allow pllbe quickly taken, thus helping
the inspection meeting progress more rapidly.

Data Collection An important part of inspection is the collection of data efhican be
used to provide feedback to improve the inspection procBse.measures will include time
spent in meeting, defects found, overall time spent in io8pe, etc. Collecting this data is
time-consuming and error-prone when carried out manudtyfact, Weller [119] suggests
“...you may have to sacrifice some data accuracy to make o#iexton easier...”, which is
obviously undesirable. Computer support allows data froenimspection to be automatically
gathered for analysis. This allows inspectors to concéntmathe real work of finding defects.
Furthermore, the data can be analysed with little furtherkwonlike manual data collection
where the data has to be entered before it can be analyseH isfan error-prone process.

These four areas represent the major facilities which caprbeided by an on-line in-
spection support tool. A number of such tools are now revieimgerms of their support for
these four areas.

3.2.1 ICICLE

ICICLE (Intelligent Code Inspection in a C Language Enviramt) [9, 12, 13, 104], is de-
signed to support the inspection of C and C++ code. This ®ahique in making use of
knowledge to assist in finding common defects. Since the kedhye is of a very specific
kind, ICICLE is less suitable for supporting inspection tfier document types. It can, how-
ever, be used to inspect plain text files by turning off théiahanalysis. The tool supports
both individual preparation and the inspection meetinglfitduring the inspection meeting,
the tool provides the functionality available in individwhecking, supplemented by support
for cooperative working.

Document Handling The source code is displayed in a large window with each lima-n
bered (see Figure 3.1). This window can be augmented by adexxale window, allowing
the user to compare two parts of the code simultaneouslyt téeke line numbers are two
symbols referring to comments. A letter indicates the stafihe comment. This can include
deferred(not dealt with yet)ignored(user decides the comment is inappropriate or otherwise
suspect) otransferredchosen to be discussed at the inspection meeting). Thadsymbol

www.manaraa.com

SECTION3.2: ON-LINE INSPECTIONTOOLS 28

[& ICICLE Comiment Preparation in R.c B
File Windows Module Meeting Options Help
Destination: File | R.c Line Setting destination to R.c, line 1
— Setting destination to definition of vectorx.
vectorx has been indexed.
Goto Next Deferred Comment|
FE T3
1 #include <stream.h>
2_
3 class wectorx
4=
] int *w;
[int sz;
7-i|public:
8 wvectorx (int);
9 ~vectorx () { delete v;};
10-
11- int size() { return sz; }
12- void set_size(int);
13=§ int& operator[](int);
14 int& elem(int i) { return w[il]; }
15 HH
16
17 | wvectorx: :[FEIRged(int s) // constructor
18 {
19- if { s<= 0)
20 cout << "wectorx: bhad wector size\n";
21 sz = 5;
22 v = new ink[s];
23 }
24
| 4 2 | -
Figure 3.1: The main ICICLE display.
[® ICICLE Comment Window 2]

NING: returning pointer or reference to data member
D Line 13; WARNING: specify inline function outside of class definition

Edit Comment File: |R.c Line:| 13

4> New Comment CommEnt:lreturninq peinter or reference to data member

Explanation: | This tends to vwiolate data encapsulation by giving the client
program direct access to member data.

The object being returned is a pointer or reference to a member. §

This comment only <> All in Window <> All of this type

Done | Transfer | Ignore | Defer i Propese | Help |

Figure 3.2: The ICICLE comment preparation window.

indicates the presence of a comment for this line. A hyphditates a single comment, while
an equals represents multiple comments.

Clicking on a line opens a comment window like that shown giuiré 3.2 for the line. This
window allows a comment to be modified or inserted and itaistehanged. Any changes to
this comment can be propagated to all comments on the limesoral comments in the code
which have the same text.

Individual Preparation ICICLE can automatically prepare comments on source coitg us
its analysis tools. These include the UNIX tdimit and ICICLE's own rule-based static
debugging systeniint can be used to detect certain defects in C code, such as batdeac

statements and possible type clashes. The ICICLE ruledbsgggtem can be used to flag

www.manaraa.com

SECTION3.2: ON-LINE INSPECTIONTOOLS 29

[#] ICICLE Proposal Window BN
efocs proposes R.c line 12:

not all arguments in list are named

It is helpful both for readability and accuracy to name E
the arguments in a function prototype.

4 Data 4 Missing

<» Documentation £ Wrong

<y Functionality &y Extra

<> Logic

<» Performance

< Standards # Minor

£» Other < Major

Figure 3.3: The ICICLE comment proposal window.

both serious defects, such as failure to deallocate meraadymore minor defects, such as
standards violations. There is also the ability to includstemised analysis procedures. The
comments produced by all these tools can either be acceptdtebnspectors if they agree
with them, modified or else completely rejected. ICICLE afsovides a facility to allow
browsing of UNIX manual pages. The system also providesscreterencing information
for “objects” such as variables and functions. For examglieking on the use of a variable
would give the user an option to move to the point of declargtor any other usage of the
variable. This facility is available over multiple sourcke§.

Meeting Support The inspection meeting is held with every inspector usintCLE in
the same room. Distributed meetings are not supportede shree authors “do not wish to
supplant the ordinary verbal medium by which the bulk of rimgetommunication occurs”
[104]. During the meeting, each inspector has access tmalidents as well as their own
comments. Each inspector has the code window displayedrearscThe reader controls the
traversal of this window for all participants, just as a $enmspector does during comment
preparation. Every code window is locked to the reader's/,véthough an inspector can
open an extra window to allow simultaneous inspection of$ections of the code.

The reader proceeds through the document until an issueomped by an inspector,
opening a proposal window on all displays. The scribe's psapwindow is shown in Figure
3.3. The team discuss the comment, and when discussion iglemnthe scribe is able to
classify the comment and accept it, or reject the commentptetely. If the comment is
accepted it is stored in a file which becomes the output of teetimg. During the meeting,
participants can send single line text messages to all pdrécipants.

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 30

Data Collection When the inspection meeting is complete, ICICLE generatiést af all
accepted defects to be given to the author of the productrundpection. A summary of
the defects by type, class and severity is also generateglsdiibe can also prepare a report
detailing the total time spent in preparation and in meetihg inspectors present and other
such process information.

3.2.2 InspeQ

InspeQ (Inspecting software in phases to ensure Qualigy)aslset developed by Knight and
Myers [65, 66, 87] to support their phased inspection tephai The technique was developed
to allow the inspection process to be “rigorous, tailorabfécient in its use of resources, and
heavily computer supported” [65]. Phased inspections weseribed in detail in Section 2.7.

Document Handling Thework product displays used to browse the document under in-
spection. By using multiple copies, the inspector can diamgously examine separate parts
of the same document. The browser allows the inspector tols¢lae document. Theom-
ments displagllows the inspector to note any issues found. InspeQ saorié formatting of
these comments before they are passed on to the author.

Individual Preparation A checklist displays used to display the checklist associated with
the current inspection. The checklist also allows the ingpeo indicate completion of each
check, by marking each item asmplies does not complynot checkedr not applicable
To help enforce a rigorous inspection, InspeQ ensures thelecklist items are addressed
by the inspector before the product exits the phase. Theeugtan to extend the system to
ensure that each checklist item is applied to every featsse@ated with that item. Check-
lists usually ensure compliance with one or more standaéinésefore sstandards displays
available which presents each standard in full.

Thehighlights displaycan allow the inspector to quickly identify specific featid the
document. These can be highlighted but can also be dispiayadseparate window for
examination. An example would be to highlight all tvbile statements in a C program to
allow them to be checked for correctness, without the ditita of the surrounding code. This
function requires syntactic information about the docutmesnich is more readily available
for code than any other type of document.

Meeting Support Since InspeQ is designed for individual inspector use gtigeeno support
for group meetings. It can, however, generate the commetrfoli each inspector. These lists

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 31

[¢] Scrutiny Work Product: Trial 2]

fictions Controls

Document Mame: | Bill,of .Rights Dlocument #: | lofl
Current Focusy| 12 - 14 Coverage &3 | 19 %

5 orprokibiting the free exercise tereaf;
& orabridging

7 the freedom of speech or of the press;
& or the right of the peaple peaceadly

g to assemble and
i0 to petition the Government for ¢ redress of grievances.
11

11,
regulated miliia being necessar

ell

to the security of a free State)
arms shall not be infringed,

16 Article III,

17 Mo zoldier shall, in time of peace,

18 be quartered in any house without the conzent of the owner,
19 nor in time of war but in a manner to be prescribed by law,

{Fundamental i——

Previous Line | Hext Line Goto Line | Arnotate | e e

| ol &

Create Zone | Previous Zone | Hext Zone | Plware st

Figure 3.4: The Scrutiny work product window.

are then compared at the reconciliation.

Data Collection No data collection facilities are described.

3.2.3 Scrutiny

Scrutiny [15, 43, 44] is a tool based on the inspection metns®t at Bull HN Information
Systems. This process consists of four stages. The first stagtiation and is comparable
to overview in the Fagan model. The second stagedparation as in the Fagan model. The
inspection meeting itself is callegsolution while the final stagecompletion encompasses
both rework and follow-up. The roles taken by each participae also similar, however
Scrutiny also implements some changes. First, the modé&satde is changed to include the
duties of the reader. In addition, the recorder role can kertdby more than one person.
Scrutiny also explicitly implements the role of the produyagho can answer questions re-
garding the document. Finally, there is another role in trenfof theverifierwho ensures the
defects found by the inspection team have been correctlyeaddd by the author. This role
may be assigned to any participant. Any other members ofdln tare cast as inspectors.
Each stage of the process, along with each of the three islemdelled in Scrutiny.

www.manaraa.com

SECTION3.2: ON-LINE INSPECTIONTOOLS 32

[#] Scrutiny Annotation Input 2]

B Liretars | 12 - 14 [[Fraser

Josiiosa, | BiLLof Rights Title [T

< Remark < luestion 4 Defect
4 Reply & Eaciens

Unpin |imésant faie Store |iCancel

Figure 3.5: The Scrutiny annotation window.

Document Handling Thework product windovallows each inspector to view the document
under inspection (see Figure 3.4). The document is disglawth each line numbered and
the current focus indicated by reverse video. The currezugas usually a single line but may
also be a zone of several lines. Text which has been inspisdtaticised, and the percentage
of the document covered is displayed in the top right handeoiThe window has controls to
move through the document line by line, and also has contmaisark a zone. Finally, there
is a button to enable the creation of a new annotation.

When an annotation is created or modified, it appears reotation windowan exam-
ple of which is given in Figure 3.5. This displays the line rhers to which the annotation
refers and the author of the annotation, along with its corna@d a title. Buttons allow the
type of annotation to be recorded as either a question, pateefect, remark or reply. When
an annotation is created, an icon appears beside the linenertp which it refers. Scrutiny
currently only supports text documents.

Individual Preparation Here, Scrutiny simply allows the inspector to traverse tbeuwd
ment, making annotations which can be used during the régplstage. There is no assis-
tance with checklists or other supporting documentation.

Meeting Support Before the inspection meeting is started, the moderatorvean the
preparation time of each inspector, to ensure that enoughtias been given to allow adequate
preparation. Each inspector also has the opportunity taiaael for any off-line preparation
which they may have engaged in.

During the meeting, the work product window is used by eadttigdpant to view the
document, with the moderator having additional controlstiange the current focus and to
initiate a poll. The moderator guides the inspectors thiotigg document, while they read

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS

33

[¢] Scrutiny: Trial

Actions Shelves

Obligations

Controls

Meeting Type: | Inspection

Stage: | Resolution

Current Document Focus: Avardscruting/works/Bill,of ,Rights

iy
PARTICIPANT ROLE(S) STATUS FROCEED
MUrray INS Showpresence -
andy INS Showpresence -
marc INS Showpresence -—
Jjames INS Showpresence -
frazer HOD. REC Establishing -—
Start Inzpection Meeting Meszage M1
£
Current Annotations
il g
Sort annotations éisplay all Selecten:l %l]isplag next unread
Bl
Defects
Al
Polls
il iy
Obligations Obligations on Others
il
InBox

Figure 3.6: The Scrutiny control window.

and discuss the annotations made. Polls are used to rebelgtatus of an annotation.
Scrutiny also provides a main control panel called ¢batrol window a copy of which

is seen by each inspector (Figure 3.6). This window consiEfeur major subwindows.

The participant statuglisplay contains a list of the participants along with ani¢ation of

their current activities. Thannotationssubwindow contains a list of annotations made on

the current document, along with their owners and a type. defectsubwindow lists defect

reports that have been discussed and their status agreesistdius includes the type and
severity of the defect. Finally, every time a poll is takerridg the inspection meeting to
resolve an issue, a record of it is kept in fhals subwindow.

Scrutiny can be used for both same-place and distributgeateon. The latter makes use
of teleconferencing facilities. It is also possible to hdlgtributed inspections without these
facilities by making use of Scrutiny's built in textual comnications systems. The discussion
client allows inspectors to exchange textual points ofuson. Each participant has a list of
the current discussion points which can be read and repiddplies have a reference to the
original point, and participants can traverse these chainmints, allowing them to follow

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 34

a discussion and then add their own comments. Scrutiny atsades a means of sending a
simple message to meeting participants. In addition to amimg your own message, there
are several frequently required messages, such as a régueste to the previous line, which

can quickly be sent. These messages can be sent to namediradiyor the group as a whole.
Itis not clear how effective these mechanisms are when hglalisynchronous meeting, since
the medium is obviously not as information rich as faceaoefcommunication.

Data Collection Scrutiny automatically generates an inspection reportainimg all the
relevant information about the inspection and its partioiis, details of the time spent by each
participant in the inspection and the coverage of the docuthey achieved. It also contains
a complete defect list with summary information.

3.24 CSI

Vahid Mashayekhi at the University of Minnesota has cre#ttegle prototype inspection sup-
port tools, described in his doctoral thesis [83]. The firkthese, Collaborative Software
Inspection (CSI) [84], is designed to support inspectioallgoftware development products.
The tool is described as applied to the Humphrey model ofeaspn [50]. In this variation,
each inspector creates a list of defects during individasppection, which are then given to
the author of the document before the inspection meetinig.thie author's task to correlate
these defect lists and to then address each defect at thectimpmeeting.

Document Handling CSI provides a browser for viewing the document under inspec
which automatically numbers each line. When a line is sete@nannotationwindow pops
up, allowing the inspector to make a comment about thatqadati line. This annotation is
supported by hyperlinks between the annotation itself &reddocument position to which
it refers. Since annotations can only refer to one line, d@det may be a need for general
comments about an area of the document, CSI also suppoadipadsystem, which allows
annotations about missing material.

Individual Preparation Support is available from CSI for detecting defects by pso

of on-linecriteria which help the inspector determine defects. Also, whenrdéng annota-
tions, the inspector is given guidance in categorising amtirey defects. After all inspectors
have finished individual inspection, the author can acckssaotations associated with the
document and correlate them into a single defect list, sapgddy CSI through automatically
summarising and integrating the individual defect listheButhor can then categorise each

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 35

defect, either accepting it or rejecting it. CSl also alldivs author to sort the defect list on
multiple keys, including severity, time of creation andgbsition.

Meeting Support At the inspection meeting, the document under inspectiorade visible
on a window on each inspector's screen. The author guideseléing using the correlated
defect list. Each item is discussed, and when agreementéhee regarding its severity,
this is noted by the recorder in tletion list The original annotations are available at this
point to help inspectors understand the defect, and fudhaptations can be added during
the meeting. When the end of the defect list is reached, tpeictors agree on the status of
the meeting, indicating whether the material under indpads to be accepted or reinspected.
CSI provides support for distributed inspections throughaadioconferencing tool called
Teleconf [102].

Data Collection The inspection summaris used to record meeting information such as
team members present, their roles and the status of thedtispeneeting. CSI also provides
a history log This collects several metrics from the process, such asirtieespent in the
meeting and the time taken to find a defect, as well as the nuenizke severity of defects
found.

3.25 CAIS

The next prototype developed by Mashayekhi is Collabogatigynchronous Inspection of

Software (CAIS) [85]. It is designed to be used asynchrolyoausd therefore does not rely

on having all inspection participants present for any pathe process. It is hoped that asyn-
chrony can reduce the amount of time required to completény@ection, since there is no
need to find a common time when all inspectors are free to @autghe meeting. An asyn-

chronous meeting can also solve some of the social problemshvoccur in synchronous

meetings, such as inspectors free riding, production bhacfvhere an inspector has to with-
hold a contribution until an appropriate time) and limitedtane (only one person can speak
at a time).

Document Handling This system uses CSI for displaying and annotating docusnent

Individual Preparation Again, CSl is used for individual preparation, therefore facili-
ties here are identical.

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 36

Meeting Support The asynchronous meeting is supported by a meeting obj&is. pro-
vides a discussion and voting mechanism, and also notiftdspaticipant when new discus-
sion has taken place. If an issue cannot be resolved durngsynchronous meeting it can be
sent to a synchronous meeting held later.

Data Collection The history log is used to collect data on the inspection. mM#ics col-
lected are: number of comments per person, number of votgsgeson, time for individual
defect collection, total meeting time, and when each gaditt made use of the system.

3.2.6 AISA

The final prototype developed by Mashayekhi is Asynchrorngpector of Software Arti-
facts (AISA) [108]. This prototype is designed to allow aslgronous inspection of graphical
documents, such as Data Flow diagrams. The tool is basededddakaic WWW client and
supports a three stage inspection process: defect colte@tidividual detection of defects),
defect correlation (where the producer integrates indisldiefect lists into a single master
list) and the inspection meeting (held asynchronously).

Document Handling The use of a WWW client allows AISA to support most graphical
documents. The document is prepared as a clickable imagewtegther this is done auto-
matically or manually is hot mentioned). Each document haigmarchy of graphical images,
allowing the user to successively zoom in to smaller are#isoagh only two levels are im-
plemented. Each component document has a button allonetigdmponent to be annotated,
along with a list of annotations for that component. Anniotas can be viewed by clicking on
them.

Individual Preparation AISA simply support viewing and annotation of the documeamt u
der inspection. No other help is provided, except that Al38ves each participant to signal
their completion. When all participants have finished, asags is sent to the producer in-
dicating the end of the defect collection phase. The prodimn uses AISA to correlate
the defect lists, removing duplicates and arranging thethenorder in which they are to be
discussed during the meeting.

Meeting Support The correlated defect list generated by the producer besdhseagenda
for the asynchronous meeting. Each defect has an assothiated of discussion that partic-
ipants can add to. When discussion of a defect is completeyopal is generated for that

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 37

defect, which each participant can vote to accept or rejdnt.output of this meeting consists
of a summary of all defects and proposals.

Data Collection No data collection facilities are mentioned.

3.2.7 Notes Inspector

Notes Inspector (NI) [115] was also developed at the Unityersf Minnesota. This tool

was built using Lotus Notes and, like CAIS and AISA, impletsean asynchronous model
of inspection. In this model, the inspection consists of ragividual defect finding phase
followed by an asynchronous meeting where participantsudis and vote on defects found.

Document Handling The product is stored as multiple Notes documents, with &aefof
text being stored as a single document. This appears a sahavtificial way of storing the
document, but it allows annotations to be associated witlvidual lines of text. Non-textual
documents cannot be accommodated, however. Annotationapgzear either as additional
lines within the document, or as symbols next to the appab@tine.

Individual Preparation This tool only permits the document to be read and annotéted.
further facilities are available to help individual prepton.

Meeting Support Notes Inspector is an asynchronous system and does notrstipptra-
ditional group meeting. However, a discussion and votirgjesy is available for use during
the asynchronous meeting. Each defect can have a threasioofsgion, which inspectors can
view and extend. To resolve an issue, a proposal is createh iBspector can vote to accept
or reject this proposal, or to abstain from the vote. Defedigch are not resolved during the
asynchronous meeting can be set aside for a traditionahsynous meeting.

Data Collection No data collection facilities are available.

3.2.8 CSRS

Collaborative Software Review System (CSRS) [55, 56] idptdy the most flexible of all
tools described here as it can be customised to supportefitfeariants of the inspection
process. This is accomplished using a process modellingubsge [117]. This language
has several facilities, including constructs for definifgapes of the method, a construct for
defining the role of each participant, and constructs to deffire artifacts used during the

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 38

|E| Source: decl_print 2]

[C3RS Screens Reviewer fLock Save | Close

Name: decl_print

Specification:
Print routines for checking the declarations processed.

Source-code:
FY

£

switch (d->decl_common,decl_kind) £

case DeclType:
printf ("Type %z = ". d->decl_common,decl_id->id_chars):
type_print (d->decl_common,decl_typel:
printf ("n"l:
break:

case DeclVar:
printf {"Wariable ¥s of tupe ", d->decl_common.decl_id->id_chars):
type_print (d->decl_common, decl_typel:
printf (" at address {(dd. Hddwn".

d-rdecl_var,decl_addr->object_level,
d-rdecl_var.decl_addr->object_offset):

break:

case DeclConst:
printf {"Constant ¥s of tupe ", d->decl_common.decl_id->id_chars):
type_print (d->decl_common,decl_typel:
printf (" and walue "):
value_print {d-’decl_const.decl_wvalue->object_valuel:
printf {"\n"i:
break:

case DeclArg!
printf {("Formal ¥s of type ", d->decl_common,decl_id->id_chars);
type_print (d->decl_common,decl_typel:
printf {". mode "):
switch {d->decl_arg.decl_arg_mode) £
caze ModeValue: printf ("WALUE" 2 break:
case ModeWar: printf ("WAR" ¥ break:
case ModeReadOnly: printf ("READONLY"}: break:
¥

break:

default:
printf {"Regquest to print unknown kind of declaration~n')?
break:

i
Issues:
{—> Bssuet278 §

Connents:
Related-docunents:

{emacs—lisp Private-Rev

Figure 3.7: The main CSRS window.

inspection. The latter also includes support for checklisthe language can also be used
to define the user interface, as well as to control the typeabtd @nalysis carried out by
CSRS. The description of CSRS presented here is based @®its gupport an asynchronous
methods of inspection known as Formal Technical Asynchusmeview method (FTArm).
This method is described in more detail in Section 2.5, bseesally consists of a phase of
individual review of the product (where all comments aretkgivate), followed by public
review (where all comments become publicly available aeddéscussed asynchronously).

Document Handling A document is stored in a database as a series of nodes. Foesou
code, these nodes would consist of functions and other @nogonstructs. Source nodes are
created at the start of the inspection by the document autitiothe aid of the moderator. The
nodes are connected via hypertext-style links, allowimgispector to traverse the document.
A typical source node is displayed in Figure 3.7. The naméefanction is given, followed

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 39

||§| Commentary1: Issue#278 2]

R3 Screens Reviewer ELm:kE Save E Close

ubject: Function name

abegory:

riticality: Med (Future Threat}
ource-node: decl_print

ines: 1

escription: The Function name is very zimiliar to an
xisting function.

onsensus: Confirmils® Disconfirm:Q Neutral:o
elated-issues:

roposed-actions:

{tezt Private—Review Reviewer)

Figure 3.8: A CSRS issue node.

by a specification of its intended function. This is followsdthe source code itself.

Annotations are also stored as nodes, and can be one of threg. t The first type is
a Commennode, which is used to raise questions about the documertbagmswer them.
These are made public to all inspectors. Keuenode indicates a perceived defect in the
source node. Issue nodes are initially private to individerdewers. An example issue node
is given in Figure 3.8. This issue is linked to the source dadggure 3.7, where a link to the
issue node can be seen near the bottom of the display. Fiaalctionnode is a suggestion
of the action that should be taken to resolve an issue. Thiesdso private to reviewers. The
action node given in Figure 3.9 details a possible fix for Hseie raised previously.

Individual Preparation The FTArm method predominantly consists of individual work
and this is where CSRS provides the most support. During tivatp review phase, each
inspector has a summary of which nodes have been coveredtraal rave still to be covered.
This information is also available to the moderator, whd usk it to decide when to move on
from private review to the next phase. Since additional saday be created after a reviewer
has reviewed all the currently available nodes, CSRS hafatilgy to automatically e-mail
all reviewers when new nodes are created and have to be EW¥ie@SRS also provides an
on-line checklist of standard issue types to assist thewessi

Support during public review is similar to that for privateview, except now all nodes
are accessible to all participants. This time the main fésws issue nodes. Each reviewer
has to visit each node, where CSRS can be used to vote on thatsnstatus. Again, the
reviewer has summary information available, indicatingeimodes have still to be visited.
The moderator can also use this information to decide whesrtainate public review, usually

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 40

[#] Commentary?: Action#280 2]
CSRS Screens Reviewer tLock | Save Close

Subject: Function name

Action-type: Fix

Source-node: Issue#278

Description: Rename this function to Print_Declarations

Connents:

{text Private-R r)———-h11

Figure 3.9: A CSRS action node.

when all reviewers have visited all nodes.

Meeting Support CSRS has little in the way of group meeting support, due tgtedomi-
nantly asynchronous nature of the inspection method imgiged. The group review meeting
must be held face-to-face in the traditional manner. CSRSS dot provide any support except
to help the moderator summarise the results and to produdgxé formatted report.

Data Collection CSRS provides automatic collection of such data as numlaesererity of
defects and time spent reviewing each node. It also has tlity &bkeep an event log, which
details the entire inspection from start to finish, allowdegailed (manual) analysis later on.

3.29 TAMMI

TAMMI [101, 114] is a tool developed to support the GRCM qtyathodel [113]. The model
is based on goals (G), rules (R), checklists (C) and methgsand is designed to support
the sharing of consistent information between designedsiaspectors. Each quality goal
is broken down into a number of rules, which are in turn broewn to form checklists.
Rules are used to guide software design, while checklistased to help inspectors check for
compliance with rules.

Document Handling TAMMIi is designed to support inspection of PostScript doeuts,
allowing inspection of graphical as well as textual docutaeAnnotations can be marked di-
rectly on the document, with vertical lines in the marginrgpiised to signal their occurrence.
Each annotation may have a subject, a description, the ndelaecklist item which classify
this item, and an indication of its criticality. A separaténdow provides a summary of all
annotations made and allows the user to jump to any giventatioo.

www.manaraa.com

SECTION3.2: ON-LINE INSPECTIONTOOLS 41

Individual Preparation TAMMIi provides explicit support for support for the GRCM meld
by presenting the checklist on-line to guide inspectorse @ecklist is also used to classify
items found.

Meeting Support TAMMi does not explicitly support group meetings. Howevaneport
listing all the annotations entered by an inspector can eeat, which can then be used
during a traditional face-to-face meeting. The tool coukbde used as an aid to the scribe.

Data Collection No data collection support is mentioned.

3.2.10 InspectA

InspectA [93] is another attempt to explore the possiktitffered by asynchronous inspec-
tion. The inspection process used starts with a phase ofithdil inspection, where inspec-
tors generate their initial list of comments. This is follesvby review, where copies of these
initial lists are exchanged amongst inspectors, allowirent to discuss the validity of each
comment. This discussion proceeds asynchronously. Thewephase is followed by an-
other round of individual inspection, with all comment §isteing available to each inspector.
Comments can be reclassified, new comments added, and sa the énd of this phase, the
moderator prepares a master list of comments to send to therdor repair.

Document Handling InspectA supports only plain text documents. It also allewsst of
defects to be entered. Each defect may include the produottéch is incorrect, a descrip-
tion of the defect, a class (Missing, Wrong or Extra) and aesgv(Major or Minor). The
defects are not linked to the position in the document whwesg bccur.

Individual Preparation InspectA allows the traversal of the document under inspegct
and can also display a single source document and a chedkéfgo provides a mail facility
allowing participants to exchange comments and ideas. ifiais$ facility is also used to
distribute defect lists at the end of the individual phases.

Meeting Support InspectA is designed to perform a completely asynchronesisection,
so no synchronous meeting facilities exist. It supportséveew phase of the inspection by
providing a find facility to help locate defects in the texin® no position is stored with the
defect). A notepad is also available for making commentse fBlol also provides facilities
for the moderator to combine multiple defect lists into a teakst.

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 42

Data Collection No data collection facilities are supplied.

3.2.11 hyperCode

hyperCode [97] is a WWW-based tool also designed to supjifteteht-time, different-place
inspection, however the process used is much simpler trerotinspectA. Preparation and
collection are performed concurrently, while resolutidnissues is performed during the re-
work phase. When an inspection has been started, the relmspectors are notified by
e-mail. During a designated time-span, an inspector usedard WWW browser to study
and annotate the code under inspection. All annotationpalodéic. When this period has
elapsed, e-mail is again sent to the inspectors and the ranndnp then examine annotations
made and decide on the rework to be performed. On completitreaework, the moderator
is informed, who then verifies the rework.

Document Handling hyperCode makes use of a standard web browser to allow cduke to
viewed and annotated. Code listings have the latest changdsed and are automatically
translated into HTML. Line numbers in the source listing dr@ing hyperlinks for adding
annotations, page numbers are used to build a table of dsnimd so on. Although the
example application is code inspection, it should be pdésstbapply the same techniques to
other document types.

Individual Preparation hyperCode only allows the inspector to traverse the codamgak
annotations. There is no mention of the use of checklistglmrasupporting documentation
such as design documents or standards.

Meeting Support No meeting supportis present in hyperCode - the entire cigpeis held
in an asynchronous fashion.

Data Collection Data collection facilities are not mentioned by the authors

3.2.12 WiP

WiP (Web Inspection Prototype) [46] is yet another WWW-lzhgespection support tool,
originating from the same institution as TAMMi (describeooae). Like TAMMI, WP is
based around the GRCM quality model. An inspection begiris avsetup phase, where the
documents required for the inspection are passed to Wigeatsrs are selected and roles de-
fined. During individual inspection, the inspector has asde the document under inspection

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 43

and can create annotations on a line-by-line basis. Retidedments and checklists can be
accessed, and help concerning the process and the toolagsalvailable. Statistics about
the document can also be accessed. The next phase is pgpkéction, where WiP combines

inspectors individual lists into a single list. All inspecs can now view all annotations, and
add more as required. At the end of this phase, a report suisin@the inspection can be

created.

Document Handling WiP makes use of a standard web browser to allow documents to b
viewed and annotated. Documents are restricted to textaordythe view is limited to twenty
lines at a time. Annotations may only refer to single linast dan be classified and have a
checklist reference associated with them.

Individual Preparation Inspectors can view and annotate the document. Checkhsks a
other supporting material can also be viewed.

Meeting Support No meeting support is implemented in WiP. All inspection gém are
held asynchronously.

Data Collection WiP collects the time spent inspecting the document and timeber of
issues generated, and calculates the inspection rate sresiper thousand lines.

3.2.13 Distributed Code Inspection

The Distributed Code Inspection (DCI) prototype proposgB®bherty and Sahibuddin [30] is
designed to implement their distributed inspection precé&e process starts with a planning
activity, where a synchronous or asynchronous methodsasesh In the synchronous model
the next activity is a kick-off meeting where the participaare briefed on the source code and
the objectives of the inspection. In an asynchronous methbdefing document s distributed
by e-mail. Both models continue with individual preparatiovhere participants attempt to
find defects in the code. A group activity then follows in botlethods. Confusingly, the
authors state that all participants must be available asainge time in both methods — surely
this contradicts the asynchronous model? Both methodsahénvith a follow-up phase.

Details of the actual tool are sketchy, and written in theifettense, implying that the
system has not yet been created. Itis (or will be) another Wid&aed tool, allowing any user
with an ordinary WWW browser to make use of the system.

www.manaraa.com

SECTION3.2: ON-LINE INSPECTIONTOOLS 44

Document Handling A code viewer is used to display the code under inspectiothobigh
not explicitly stated, it can be assumed that this viewesxs donly. Comments about the code
can be stored.

Individual Preparation On-line help is available, though it is not clear what thitphefers
to, e.g. the tool, the code, etc. The specification of the ¢edeade available on-line. An
e-mail facility is also available to allow inspectors to leetarification regarding the code.

Meeting Support Chat and e-mail facilities are available for group discossiThe com-
ments created during individual preparation can be viewebdiscussed.

Data Collection No data collection support is mentioned.

3.2.14 Comparison of On-line Tools

Table 3.2 summarises the features of existing on-line ictspetools. It can be seen that while
basic document inspection and annotation are well-supg@gitte more advanced features are
less common. This section compares the features supporiegich tool.

Document support Most tools handle only plain text documents. ICICLE, SemtiCSI,
CAIS and hyperCode use the same technique of displayingitiendent with each line num-
bered. Annotations can then be made which are linked to awidhahl line. Scrutiny also
uses the idea of a current focus, which is a current area efast upon which an annotation
can be made. CSRS divides the document up into smaller clvaliksl nodes, each of which
can be inspected on its own and comments made via new nodtes lia this one. InspeQ
and InspectA are the least well supported in this area, siogenents are completely separate
from the source document, with only cut and paste faciliéiesilable to give a context to a
comment. In essence this only gives the facilities that egditor can supply. Only two tools
support non-textual documents: AISA and TAMMi. Both allomnatation of graphical doc-
uments, the first via HTML and the second as PostScript. Huis bf support for different
document types is one of the major shortcomings of existwdst and must be addressed
if inspection support tools are to become a standard featuseftware development support
environments. Annotations linked to the area of the docunwenhich they refer also appears
to be a fundamental feature.

ICICLE, CSI, CAIS, AISA, Scrutiny, TAMMi, CSRS, InspectA dnViP all allow clas-
sification of annotations. The other tools only allow thewation or deletion. This limits

www.manaraa.com

ICICLE CsSlI

InspeQ Scrutiny TAMMI

DCI

CSRS CAIS AISA NI

Inspgc hyperCode WiP

Linked Annotations
Defect Classification
Cross-referencing
Automated Analysis
Checklists
Supporting Material
Distributed Meetings
Decision Support
Data Collection

Table 3.2: Summary of features of existing on-line inspectools.

www.maharaa.com

STOONOILOIdSN]| INIT-NO (Z2'ENOILD3S

174

SECTION 3.2: ON-LINE INSPECTIONTOOLS 46

the scope for collection of defect type metrics, althouggtilt allows the overall number of
defects to be measured. Classification of annotations isitapt for providing feedback on
the software development process, in terms of the most &mityuoccurring defect types.

Individual Preparation Checklists are supported by InspeQ, which uses them to @nfor
a rigorous inspection by ensuring each item on the chedkligttended to by the inspector.
In a similar vein, CSI has the concept of a criteria list whieps inspectors find and cat-
egorise defects, and this is also available in CAIS. TAMMIiPVénd InspectA also provide
checklist support. As checklists are a fundamental feattixertually all inspection types, it
is surprising that less than half of all tools provide anysurp.

In terms of other supporting material, InspeQ supports ihpldying of standards, while
ICICLE can provide a browsing facility for manual pages lik@se provided in UNIX. In-
spectA can display a single source document, DCI can digp&pecification, while WiP can
display various supporting documents. Once again, suipgalbcuments are vital part of any
inspection, yet they are overlooked by the majority of érigtools.

ICICLE is the only tool to provide any automatic defect détat This is currently pro-
vided using the UNIX toolint and ICICLE's own rule based system, which contains knowl-
edge about C source code that can be used to detect suchs@efeading violations. ICICLE
is also the only tool to provide cross-referencing, but ihignited to C. Clearly there is much
scope for research in this area.

Meeting Support To ensure that each inspector has spent sufficient time ipapa&on,
CSRS can provide details on the amount of time spent on itispday each inspector. This
prevents inspectors misleading the moderator about ttedi of preparation. The checklists
in InspeQ also perform this function. Scrutiny stores thepetage of document covered by
each inspector, as well as the time spent by each inspecbmtinpreparation and meeting.
Such data is useful for controlling the inspection, and niesthade easily available.

Support for distributed meetings is only relevant to theckyonous inspection tools. CSI
uses Teleconf, which provides an audio channel only. Sgrulso supports the use of an
audio channel, in addition to its discussion and messagiciittes. DCI provides textual dis-
cussion via chat and e-mail. ICICLE lacks these facilitied & designed to be used when the
inspection meeting takes place in one room with all inspgsqtoesent. InspeQ and TAMMi
are designed for individual inspector use only, and lacksargh facilities. Videoconferencing
facilities are vital for allowing geographically distribed meetings.

Decision support is available through polls in ScrutinyRSS CAIS and AISA. A voting

www.manaraa.com

SECTION 3.3: RESEARCHFRAMEWORK 47

mechanism would seem to be desirable for an asynchronopedtisn tool, since it provides
a good way to reach a consensus, yet not all asynchronowgssdopport such a system. Even
in a synchronous meeting, it may provide a useful means oéigssolution.

Data Collection ICICLE automatically gathers metrics on the number and pissues

raised, as well as their severity, as noted by the scribedulie inspection meeting. CSl and
CAIS use a history log to record metrics. CSRS and Scrutime the most comprehensive
metric gathering capability. CSRS has the ability to gathefiect metrics, as well as fine-
grained metrics on the amount of time spent by each inspest@wing each node. Scrutiny
has similar collection facilities, including the time spén inspection and the coverage of
the document achieved by each inspector. WiP collects th&eruof issues found and the
total time spent in inspection, and can calculate the inspecate and defect detection rate.
Actual data collected is specific to each development enwient, therefore an inspection
support tool should be tailorable in terms of the data ct#ié@nd the analysis performed.

3.3 Research Framework

Having investigated existing tools, a number of weakneases identified. It was decided to
implement a prototype support tool to tackle these weal@sesEhe first step was to provide
the basic features required of an inspection support tabkdso to tackle some fundamental
omissions from existing support tools, namely:

e Support of any inspection process. Computer support shaaiithe tied to a particu-
lar inspection method. Instead, the tool should be rigoiouss enforcement of the
inspection process, but tailorable as to which procesddrees.

e Support of any document type. The system cannot be restriota single document
type, such as ASCII. Instead it must provide an extensitdeesy for supporting multi-

ple types.

e An annotation mechanism, where annotations are linkedgatba of the document to
which they apply. Less than half of the existing tools prevailich a mechanism, yet
linking defects to the section of the document in which thesus would appear to be a
basic requirement.

o Classification of annotations, allowing data on defect $yjoebe gathered and used to
pinpoint weaknesses in the software development process.

www.manaraa.com

SECTION 3.3: RESEARCHFRAMEWORK 48

¢ Ability to display supporting documentation, such as chistk and standards, since
these are important documents in the inspection process.

e A synchronous meeting mechanism allowing users to shage atad vote on issues.
This would allow the exploration of the effectiveness of amlime meeting.

These features were identified as being vital to any inspecipport tool, and would form
the foundation of a comprehensive tool.

A common problem when developing new tools to support soivdgvelopment is lack
of proper evaluation, and the area of tool support for sofévirgspection is no exception. With
this in mind, controlled experiments were planned to evallais research. The first would
compare paper-based inspection with basic tool-supporspection, using the prototype tool
implementing the features described above. This study dvprdvide a baseline for further
research, and ensure there were no fundamental flaws wittotieept.

A second version of the tool would then be developed. Thislvouplement more ad-
vanced features concerned with enhancing performancedacieg effort during inspection,
both for individuals and the team as a whole. Moving to a campsupported inspection
gives an opportunity to provide more active support for firgddefects, along with other pro-
cess improvements. Features for this version would be base&ceaknesses in existing tools
and feedback from the first experiment. A second experimentldvthen be staged to com-
pare paper-based inspection with advanced tool suppat attempt to explore the effect of
providing additional features.

www.manaraa.com

Chapter 4

Supporting a Generic Software
Inspection Process

his chapter describes work carried out to achieve the gaastified in the previous
Tchapter. The main aim of this work is to provide support foirsdpection models. This
allows the most effective process for a given situation tong@emented, optimising the costs
and benefits associated with the inspection. There are tweilpie solutions. The first is
to make use of an existing technology, while the second cosdbe exploration of a new
approach. It was decided that the most appropriate appmashio derive a purpose-built
process definition language. This language can be usedatstingn inspection support tool,
allowing support of multiple processes.

The chapter begins by considering workflow tools and geraugbose process modelling
languages, two existing technologies which could be usguordwide support for multiple
inspection models. It then introduces Inspection Procegs@ion Language (IPDL), a lan-
guage capable of describing all existing inspection preegsThe use of IPDL to describe the
Fagan inspection process is discussed in Section 4.1 3L (#lescriptions of the other seven
processes described in Chapter 2 can be found in AppendiA €gmparison of IPDL and
other attempts at modelling software inspection proceszede found in Section 5.1.

Section 4.2 introduces ASSIST (Asynchronous/SynchroBoftsvare Inspection Support
Tool), a prototype system used to implement the researdepted in this thesis. It discusses
the execution of the IPDL implementation of the Fagan pre@esl the facilities provided
to users. This section also discusses other goals ideniifigee previous chapter, including
support for multiple document types.

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 50

4.1 Inspection Process Definition Language

4.1.1 Implementation Technologies Considered

There are several existing technologies which could be ts@dovide support for multiple
inspection processes. Two such technologies were coesidemorkflow management tools
and process modelling languages.

Workflow Management Tools

Within an organisation, there can be three types of proei3js Material processes are those
concerned with physical components. Information procease concerned with the creation,
processing and management of data. Business processessariptions of activities, imple-
mented as material and/or information processes, condemté fulfilling a customer need
or satisfying a contract. A workflow is the description of eguence of steps in a business
process, performed automatically and/or by human intéimenDefining a workflow allows
that process to be understood, evaluated and modified. Warkflanagement systems are
tools which support coordination and execution of task&iwia workflow, and its redesign.

Three types of workflow systems have evolved over the pastdieor so, with increasing
levels of sophistication. Initially, image-based systemese created to automate the flow
of paper through an organisation. Paper documents wergsdidiand the workflow system
used to route these documents in the appropriate manner 23fm-based systems were
the logical progression: instead of digitised documerdgtebnic forms containing machine
readable data are routed around the organisation. Thisapethe opportunity of automating
tasks. Finally, coordination-based systems are designtilitate the making and fulfilling
of commitments necessary for completion of work. As theimeasuggests, they aid the
coordination of personnel within the process.

A wide range of commercial workflow tools are available. Aestcomparison of some
of these can be found in [25]. There are also a number of rels@aototypes. Since inspection
is simply a process involving documents and people, workftmis could be used to support
it. Hence, a number of representative tools will be congidewith specific reference to their
applicability to inspection.

Regatta [111] is a system which represents work as a netwiorkgquests. A request,
representing a responsibility, is made from one person aohem, and will have one or more
options for the recipient of the request. The recipient cerept or decline the request. A
policy is a set of requests which defines the process, anglisgented using a visual process
language. Each plan can be decomposed into a subplan, s§agdrstraction of the process.

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 51

These processes do not need to be complete before they maetitand can be edited as
the process is followed. While the Regatta system could bd tsrepresent the stages and
personnel in an inspection process, and a description aa#keto be performed at each stage,
it does not represent the documents within the system. Tigukge has the goal of being
executable [112], but it is not clear how this is achievedhaw the appropriate tools could

automatically be selected to support the process.

TriGSy.., [64] is an architecture for a workflow management systemrnpaxating object-
oriented and rule-based concepts and based on a commebgt-oriented database. A
workflow is modelled as a number of activities, each of whiglpérformed by one or more
agents. Agents can either be automatic (i.e. some form ohimagor human (represent-
ing users). Activities performed by automatic agents aramletely autonomous. Activities
involving human agents can either be executed by an apiplicatith user interaction, or
without any computer support. Activity nets (an extensidi®etri nets) are used to specify
control flow between tasks, defining execution order. Ea@mtlgas a worklist, and data flow
between agents is modelled using orders, which insert dé&daan agent's worklist. Finally,
the system can apply rules to activity ordering, agent siele@and worklist management.
This allows dynamic selection of activities and agents,thecdautomatic selection of items on
workliststo be processed by automatic agents. This typgstém could be used to implement
inspection processes, however it is still very much a reseprototype and hence not widely
available. The combination of both activity nets and rulss anakes process definition more
complex than it might otherwise be.

A recent trend in workflow systems, in common with the newepgrction support tools
described in Chapter 3 has concerned use of the World Wide [@&8b The use of any
standard WWW browser to access the system allows any useake mse of a workflow
tool without installing dedicated software, essentialigyiding platform independence. The
browser is also an interface which most users are alreadyidanvith.

One Web-based research prototype is DartFlow [18]. It uges dpplets for the interface
and agents to carry data and control information. When a lagsron to the system, their
worklist is displayed. Clicking on a worklist item displags HTML form, completion of
which results in the generation of an agent to process thm.fém example system demon-
strating a system for opening bank accounts is presentguhuah it is not clear how easily
DartFlow can be modified to implement other processes.

Another example is WebWork [91], a Web-based enactmenesy$br the METEOR
workflow management system. Workflows are modelled as a desk$ and the dependen-
cies between them. The enactment system consists of taskgeran application tasks and

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 52

a run-time monitor. Essentially, each task in the workflownigpped to a task manager, an
application task and a verifier. The task manager reads datathe previous task, prepares
it for the current task, then invokes the application. Datéhen collected and passed to the
verifier, which ensures the task has proceeded correctlysaletts the next task to execute.
Tasks can be various types, including fully automated aogeghmequiring human intervention.
It would therefore be possible to use this system to mod@ldation processes, invoking the
required tools at the appropriate time. Unfortunatelys tigpe of WWW technology was not
available when this research was being performed.

Fundamentally, workflow systems have been concerned witting information and in-
forming users of events, rather than supporting teamwotkeyTare usually used by many
users company-wide [18], rather than the small teams whieHiandamental to inspection.
Steps within a workflow tend to be more finely-grained tharsthwithin an inspection pro-
cess, usually consisting of simple decisions. Also, thereistandard for process definition,
therefore a process defined in one workflow system cannot ée lus another. Some tools
allow supporting applications to be executed to help perftire task. Not every organisation
has the same tools, however, so a process developed in caeisation may not be usable
in another. Ideally, process definitions should be as widplylicable as possible. The tech-
nology used is becoming increasingly sophisticated, hewend it seems likely that the
deployment of an inspection support tool based on such amsysill become more feasible.
A WWW-based system, such as WebWork, is certainly now a m@iele platform. In the
future, there may also be convergence on a standard for gsatedinition.

As can be seen from the above descriptions, workflow systewe & process modelling
element. Hence, the next section explores the possikifitiedefining inspection processes
presented by general-purpose process modelling languages

Process Modelling Languages

The software development process is a key factor in the tyuafidelivered software [67].
Hence, there has been much research on modelling the prdgesess models can be built
to understand the nature of the process under scrutiny (erdfore improve it), and they can
be used as a basis for automating the process. Since softvgpextion is a subprocess of
software development, it is natural to investigate the igppllity of process modelling, with
a particular interest in the modelling languages availableeh a modelling language could be
adopted for describing inspection processes and used aistian inspection support tool.

A number of process modelling languages (PMLSs) have beepogex, utilising vari-
ous paradigms and approaches. McChesney [86] has devedogadsification scheme for

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 53

process modelling approaches, a subset of which conceenBNH. associated with the ap-
proach. Eight PML paradigms are identified: rule-basederafive programming, object-
oriented, Al/knowledge-based, Petri net-based, funatiprogramming, formal specification
and mathematical (or quantitative) modelling. Some of¢heae more widely used than oth-
ers. Example languages from each paradigm are now brieftyrides.

Marvel [60, 61] is a process-centred environment basednar@urule-based process en-
gine. A particular environment consists of an object-aeeidatabase containing process and
product data, rules defining the behaviour of the envirortnaenl a set of tool envelopes.
Each rule consists of three components. Preconditionsakean expression which must be
true before an activity is performed. The second comporsetite activity itself, which may
invoke a tool, invoke another rule, or describe a task to maethout by a human. Finally,
postconditions are logical assertions which become truerwithe activity has been completed.
There may be multiple postconditions reflecting the possiesults of the activity. Forward
and backward chaining of rules are used by Marvel to detegragativities which can be per-
formed automatically. Tool envelopes allow Marvel to inedkols used in the process model.
These envelopes specify the manner in which the tool is toneekied and to return values
indicating success or failure. Note that the integratioMairvel and the Scrutiny software
inspection tool is discussed in Section 5.1.1.

APPL/A [109] is an imperative modelling language based oa. A&l traditional program-
ming language was chosen as the basis for APPL/A as it preVideic control mechanisms,
data definition facilities, executability and other feasiwhich are necessary for modelling
processes. APPL/A extends Ada in a number of ways. It previdiation units, which repre-
sent relationships between objects in the process andd@aldta structures for representing
process data. This data is shared and persistent. Trigger represent logical threads of
control which can react to events. These are generally usptbpagate updates between re-
lations, to send notifications of changes in data, and so @did¢ate units specify conditions
on relations. They can be explicitly invoked or automaticeivoked and are used to maintain
consistency. A consistent state exists when all predicatesrelationship are satisfied. If one
or more predicates are not satisfied then inconsistencyrecelonsistency management is
further supported by a set of specific constructs.

EPOS [54, 23], on the other hand, implements SPELL, a pergisbbject-oriented lan-
guage which also makes use of rules. Processes are modeletyped network of tasks.
EPOS types (including tasks and data entities) exist in aitkRy. Types can be subclassed
and augmented via single inheritance. A task type represestep in the process and contains
a script to be executed. This script is surrounded by preitiong and postconditions, which

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 54

can be either static or dynamic. Static conditions allowvmds and backwards reasoning
without executing the script, while dynamic conditionsallthe dynamic triggering of tasks.

The system provides an execution manager which enacts ticegs. It uses the precondi-
tions to determine when to enact a given task and then irgerfite script associated with the
activity.

GRAPPLE [49] makes use of the Al planning paradigm. In thisagegm, the system is
expressed as a set of operators and a state schema (c@sistiset of predicates). These de-
fine possible actions within the system and the state of thiesy, respectively. A set of goals
are also defined, represented by logical expressions imgthe state predicates. A plan is
a set of actions which achieve a goal given an initial systetes When applied to process
modelling, operators allow the definition of processes dadgbecome data structures rep-
resenting instantiations of the process. Each operatoalpaiscondition and a primary goal,
along with a set of side-effects. A set of sub-goals may aksadfined, allowing the de-
composition of complex processes. These operators arardgally instantiated to generate
plans which can be executed. The paradigm is aimed at engiigiie goals which must be
achieved, rather than the actions which must be taken teeehihem.

The SPADE (Software Process Analysis, Design and Enacjreamironment [4, 5] pro-
vides the SLANG (SPADE Language) process modelling langubgsed on Petri nets. A
SLANG process model consists of a set of type definitions asef@f activity definitions.
Types are defined in an object-oriented style, consisting loierarchy of subtype relation-
ships. Activities are modelled by Petri nets with procestdeeing represented by typed
tokens of the net. Each activity is specified by a set of plazagt of transitions and a set of
arcs. State is represented by an assignment of tokens tesplate occurrence of an event
is modelled by a transition, where tokens are removed fragrirtput places of the transition
and added to the output places. Each activity is divided &manterface, which interacts
with other parts of the process, and an implementation, wisibidden. Each activity can be
composed of a number of sub-activities. Activities can becated in parallel.

HFSP (Hierarchical and Functional Software Process) [isl@h example of a functional
modelling system. A process is defined as a set of matherh&tinetions, each of which
represents a process element with inputs and outputs. Hactidn defines the relationships
between inputs and outputs, and can in turn be decomposesdubelements (with matching
inputs and outputs). Decomposition continues until eadtgss element maps to a single
tool invocation or human operation. HFSP implements segjngniteration and concurrency
of process elements and also allows communication betwesreats.

The formal specification language LOTOS [53] has been an@tyenue of research. A

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 55

specification consists of a number of processes, each ofwitidescribed by a behaviour

expression. Behaviour is defined in terms of the sequenceenifte in which the process can

participate. An event defines a synchronisation betweereggses. LOTOS specifications can
describe the temporal ordering of these events, and camraddel non-determinism and con-

currency. Yasumotet al. [123] described the use of LOTOS to model software developme
processes. The process is described in terms of the actidn@rder of primitive activities.

Finally, an example of quantitative modelling is the systhmamics approach of Abdel-
Hamid and Madnick [1]. This technique simulates the systemd modelled as a set of
equations. When these equations interact, they provid#béek loops which simulate the
dynamic nature of the system. The accuracy of the model adlspamthe form and parame-
ters of the equations. The approach can be used to investigaieffect of altering process
parameters, e.g. the number of developers involved.

When considering how they may be applied to inspection m®e® it is worth consider-
ing how such a language will be used. Potential users of tigukage will include inspectors,
moderators and inspection support tool developers, eaathof will have a different view-
point and different requirements. Inspectors will haveitoiv processes defined. Moderators
will use it to describe existing processes and to developpresesses. Tool developers will
be concerned with implementing support for the languageyiging adequate facilities for
each phase in the process.

Alist of requirements can now be formed. The language musirbple to allow processes
to be easily written and modified. The language should bélyeactessible and not require a
significant learning effort. For example, industrial inspen training courses last a maximum
of three or four days. It should be reasonable to teach thgulage within that timeframe
alongside the myriad of other inspection issues. Furthegrio be amenable to tool support,
the language must be unambiguous, machine readable andaec To achieve widespread
support (i.e. be adopted by a number of tool developers)lgiitypis also important. While
the main purpose of this language would be to describe itiggarocesses for the application
of tool support, it should also be simple enough to allow peses to be followed manually.
For this reason, process descriptions should also be cdnapacreadable, perhaps using
an English-like syntax or a simple graphical notation. Im® of inspection elements, the
language must primarily be able to represent people anddewts. It must also represent the
phases of the inspection and their execution order, witpedor concurrency.

Quantitative modelling can be immediately discarded,esthe model only describes nu-
merical aspects of the process. While the use of precomditivAl and rule-based paradigms
allow automatic transitions between states, it is not cleaw useful this is for inspection

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 56

processes, since the moderator generally makes the deeisito when to move from one
phase to the next, and the grounds for making the decisignfk@m inspection to inspec-
tion. In a non-computer supported environment this feaisi@viously irrelevant. In fact,

the functional, Al, and rule-based paradigms rely on compstipport. Hence, their value in
a non-computer supported environment is debatable.

Another concern is ease of understanding. Heimbigner [48&pares rule-based and
procedural languages. He concludes that while rule-bameglubges are flexible and can
handle unexpected events, it is difficult to understand tbegss flow. Similar comments can
be made concerning functional languages. On the other Ipaodedural languages are good
for describing normal execution but are less flexible anchoaeasily handle unanticipated
events. This is not a disadvantage where inspection is coadebecause the process is linear
with no optional paths. The only non-normal event is an etefynination of the process,
which can be catered for easily.

Complexity is another issue. Formal specification langsdge a reputation for being
difficult to use in general. Implementing such a languageaast @f an inspection support
tool is a non-trivial task. Similar arguments can be appl@fiinctional, rule-based and Petri
net-based languages. Object-oriented languages havdémefits in terms of reuse and the
grouping of related object by inheritance. Again, howevkere are problems in terms of
understanding such languages [79] and the proper impletienf object-oriented features
is non-trivial.

Extensive type definition facilities, like those availabllé&SLANG, are not required. From
the review of processes in Chapter 2 it is apparent that cigpehas well-defined types,
in terms of documents and participants. Hence, type definficilities are a complication
which can be avoided.

It clear from the descriptions above that most PMLs are ligixipressive, allowing a
multitude of processes to be defined. For the desired apipicehowever, such flexibility
is not required. Although a flexible notation is required tiow all inspection variations to
be described, there is also a well-defined outline processhwieeds to enforced. There are
other disadvantages in choosing an existing PML. Most PMipear to have steep learning
curves and require extensive programming skills from tbeers. It is preferable to minimise
the amount of skill required by the user, to allow widespraad of the language. Choosing
an existing PML also requires either writing a process eagifiesh or obtaining from the
authors of the language. The first would be a difficult and toorsuming task for many of
the complex languages available, while the second woul@écassarily restrict the choice of
development environment.

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 57

It was decided, therefore, to define a new language specifioftvare inspection. This
avoids taking an existing language and appling artificiastrints, Furthermore, a language
with such constraints should be easier to parse, with retloaeplexity. A language designed
specifically to model inspection processes should alsoldinpe task of writing processes,
since information about the basic form of an inspection esscis already encoded in the
language. As simplicity and ease of understanding are paramthe procedural paradigm
was chosen.

One decision which remains to be made is the choice betweextaat and graphical
notation. A graphical notation can be more user-friendlg anderstandable. The supporting
environment is more complex to implement, however. Furtftee, a mapping between the
graphical semantics and an executable representatiogugee to allow process enactment
[22]. Hence it was decided to initially implement a textuatation. A graphical representa-
tion could then be derived if required.

4.1.2 Derivation of Generic Process

To design a language capable of describing inspection psese the first step is to derive
a generic inspection process. This process should destrébessence of inspection, yet
provide flexibility in that each inspection variation candequately expressed. The process
was derived by examining the eight inspection types desdriib Chapter 2.

Initial Process Derivation

The derivation of a generic inspection process begins wighobservation that every inspec-
tion has three major stageSrganisation (deciding on participants, timing and other details),
Detection (performing the actual inspection and finding defects) @ochpletion (fixing the
defects and checking the work done). These three broadsstagepresent, to a greater or
lesser extent, in all the inspection methods described epin 2. The first and last stages
vary only slightly between various inspection methods |lesthe major variations appear dur-
ing the detection stages.

Organisation Activities

The earliest inspection phase described isthtey phase proposed by Gilb and Graham [41].
This phase ensures that specific criteria are beforethe inspection starts, reducing the
chances of a wasted inspection. This becomes the first ingp@hase. This phase is optional
depending on the actual inspection type.

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 58

The next phase is some form pfanning sometimes known as set-up. At this point the
moderator has to organise the numerous details of an irispedthis ranges from choosing
and inviting participants, preparing documents and suppaterial, and deciding how to
split the target material. Other typical activities inctudistributing inspection material and
assigning roles. This phase is an explicit part of some ictspeprocesses, particularly that
of Humphrey and of Gilb and Graham, but not of others. Henoe phase is defined to be
optional.

The final activity during organisation igverview present in numerous methods. This
phase is multi-purpose, with many possible activities. Aanavent is usually a presentation
on the document by the author. This phase is optional.

Detection Activities

The next step is to examine the detection stage in more détarmditional inspection gen-
erally has two phases here: an individual phase and a groagephlrhe processes defined
by Gilb and Graham, Fagan and Humphrey all have this typerahgement, and so do the
multiple inspector phases of phased inspections. An olsviicat step is to assume that the de-
tection may have two types of phases: individual and grouis §an be generalised further,
however, by saying that detection will consist of one or muoeetings. Meetings can then be
categorised according to their timing (synchronous or esyonous), objective (examination,
detection or collection), the number of participants anckilier data is shared between par-
ticipants during or after the meeting (public and privatsihility, respectively). For example,
individual preparation in Fagan inspection is simply ame$yonous meeting with four or five
participants, where the data created is kept private to padicipant. On the other hand, the
inspection meeting itself is a synchronous meeting wheta idaavailable to all participants.
These two meetings represent the detection activitiesgdira inspection and it can easily be
seen that the approach is similar for both Humphrey and Gitb@raham-type inspections.
Now consider phased inspections. A single inspector plsasienply a meeting with only
one person in attendance. A multiple inspector phase idaging a Fagan or Humphrey
inspection. So the entire phased inspection can then beltied@as a series of generic meet-
ings. Active Design Reviews consist of a single individua@pe followed by multiple group
phases, each with different participants. This can also ba@effed as a series of meetings.
Next, consider the FTArm asynchronous process. Privatepaibtic review can be de-
scribed by two generic meetings, however, there is also aatmation meeting where the
moderator must decide if a synchronous group meeting sHmildeld. Thisconsolidation
step can be generalised to be a decision step where the neadudher meeting (of any

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 59

type) can be decided. This allows the modelling of the o igroup review meeting in
FTArm, and also provides further flexibility to allow the gjfecation of optional meetings in
any inspection process.

Finally, as was shown in Chapter 2, one of the most radicalsder performing inspec-
tions involves the use of two or more independent teams. &tezsns will inspect the same
material, possibly using independent inspection methaidte same time. A requirement of
this technique is the presence ofallation phase to assimilate the results from the indepen-
dent inspections. To increase flexibility, multiple caltet phases are allowed.

Completion Activities

The last stage is perhaps the most well-defined. Essentladiye are two objectives here: de-
fects found during the inspection must be corrected, andtiheges which have been carried
out must be checked. These two objectives are achieved irwork andfollow-up phases
respectively.

During the rework phase, the author of the document tacldels defect found during the
inspection. This phase is called thditphase by Gilb and Graham and they also use this phase
to assign a final classification to each defect, unlike Fagspection where this is performed
at the inspection meeting. This phase is defined to be opttamee defects in the product
do not have to be repaired. Instead, it may be more costte#ao apply the results of the
inspection to process improvement. Rework is also not requivhen the inspection is used
for training or education.

With the changes being made to the document, it is now usttelynoderator's duty to
ensure that the changes have been carried out satisfgchgriineans of a follow-up activity.
At this point the moderator must also decide whether or netdbcument should be rein-
spected. This will depend on the extent and type of defeatado The average number of
defects found per page of document should also be compathdavistorical figure for this
type of document. An unusually high or low value may indicateextremely defective doc-
ument or an ineffective inspection, respectively. In aittese the document should probably
be reinspected. The follow-up is not defined for all insp@ETsi and is therefore optional.

The next possible phaseesit, proposed by Gilb and Graham. This phase is intended to
validate the inspection by ensuring that criteria such &tkimg rate and defect density have
been met. As with the entry phase, it is assumed that somedbexit criteria are set and
met, although these may be implicit.

The final phase which must be considered is metrics collectitd analysis. Although
not a distinct phase in any of the processes describedctoleand analysis of such data is

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 60

Organisation
Overvﬁw

Meeting

DeteCtIOn Consolidation
Collation
Rework
) Follow-up
Completion

Exit

Metrics

i

Figure 4.1: The generic inspection process.

deemed to be an important part of inspection. For this reasmproposed as a final explicit
phase. The phase consists of preparing a report containenggpropriate measures of the
inspection, and is optional. Figure 4.1 shows the completegc inspection process.

Inspection Participants and Documents

Having derived the process, possible participants can reodelsided, along with the possible
resources required at each phase and the products genkyatfsel inspection. Starting with
the people involved, the key participant is thederator whose task is to plan and coordinate
the entire inspection. The moderator will select and ingitger participants, ensure that the
required documentation is available and up-to-date, andemade any group meeting that
may be held. The moderator is sometimes referred to ake#uer, and is required in every
inspection.

The next participant to be considered is @nghor. As the person responsible for the
document under inspection, the author usually has two naaikst to brief other inspection
participants on the document and to fix any defects foundhdutie inspection. The author

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 61

can also be known as tipeoducer

Most participants in an inspection are those whose mairorespility is finding defects:
the inspectordknown variously ageviewersor sometimesheckers A typical inspection
will require the services of two or more inspectors. It isréfere required that the number
of possible inspectors is not constrained in any way. Givenassignment of reviewers to
specific defect types that is practiced in ADRs, and a simitheme using scenarios proposed
by Porter [99], the ability to assigesponsibilitiego inspectors is also required. The respon-
sibilities will usually indicate a set of inspection aidsiaimwould assist inspectors in finding
their assigned types of defects.

Further roles can be defined for two of the inspectors if aiti@thl synchronous group
meeting is held. Thescorder(or scribé is tasked with making a note of defects raised at the
meeting. This master defect list is passed to the authoefwork. The optional role akader
involves guiding the pace of the meeting and possibly paesgahg the document.

The final participant is only relevant to an N-Fold inspectid@hecoordinatoris tasked
with coordinating the entire inspection, much like a modarabut dealing with multiple in-
spections rather than just one. The coordinator will tyfyaanly interact with the moderator
of each inspection team involved, collating the resultafeach inspection. Therefore the co-
ordinator is only involved in the entry, planning and ovewiphases of the organisation stage,
the collation phase of the detection stage, and the follpwnd exit phases of the completion
stage.

From the process descriptions in Chapter 2, it can be se¢mldicaments used and pro-
duced during each phase can be divided into several gegpges:t

e Product The document undergoing inspection.

e Report A report simply details the outcome of a phase, or of an eirigpection. It is
usually completed by the moderator.

¢ Inspection PlanThis is created during the planning phase and is the de@ptigscrip-
tion of the inspection process and the people who will foliow

e SourceA document used to produce the document undergoing ingpedtir example,
the design document for a section of code.

¢ Detection aid A document which assists the inspector with finding defedtsis in-
cludes checklists which help to ensure adequate coverapetbfthe document and
of common defect types, items such as scenarios which asssgonsibilities to each
inspector and questionnaires.

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE

62

Phase Timing | Participants| Documents available Documents produced
Organisation
Entry - Coordinator| Entry criteria
Moderator
Planning - Coordinator Inspection plan
Moderator
Overview S Coordinator| Product
Moderator
Author
Inspector
Detection
Meeting S,A Moderator | Product Individual lists
Author Sources Master list
Inspector Checklists Report
Standards
Inspection plan
Individual lists
Consolidation - Moderator | Individual lists Report
Master list
Collation S,A Coordinator| Master lists Collated list
Moderator
Completion
Rework - Author Product Report
Collated list
Master list
Follow-up S Coordinator| Product Report
Moderator | Collated list
Author Master list
Exit - Coordinator| Exit criteria
Moderator

Table 4.1: Summary of generic inspection phases and thégh®ssnings, participants, re-
sources and products. Timing is either synchronous (S)yrdmsonous (A). Possible docu-
ments available at each phase, along with documents thabenasoduced during each phase,
are also listed

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 63

e Standard The product will usually have to conform to a set of standaiidsese stan-
dards can be used for compliance checking during an ingpecthis type of document
describes the process to be followed at each phase in thedtisp.

e List This is a generic document type for lists of comments produmeparticipants.
These comments may concern defects in the product, praopssiement suggestions,
change requests for non-product documents and so on.

e Criteria Inspection entry and exit criteria may be required. Entiiyecia ensure the
inspection is not wasted on unsuitable material while estiega are used to ensure
the inspection has been carried out correctly. Such aiifedlude inspection rates and
estimated percentage of defects found.

Of course, some of these are only useful during certain gh#serefore the notation should
only provide relevant alternatives at each phase. At theesame, the flexibility of the no-
tation should not be unnecessarily limited. Finally, aithb inspection is usually concerned
with finding defects in the product, the process should alswvalefects in supporting mate-
rials, such as standards and procedures, to be noted, aserbljy Gilb and Graham [41].

Table 4.1 summarises the roles, resources and productamel® each inspection phase.
Note that the coordinator is only present in an N-Fold insipecand that the roles of reader
and recorder may only be assigned during a synchronous gneefing.

4.1.3 |IPDL Definition

Having developed a generic inspection process, a notati@déquately describe existing
inspection processes was derived. This notation is thdtrekgiving due consideration to
the issues described in Section 4.1.1. The following sestitescribe the grammar of the
language using a Backus-Naur style of notation. In thistimtaa phrase in italics is non-
terminal, while words irtypewriter style indicate language keywords. The “::=" operator
is used to show expansion of non-terminal clauses. A plus i) indicates one or more
instances of a given clause, whitgt indicates that the clause is optional. Finally, square
brackets indicate alternatives, with the alternativessmped by vertical bars.

Structure of Process Description

The description of a software inspection consists of twagparhe first part contains decla-
rations listing the participants and their roles, alongwiie documents which will be used
and created during the process. The second part describggdbess itself, split into the

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 64

softwareinspection inspection inspectionname

declarations

process
end

inspectionname = string

declarations ::= declarations

documenteclarations
responsibilitydeclarations,,
participantdeclarations
classificationdeclaration,,,
end

process = process
organisationprocess
detectionprocess
completionprocess

end
organisationprocess ::= entry,,; planning,,; overview,,
detectionprocess := [detectionn_fold]
completionprocess = rework,,; follow_up,,; exit,,; metrics,,
string = “' " character” “' "
character ::= Any printable character or white space.

Figure 4.2: Initial process definitions.

documents documentdefinitiont end

documenitdeclarations

documentdefinition ::= documeniname documertiype
documeniname = identifier
identifier := nonwhitespacecharacter

nonwhitespacecharacter Any printable character which is not white space.
documentype = [product [report |source |standard |
list |criteria |plan |detection _aid]

Figure 4.3: Document definitions.

three stages derived in Section 4.1.2. There is also atiatii naming the inspection. The
initial definition of the inspection is that given in Figure24 The keyword$nspection
andend are used to delimit the descriptianspection namés simply an arbitrary string sur-
rounded by quotes. The declaration section consists oéotgm documents, responsibilities,
participants and classification scheme. Each of these i@illed in the following sections.
The inspection process itself mirrors the process destebdier, consisting of the three ma-
jor phases of organisation, detection and completion. fh&l definitions of these are also
presented and each will be described in more detail later.

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 65

targets = targets documenmname
inputs 1= inputs documenmname
outputs ::= outputs documenmname

Figure 4.4: Document inclusion clauses.

responsibilitydeclarations ::= responsibilities responsibilitydefinitior end
responsibilitydefinition := responsibilitynamerequires {documenname' },,; end
responsibilityname = identifier

Figure 4.5: Responsibility definitions.

Inspection Document, Participant and Responsibility De@rations

The first section within the declaration part of the desariptescribes all documents which
are available and created during the entire inspectionisahefined in Figure 4.3. This section
simply defines names for each of the documents to be usedwfithiinspection. When the
inspection is instantiated and run, part of the planning isi$o associate the real inspection
documents with each document defined. The format of suchndests as criteria lists and
reports is therefore left to the implementation. Note thatlanguage words are reserved and
are not available for use as document identifiers, or anyratber-defined objects.

The definition of each phase of the inspection will require tocuments present and
created during that phase to be defined. This will be achibyetthe use of several clauses,
defined in Figure 4.4. Any document name appearing in theasebk must be declared within
the document declaration section. The first of these intwediargetdocuments, which may
be of any type described above and are the actual documentgibspected. There is no
constraint on the type since it is not unreasonable to all@udards, checklists and other
supporting material to be inspected at the same time as topt. Theinputs keyword
indicates documents which are made available to this phaslanay also include documents
of any type. Theoutputs keyword indicates the documents created or edited duriag th
phase, which may either be reports, plans, criteria list¢ection aids or lists. During each
phase, participants will only have access to documents etefior that phase using these
clauses.

The next part of the description is concerned with descglilee participants involved
with the process and the responsibilities which they maydsggaed. A common inspection
practice is to assign reviewers responsibility for cerdeiffect types, thus hopefully improving
the coverage and effectiveness of the inspection. Thisrespility usually comes in the form
of a checklist or other defect finding aid. Figure 4.5 shows hoesponsibility may be defined
in terms of documents. Each responsibility has a name astiaf locuments associated with

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 66

participants participantdefinitiont end
participantnameis

role

participantlists,,;
responsibilityassignmeny,,

participantdeclarations
participantdefinition

end
participantname = identifier
participantlists = lists documeniname
responsibilityassignment ::= responsibility responsibilityname’

role [coordinator |moderator |author |inspector]

Figure 4.6: Participant definitions.

it. These will usually be checklists or other detection aioist may also include standards
or any other document type. These documents should be madeld® to the appropriate
participant by the support tool.

The definitions for inspection participants are shown inuiFég4.6. There will usually
be several constraints on the selection of participantpic@ly, there must either be one
moderatoror one coordinator and several moderators, depending on feedyinspection.
This constraint is not part of the language because it magesssarily limit its flexibility.
Instead, it is left to the implementation to enforce suclrietsons as required. Zero or more
authors may be declared, to allow maximum flexibility. Anynmer of inspectors may also
be declared. Thists subclause indicates the document which this participahuse to
record defects, change requests or other such items psyidigcussed when considering the
list document type. Finally, the responsibility names usect be previously declared in the
responsibility declaration section above. Note that anglsiperson may have more than one
role or responsibility. During each phase, any participaith no defined responsibility will
only be given access to documents defined in that phasehose generally available. One
such possible document is a general checklist used by averyo

The participants description is simply a list of people iweal and the names of their
roles. Note that the participant listmot a list of the real people involved; it simply lists the
names of the “characters” in the inspection and the rolegwhiplay. For example, a Fagan
inspection may have:

Moderator is moderator

indicating that the person called Moderator is executing ritoderator's duties. Contrast
this with a Gilb and Graham-type inspection, where the persrying out the task of the
moderator is known as the leader:

Leader is moderator

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 67

classification classificationname
string

classificationdeclaration
classificationname

Figure 4.7: Item classification clauses.

participant
participants

participant participantname
participants participantname

Figure 4.8: Participant inclusion clauses.

This convention allows the naming of roles in any way requiirgllowing us to use terms
which coincide with any inspection practice. This alsowBanany people to take the same
role, for example to have multiple inspectors, each with igueresponsibility:

Inspector_MF is inspector
lists MF_defects
responsibility Missing_Functionality
end
Inspector_AM is inspector
lists AM_defects
responsibility Ambiguity
end

Figure 4.7 shows the item classification clauses. These sd to optionally specify
the classification scheme to be used for list items. The nantkeoclassification scheme
used must be known to the implementation (e.g. “Fagan”).s<lfi@ation names are not
part of the language definition. The implementation is aksponsible for the manner in
which items are classified. For example, the number of diaatibn levels may vary between
implementations.

Finally, for each phase of the inspection the participaetgiired to be present must be
indicated. This is achieved with the two definitions showiigure 4.8. The first definition
indicates that only one participant should be present,eithié second indicates the possibility
of more then one person taking part. The use of these defisitidll be shown along with
each phase, but any participant name used within theseeslanast have previously been
declared in the participants declaration section.

The Organisation Process

As seen in Section 4.1.2, the organisation stage may hage fifrases: entry, planning and
overview. Figure 4.2 shows the order in which these phaseas omgur, and indicates that they

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 68

entry entry phasename
participant
targets,.

inputs,,;

outputs

end

string

phasename

Figure 4.9: Entry phase definition.

planning := planning phasename
participants
targets,,
inputs,,;
outputs
end

Figure 4.10: Planning phase definition.

are optional. Each of these phases is defined in turn, sjasith the entry phase, shown in
Figure 4.9. This defines a name for the entry phase and irditiaat only a single participant
is required during this phase, usually either the moderatdhe coordinator, depending on
the type of inspection. At least one output document musefieed, usually a criteria list. A
report detailing the outcome of the phase is also usuallydéfi Other documents may also
be present using the targets and inputs keywords

The next phase defined is planning, shown in Figure 4.10.rAgais phase may be named
according to the method being described. Although planwiiiggenerally involve a single
moderator, multiple participants must be allowed for, esily in the case of an N-Fold
inspection, where the cooperation of several moderataisaacoordinator may be required
to form the inspection plan. In this case, the coordinatausth have overall control over
the planning stage, while the other participants can pmingut. With multiple participants
there must be either a single moderator or a single coomiindgain, this constraint is left to
the implementation. At least one output must be defined (lysaglan), but others outputs,
along with targets and inputs, may be defined.

The final organisation activity is overview, shown in Figdré1. This phase requires the
definition of the participants involved, the format of theetirg, either local (same place) or
distributed (different place). The presenter is the pemsbo carries out the briefing; this is
usually the author. The overview phase is optional.

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 69

overview =

overview phasename

location [local |distributed]
participants

presenter participantname
targets

inputs, .

outputs,

end

Figure 4.11: Overview phase definition.

detection
meetingphase
multi_meeting

consolidationstep

[meetingphase consolidatiastep,,:]*
[multi_meeting|single _meeting]
parallel phasename
singlemeeting

singlemeeting

end

consolidation meetingphase

Figure 4.12: Detection stage definition

The Detection Process

When defining the detection activities in Section 4.1.2 @swasserted that there would either
be a single detection activity, or an N-Fold activity. Thésshown in Figure 4.2. A single

detection activity was defined to consist of at least one imggthase, possibly interspersed
with consolidation steps. At this point the possibility aiiing several parallel meetings is
also introduced to provide extra flexibility. This allowsxsets of the team to meet separately.

A consolidation step begins with a consolidation meetinbesg it is decided if a further
meeting is required. This is followed by the definition of th@ional meeting. The definition
of detections shown in Figure 4.12.

A meeting is defined to be a phase with one or more participahts may meet syn-

chronously or asynchronously, and whose discussion mayit&t or public. The meeting
may have one of three objectives: examination, defect tete®r defect collection. The as-
signment of roles during the meeting must also be allowedal, the documents produced
and used in the meeting must be defined. The definition of aingeistshown in Figure 4.13.
The definition starts with the keywomtieeting , followed by the meeting name. The

objective, timing, location and visibility are then sepmd with the maximum duration of the
meeting in minutes. The implementation should use the wur&b help guide the moderator
during the meeting. This is followed by a list of all meetinarficipants, as defined earlier.
The roles of reader and scribe may be assigned. If no readpeisfied, then it is assumed
that any participant can guide the meeting (such as in a Haypglipe inspection where the

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 70

singlemeeting ::= meeting phasename
objective [examination |detection |collection]
timing [synchronous |asynchronous]
location [local |distributed |
visibility [public |private]
duration,,;
participants
roles,,;
targets
inputs,;
outputs,,
end

duration = duration integer

Figure 4.13: Meeting phase definition.

roles = roles role_assignmertt
role_assignment ::= participantnameis meetingrole
meetingrole := [reader |scribe]

Figure 4.14: Role definition.

document is not paraphrased). If the scribe is not spectiienl the moderator should be given
that role by default. The roles are followed by target docatsginputs from previous phases
(such as lists) and outputs generated during this meetirgh @s reports). All documents are
optional except for target documents. The role assignmemniion is defined in Figure 4.14.
Only the roles oReader andScribe are defined.

The consolidation phase may follow any meeting, and is usetktide on the need for
a further meeting to resolve any remaining issues. The dieimis shown in Figure 4.15.
Again, the phase may be named, and this is followed by thdespagticipant who will per-
form the consolidation (usually the moderator). The tadguments and input documents
to this phase are then specified, which generally consisteoptoduct and one or more lists,
respectively. Finally, at least one output must be defineid:is usually a report.

The alternative to a single detection activity is to havetipld, parallel detection activities
with a collation stage, i.e. N-Fold inspection. To incre#isribility, there is the possibility

consolidation ::= consolidation phasename
participant
targets
inputs
outputs
end

Figure 4.15: Consolidation phase definition.

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 71

nfold := n_fold phasename
fold
foldt
collationt
end

fold = fold phasename
detection
end

Figure 4.16: N-Fold stage definition.

collation ::= collation phasename
timing [synchronous |asynchronous |
location [local |distributed]
participants
roles
targets
inputs
outputs
end

Figure 4.17: Collation meeting definition.

of holding more than one collation meeting. The definitiogiieen in Figure 4.16. As usual,
the phase may be named. The definition will then consist ofdmmore detection activity
definitions, as described above, surrounded by the keywoldls andend, along with one

or more collation meeting definitions.

The collation meeting definition is shown in Figure 4.17. Bach collation, a number
of participants can be listed, usually several moderattmsgawith the coordinator, one of
whom must be nominated scribe with a role definition, anotfierhom may be nominated
reader. Inputs will generally consist of a collected lisdefects from each inspection. The
output will usually be a single master list of defects for #mtire inspection, but reports may
also form outputs from this phase. Several collation mgstmay take place, to allow for the
possibility of the coordinator meeting with a subgroup ofdemtors. In this case, an input to
subsequent meetings should be the collated lists of ddfectsprevious meetings.

The Completion Process

The completion process consists of four activities, as shioviFigure 4.2: rework, follow-up,
exit and metrics, all of which are optional.

The rework phase is defined in Figure 4.18. Although rewoideiserally carried out by
the author, the possibility of another participant perforgrework is catered for. This may
occur if the author is not part of the inspection team, or Iseowise unavailable. Various

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 72

rework rework phasename

participant
targets
inputs
outputs,
end

Figure 4.18: Rework phase definition.

followup := follow _up phasename
participant
targets
inputs
outputs
end

Figure 4.19: Follow-up phase definition.

documents may be made available during this phase. Targathtnts are always required,
with the implementation having to provide some means ofimglithese documents. Input
documents will typically consist of one or more lists. Thepu of the phase may consist of
one or more reports, or other documents as required.

The next phase is follow-up, involving checking the workfpened in rework, and is
defined in Figure 4.19. Only one person should perform foligw this is usually the moder-
ator (or coordinator), but there is the possibility of aretparticipant performing this task. A
target document is always required, and other input doctsr{@sually a list of defects) must
also be present. Finally, the defined output is one or morertep

Next is the optional exit phase, defined in Figure 4.20. Téisimilar to the entry phase
in that it defines one or more output documents, usually éistgiteria which must be met.
A report detailing the outcome of the phase may also be apjatep Input and target docu-
ments may also be defined. One single participant is invaiveldis phase: this is either the
moderator or the coordinator, depending on the inspecyipe.t

Finally, the metrics collection and analysis phase is shioviAigure 4.21. This follows the
format of other phases. The main difference isdlaga subclause. This is used to indicate
the measures which must be supplied by the tool for this phBseh measure consists of
its name, an optional participant name for whom this meaappdies, and an optional phase
name which states which phase that particular measure is taken from. For example, to
collect the number of list items produced by the particigglioderator during the phase
'Preparation’ , the following might be used:

data

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 73

exit = exit phasename
participant
targets,
inputs,
outputs
end

Figure 4.20: Exit phase definition.

metrics metrics phasename

participant

data

targets,,

inputs,,;

outputs

end

data measuré

identifier participaniname,, phasename,,;

data
measure

Figure 4.21: Metrics collection phase definition.

list_items Moderator 'Preparation’

Other metrics, such as the length of the product, are noifipera single phase or a single
participant and do not require to be specified. No measusededimed in IPDL. It is assumed
that the measures available will depend on the implemamtadr the organisation performing
the process.

4.1.4 |PDL Example - Fagan Inspection

An IPDL description of the Fagan code inspection procesh@svs in Figure 4.22. The
description starts by titling the inspection “Fagan Codgpkrction”. The declaration section
first of all lists all documents used and created in the inspec TheMaster _plan is the
definitive guide to the inspection. Although not explicithentioned by Fagan, it is assumed
that such a plan must be prepared for the inspectimale is the document under inspection.
Design is the source document from which the code is derived. Thfsliswed by the
declaration of six defect lists, one for each participamt amaster list which will contain the
defects logged by the entire team. Finally, two reports adated. One is used to detail the
outcome of the inspection meeting, while the other will @mthe moderator's findings from
the follow-up phase. The declarations section also defimesnispection participants. Five
participants are declared: the moderator, author and thepectors.

The process section defines the six phases of a Fagan imspettiePlanning phase
simply involves the moderator creating the master plantierihspection, which details the

www.manaraa.com

SECTION4.1: INSPECTIONPROCESSDEFINITION LANGUAGE

74

inspection 'Fagan Code Inspection’

declarations

documents
Code product
Design source
Defectsl list
Defects2 list
Defects3 list
Defects4 list
Defects5 list
Master_defects list
Meeting_report report
Follow_up_Report report
Master_Plan plan

end

participants

Inspectorl is inspector
lists Defectsl end
Inspector2 is inspector
lists Defects2 end
Inspector3 is inspector
lists Defects3 end
Moderator is moderator
lists Defects4 end
Author is author
lists Defects5 end
end
end
process
planning ‘Planning'
participants Moderator
outputs Master_Plan

visibility private
participants
Moderator
Author
Inspectorl
Inspector2
Inspector3
targets Code
inputs Design
end
meeting 'Inspection’

objective collection
timing synchronous

location local
visibility public
participants
Moderator
Author
Inspectorl
Inspector2
Inspector3
roles

Inspectorl is reader
Inspector2 is scribe

targets Code
inputs Design
outputs

Master_defects
Meeting_report

end
rework 'Rework’

participant Author

end targets Code
overview ‘Overview' inputs
location local Master_defects
participants Design
Moderator end
Author follow_up 'Follow-up'
Inspectorl participant Moderator
Inspector2 targets Code
Inspector3 inputs
presenter Author Master_defects
targets Code Design
end outputs Follow_up_Report
meeting ‘Preparation’ end
objective examination end
timing asynchronous end
location local

Figure 4.22: An IPDL description of the Fagan inspectiorcpss.

actual participantsinvolved in the inspection and the doents to be used. TH@verview is
defined to involve all participants and involves the authespnting the code to be inspected.
The process then moves into the first of two detection phashs.Preparation phase
involves all participants individually examining the doeent, hence the objective of the phase
is examination, the work is carried out asynchronously, alhdata created by participants
remains private. The target of the phase is the productGioele) and the source is the design
document. Individual defect lists are implicitly availeblThe next phase is the inspection
meeting, again involving all participants. This time theatieg occurs synchronously, and all
data is made public. The objective of the phase is the cadlecf defects into a master defect

list, which is an output of the meeting, along with a meetiagart. Two roles are defined

www.manaraa.com

SECTION4.2: INTRODUCTIONTOASSIST 75

during the meeting: the reader and the scribe, which argmedito Inspectorl and Inspector2
respectively. ThdRework phase involves the author taking the code and the masteaflist
defects and performing the required fixes. This work is ceddk theFollow-up phase by
the moderator, again using the code and the master list ettigfwho also produces a report
on the follow-up.

4.1.5 Conclusions

IPDL has been derived with the intention of allowing insp@tiprocesses to be easily com-
municated, and to be used as input to an inspection supprtits simplicity should also
allow its use in non-tool supported environments IPDL wasgleed to be simple to use when
defining new processes, and to provide relatively short digfirs. This is achieved by using
a language with a much higher level of abstraction, wherethghasis is on the implementa-
tion providing much more knowledge about the type of phaseslved, hiding these details
from the user. On the other hand, this does mean that IPDL iie nagtricted in the processes
which can be defined. As ever, there is a trade-off betweeibfléy and simplicity, and it
was decided that a simple, easy to use language would be moeeadly accepted.

It should be borne in mind that, with the exception of asynaolus inspection (which is
inherently tool-based), IPDL represents paper-basedegsms. The act of introducing tool
support may alter the way in which such processes are pegfibrithe facilities available will
vary from tool to tool, also having an effect.

4.2 Introduction to ASSIST

The first version of ASSIST [69] was implemented with threalgon mind: to demonstrate

IPDL, to investigate mechanisms for providing support of dncument type, and to provide
a means for comparing basic tool-supported inspectionpéagrer-based inspection. The first
version was capable of executing any process written in |R&isuring that the process is
followed precisely and that the inspection participanesgmovided with the correct materials
and tools at each stage of the inspection. This allows AS8$Erform inspections with any

number of people on any number and type of documents.

ASSIST is implemented in Python [68], an interpreted, ob@@ented language. It is
based on a client/server architecture, with a central sesteging all inspection data, docu-
ments and personnel information. The client provides tlee iderface to the system, allow-
ing users to modify, store and compile processes, enteopeet and document data, and to
actually perform an inspection. This architecture allowsributed inspections to be easily

www.manaraa.com

SECTION4.2: INTRODUCTIONTOASSIST 76

Hie Inspection Databases

Fagan Exanple

£
Inspection Moderator Time remaining | H
Participants Targets Read Write
Author {fraser} [/1 series,.cc Series Specification Defectsd
Hoderator { janes} [CF 1 Haster_Plan
Inspectorl {marc} [/71
Inspector? {nurray} [/1
Inspector3 {apd} [/1
£ £ /i 4
Fold: Phase: I’Preparation’ {exanination} Responsibility: I

Figure 4.23: Joining the inspection.

held. Currently, a World Wide Web-based implementationisise generic solution, allowing
anyone with a standard WWW browser to access the system eAirtte of the initial design
of ASSIST, however, WWW technology was not mature enoughuppert such a system.

4.2.1 Using ASSIST to Execute the Process

To use an IPDL process with ASSIST, the process definitiorrss éntered into ASSIST
where it is compiled ready for use. When a new inspectionagexd, ASSIST loads a copy
of the compiled inspection and allows the instigator to fgekhe details of the personnel
and documents which are used in the inspection. For eacleiparit and document in the
declaration section, the instigator may enter a person ocugient from ASSIST's databases.
New personnel and documents can be added to these databasgstiane. For example,
consider the Fagan process shown in Figure 4.22. For thentmduknown asCode during

this inspection, the real documesdries.cc is associated with it. Similarly, for the partic-
ipantAuthor , the real persofraser is chosen. When all details have been finalised, the
inspection can be started.

At this point, each participant is informed of their parpation by email, and when they
start ASSIST the inspection name will appear in their lispehding inspections, as shown
in the top window in Figure 4.23. Double clicking on the insfyen name allows the inspec-
tor to participate in that inspection, bringing up Brecutewindow, like the bottom window
in Figure 4.23. This window shows tHereparation phase of a Fagan inspection from
the moderator's perspective. It can be seen that all fiveeoigm participants are required

www.manaraa.com

SECTION4.2: INTRODUCTIONTOASSIST 77

to be present, shown by the list of names in the top half of telew. This corresponds
with the IPDL description given earlier. Each participaasiihe name of the person perform-
ing that role in brackets. Similarly, the IPDL descriptiar this phase required the docu-
mentsCode andDesign to be present. These are representegdries.cc andSeries
Specification respectively, since those documents were chosen whengpedtion de-
tails were finalised. Finally, the definition dModerator specified thaDefects4 would
be used as a defect list for this participant. This documisetappears in the document list.
Next to each participant's name is a status indicator, vii¢hlétter 'C' used to indicate
that the person is currently participating in this inspectiwhile an 'F' is used to indicate that
the participant has finished their work in this phase, cdigtdy an item in thénspection
menu. Thdnspection menu also allows each participant to leave the inspectitve.Mod-
erator menu is only available to the moderator and contains castmadvance or abort the
inspection. If the current phase has a time limit it is showthie Time remaining box at the
top right of the window. Finally, the bottom line of the windshows the current fold (for an
N-Fold inspection), the current phase, and any respoitgitihich this participant may have.

4.2.2 Inspection Facilities

The facilities available to the participants depend ontispéction phase. Figure 4.24 shows a
typical view of the Fagan inspection described in Figur@4This view is of the Preparation
phase.

Document Handling In contrast with all existing inspection tools, ASSIST haieaible
document type system, allowing new document types and #ssiociated browsers to be
added as required. This addresses one of the fundamentihesses identified in existing
tools. ASSIST has an open architecture with a well-defingeriace which browsers must
follow. This interface allows the use of standard ASSISTdesas such as annotation. Several
browsers were implemented for the first version.

Thelist browser allows the user to manipulate lists of items, typically doemt annota-
tions describing defects. Lists can be either read only ad-#erite. Each item within a list
consists of a title, the name of the document which the itderseo, a position and a textual
description. Classification of defects was deemed to be senéal feature of an inspection
support tool, therefore ASSIST allows items to be classiiedording to a user-definable
classification scheme (specified by IPDL), with up to thraele The list browser allows
items to be added, removed, edited and copied betweenASISIST implements a flexible
mechanism for describing the positions of annotationsyailg annotation at virtually any

www.manaraa.com

SECTION4.2: INTRODUCTIONTOASSIST 78

Focus Window Find Annotations Line: |45 Coverage: |3??€ |
case 2%
if (| nquqr(startstr)) £

CErT Gl rounent. #1 not & number: " << endstr << endl:
exit (1)

3

if ¢! numberiendstrid £
cerr <{ "Argument #2 not a number: " << endstr << endl:
exitill:

break:

default:
cerr << "Usage: " <4 &
exit{liz

: |Hrong wariable nane used

Document: Iseries.cc Position:

endstr is used instead of startstr

Start = atof{startstr):
End = atof{endstr):
if {(HumArgs == 3} £
Step = fabs{atof{steps
if (! fzero{End - Star
cerr << "stepsize
exit{l};

3

if {fzero{End - Start}}
HunItens = 23

else
HunItens = {long} {(End -

Type: Data Class: Wrong Severity: Major

Ale Item Lists
Read Write
Defectsd
4 £
Document Position Title Votes
series,cc bd Hizeing dereference 0 0
4

Figure 4.24: Using ASSIST to inspect some C++ code.

scale, from individual letters and words up to paragrapkstisns, and whole documents.
The system automatically links annotations and the arebeofidcument to which they refer.
Thecode browserallows documents to be viewed and annotated via the list$gowWhe

browser is based on the concept of a current focus, i.e. aolirede which is currently
under scrutiny. The current focus can be annotated, oriegiahnotations read. The browser
indicates the current line number and the percentage of deardent inspected. The view
of the document can be split horizontally or vertically,oaling two separate areas of the
document to be viewed simultaneously. Finally, a find facis available, allowing the user
to search for specific strings in the document. The code oarsd the list browser are shown
in Figure 4.24.

www.manaraa.com

SECTION4.2: INTRODUCTIONTOASSIST 79

Individual Preparation This consists of each inspector studying the product anéhgdd
defects to their private lists. ASSIST providesianple browser, which is similar to the
code browser but without annotation facilities. This brewis used for all supporting docu-
ments, such as checklists and specifications, which aresttigas not being inspected. All
relevant documents are therefore available on-line,fyaiganother of the criteria identified
in Section 3.3. When preparation has finished, the modenabees the inspection on to the
Inspection stage. The facilities of ASSIST then changeltmeh synchronous meeting to be
held.

Meeting Support During a group meeting, the focus for the whole group is cuted by
the reader: when the reader moves the focus to a new line rtinesbrs of the other partic-
ipants are automatically updated. The list browser alloarsigipants to propose items from
their personal lists to the whole group, allowing the itenb&odiscussed and voted on. If
the item is accepted, it is copied to a master list of defaegstesenting the output of the
group meeting. The scribe may also edit proposed items tecteféfinements suggested
at the meeting. ASSIST also makes use of the MBone videortophudio toolvat and
whiteboard toolvb, along with its own textual discussion mechanidiscourse |, to allow
distributed meetings. The list browser allows threads etds§sion to be created, supporting
asynchronous meetings.

Data Collection ASSIST collects the time spent in inspection, the order inctvilines of
code are inspected, and the time each defect was found.

Apart from the process modelling facilities, this implerteion of ASSIST provides the
level of functionality required to compare tool-based iesjon with paper-based, a level
which is similar to that provided by the tools described inater 3. The next chapter de-
scribes a controlled experiment to compare paper-basedoahdbased inspection Not only
would this give information on the comparative effectivesieit would provide useful feed-
back on the usability of ASSIST and help shape the remair@ggarch, in terms of advanced
facilities to support defect detection. The next chaptso glualitatively evaluates IPDL.

www.manaraa.com

Chapter 5

Evaluation of Basic Tool Support

This chapter presents an evaluation of IPDL, comparing it wther means of describing
inspection processes. It also presents an evaluation tfsie version of ASSIST. This
takes the form of a controlled experiment comparing it widiper-based inspection.

5.1 IPDL Evaluation

The evaluation of IPDL takes two forms. To begin with, it mistable to describe all popular
inspection processes. Section 4.1.4 showed the impletienta Fagan inspection, while
IPDL descriptions of the other seven processes describ&hapter 2 can be found in Ap-
pendix C. IPDL must also be compared with other methods ohitgfinspection processes.
There are currently three alternative methods for repr@sgnspection processes: general
process modelling languages, the technology underlyie@trutiny inspection support tool,
and the modelling facilities provided by CSRS. General paglanguages have already been
described. This section compares IPDL with Scrutiny and ESR

5.1.1 Scrutiny

The Scrutiny tool [15], described more fully in Section 3,2is an inspection support tool

based on ConversationBuilder [63], which in turn is a gentrol designed to support collab-

orative work activities. ConversationBuilder (CB) progila structured conversation model
which is suitable for modelling the process of software etdjon.

www.manaraa.com

SECTIONS.1: IPDL EvALUATION 81

The CB architecture consists of three components. The Med3as is a multi-cast mes-
saging system which allows communication between all corapts of CB and its applica-
tions. Next is the User Interface Suite which provides ed&ntwith the means to manage
the user interface, along with other housekeeping taskis aadile manipulation. Finally,
there is the Conversation Engine which manages collalooramd the actual application ac-
tivities. Each applicationis known as a protocol and is a Sl{Oommon Lisp Object System)
description of the conversation to be enacted by the coatiersengine.

Scrutiny implements a basic four stage inspection procésisiation allows the mod-
erator to organise the inspection by obtaining the prododig inspected and inviting the
participants.Preparationis an individual activity where each inspector prepares ro@mts
and questions about the produ®esolutionis a synchronous group meeting where the an-
notations created in preparation are shared and discusgbdhe results being noted by the
recorder. FinallyCompletionallows the results of the inspection to be processed andaprop
gated to other stages of the development process.

The fundamental inspection process used by Scrutiny igithescwith Petri nets, which
define the states arole can reach at each stage of the irspelttie role of the user determines
the interface presented (and, hence, the facilities duaijao that user. CB allows two types
of data to be displayed: private data (which can be seen gnlisltowner) and shared data
(which can be accessed by any participant in the review) reshiaformation can be either
synchronous or asynchronous. Synchronous informatiorahgsupdates propagated to all
appropriate users immediately, while asynchronous daialispresented when requested by
the user.

To generalise the process, work was carried out to alter pleeadions available to each
role and during each stage. A major change came from sgjiieparation into two sections:
private preparation and shared preparation. To modelrdiftereview methods, Scrutiny al-
lows a number of policies concerning when and how partidiparove from private prepara-
tion to shared preparation. While this change of policy wixtedly improves the flexibility
of Scrutiny, it is still limited to a basic four stage proce$bere is no ability to move between
individual and group stages at will, as is required by somtows. There is also no provision
for holding meetings concurrently, or for supporting an dldtype inspection. IPDL, on the
other hand, was designed with these features as a funddrparttaf the language.

The use of CB provides much scope for complete process fligyjlsince it is designed
as a generic CSCW system. However, this flexibility is badghloy the effort required to im-
plement a full system, which is a non-trivial task. IPDL is@med to obviate such effort. The
difficulties in extending and modifying CB-based applioas have been noted: ACME [2]

www.manaraa.com

SECTIONS5.1: IPDL EVALUATION 82

was produced as an attempt to extend Scrutiny with procesdaten capabilities, and inte-
grates the Marvel process engine [60] with CB. Marvel itbel$ already been described in
Section 4.1.1.

The extensions planned for Scrutiny consisted of addingwabmu of schemes to improve
the effectiveness of reading annotations and allowingt8grio be customised for specific
inspection types. This customisation comes in the form loirahg specific tools to be run
for each inspection type, and is, in essence, adding a npaetlae inspection process. For
example, inspection of C code may require the static arslgsilint to be run on the product.
Integration with Marvel was chosen as the implementatidnote as it allowed other work
on Scrutiny to proceed unhindered. This integration cassisthe Marvel system monitoring
the actions of CB and using this information to form an exaexiew of the Scrutiny process.
Marvel's envelope facility is then used, in conjunctionhwét message sending program, to
send messages to Scrutiny.

Arguably the most interesting part of this research corgéne addition of new process
steps. It can be seen how this work may be further generdtigetiding other steps to the
inspection. However, it is not clear how flexible such an apph may be, or how easy it is to
implement. Some of the implementation described involveggamming at a low level, and
it is exactly this type of effort that IPDL is aimed at avoidin

Finally, an improved version of Scrutiny with much more fleikity was designed, but the
project was ended before implementation could take plaZk [ence any further evaluation
is impossible.

5.1.2 CSRS

CSRS (Collaborative Software Review System) [117], désctiin Section 3.2.8, is a com-
puter based review system developed to implement a sofiwspection framework derived
by its author. The framework breaks inspection into a sesfgshases. Each phase can be
classified by three characteristics: objective, intemactnode and technique. The objective
describes the goal of each phase, and can be one of compi@hemsmination or consoli-
dation. A comprehension phase is concerned with becommdifa with and understanding
the document. An examination phase is intended to be usdthtbng defects. A consoli-
dation phase is where items found by individual revieweescllated into an agreed form.
The interaction mode is concerned with the degree and typellafboration. A group interac-
tion involves all participants together, while an indivadunteraction involves each reviewer
working alone. A selective subgroup interaction involvag/@ subset of the inspection team.
With a group or subgroup interaction, the type of collabioratan also be defined, either as

www.manaraa.com

SECTION5.1: IPDL EVALUATION 83

synchronous or asynchronous. A synchronous interactiosivas all participants perform-
ing their task at the same time. With asynchronous intesadtie participants can perform
their task at any time convenient to them. The final charatieris the technique used by
participants to achieve the stated objective, of whichdlase several types. Inspection tech-
niques vary from straightforward free review to checklissiagted inspection. Consolidation
technigues include discussion and voting. Techniques fsayiravolve the use of tools. Each
phase may also have a set of entry and exit criteria assdaatie it. The criteria usually de-
fine properties that can be expected of both review artifactsparticipants before and after
each phase. Using this framework, each major inspectiohadets modelled as a sequence
of phases, along with the appropriate characteristics.

This framework was used to develop the process modellirifitfes in CSRS. These fa-
cilities are based around a set of languages, the most iengaof which are the data and
process modelling languages. The data modelling langsagsed to describe the documents
manipulated by the inspection, including their type anatiehships with other documents.
Each document is represented by one or more nodes, whiclnrcauntain fields of various
types. Nodes may also have attributes and status assowigtedtiem. Relationships between
nodes are represented by typed links, implementing a hgxtemetwork. Four base nodes
types are defined. Source nodes contain documents to bevesl/i€€ommentary nodes are
used to contain items generated during the inspection, asiclefects. Checklist nodes con-
tain verification aids such as checklists. Administratieel@s contain information about the
review process itself, including details of participanisese node types can be inherited and
specialised.

The process modelling language defines the phases that semsach inspection. It is
based around a single multi-purpose phase which can be tieeattributes, such as objective
and interaction mode, which have been defined within thedvaonk. A process description
consists of a set of ordered phase definitions. CSRS alloggetphases to be invoked either
manually or automatically. Manual invocation involves gdministrator periodically check-
ing the status of a phase and activating the next phase asegqgéutomatic invocation is
supported by the use of exit and entry criteria.

In comparison with IPDL, the facilities of CSRS are far moengric, providing a less
rigid underlying process model, consisting of a sequencgeoieric phases. On the other
hand, CSRS cannot be used to model concurrent process &@psxample, in N-Fold in-
spection a potentially important document is inspectediplaltimes using one or more in-
spection methods. While this may be modelled serially,irnigortant that the inspections can
occur concurrently, otherwise the expense of the inspegtit exceed the benefits. Also, the

www.manaraa.com

SECTIONS.1: IPDL EvALUATION 84

generic phase cannot be used to model tasks such as plandingveork. These tasks are an
integral part of the inspection process and must be modellsdme way, especially if it is
intended to make use of computer assistance. Describiriggpection as a series of generic
phases may restrict the support that can be provided foraase. Since, as has been shown,
inspections consist of a limited number of well-defined @sadt is preferable to explicitly
model as many of these phases as possible, while a similesagpof describing such char-
acteristics as objective can then be used for the more Vandiases of defect detection and
collection. This is the approach used in IPDL.

Other questions arise with respect to computer assistdfmeexample, the framework
introduces the idea of roles, but it is not clear how resguilises are associated with these
roles. There appears to be no methods for providing eacbhweviwith specific checklists for
their responsibilities, such as is required for Active @@sReviews [95]. This is a feature of
IPDL.

A major difference between CSRS and IPDL is the size of padginitions. The
CSRS definition of FTArm is around 2700 lines of code. The IPE&ision, presented in
Appendix C.5, is less than 200 lines. The difference in éffequired to produce these is
obvious. This difficulty is perhaps illustrated by the facat no attempt has been made to
write descriptions of existing processes. In contrast,LUfBscriptions of the eight processes
used in its derivation have already been shown. The CSRYuémas are also tightly cou-
pled to the underlying system, consisting of a set of Emasp-functions and macros. This
makes it difficult to use in another inspection tool, espéciane which is not Lisp-based.
IPDL is language and environment independent, and its systuch that it can also be used
in a non-computer supported environment as a means of pheci@mmunicating inspection
processes.

5.1.3 Conclusions

IPDL has successfully been used to implement the eight atigeprocesses from which it
is derived. The diversity of these processes helps ensatdRDL is capable of describing
any existing inspection process. It should also be capdloeszribing many future processes,
provided they conform to the organisation-detection-clatipn model which underlies IPDL.
Although Scrutiny is based on a generic CSCW system whichlavallow support of mul-
tiple inspection processes, tailoring such a system istrigial, especially compared to the
ease with which processes can be defined in IPDL. The prooedsliimg facilities of CSRS
provide much flexibility but once again this flexibility coswith the price of increased com-
plexity. IPDL avoids this complexity by providing high-lely application specific constructs,

www.manaraa.com

SECTION5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 85

resulting in concise, readable process descriptions wtachbe used both as input to an in-
spection support tool and to document a paper-based process

5.2 Comparing Basic Tool-based and Paper-based Software In-
spection

Tool-supported inspection will only become an acceptedtaraif it can be demonstrated that
it does not detract from the main goal of software inspedidimding defects. Furthermore,
if it can be shown that the simplest level of support does itet #ghe efficiency of inspec-
tion, other, more advanced, support can be explored secuheiknowledge that the overall
concept is not fundamentally flawed.

While a number of advantages of tool-based inspection Hawady been identified, there
are a number of possible disadvantages. The time requireditoan inspector in the use of
the tool may become an issue. If the tool is too complex, it detyact from the effectiveness
of the inspection, even in experienced inspectors. Alsmynpeeople are far slower at typing
than handwriting, slowing down the process of noting dowfeds, especially if the tool is
heavily mouse-based.

There may also be two problems concerning the move from gagsareen. One concern
is the limited amount of screen space. Examination of thelyeh a source document and
a checklist requires three windows to be on-screen simedtasly. However, most common
displays are not capable of simultaneously showing threb stindows of sufficient size to
be useful. The screen may also be cluttered with other wisdwecessary for operation of
the tool, such as has been described in Scrutiny [44]. Csintings with paper-based inspec-
tion, where inspectors are free to find as large a workspacecasred and to spread all the
documents around in a manner comfortable to their workinthow The second problem
concerns reading text from a screen. There have been a nainfteidies comparing reading
from screen versus reading from paper, and Dillon [29] pategia good review of these. Evi-
dence points to a 20—30% reduction in speed when readingdooeen compared to reading
from paper, while reading accuracy may suffer for visuatly€ognitively-demanding tasks.
On the other hand, comprehension appears not to be affestdanay even be improved. Er-
gonomic issues may also have a part to play in reading tewt &@creen. These include the
fixed orientation of the screen, differing width to heightioa, refresh rates, image polarity,
display quality and so on. Reading from screen has alsdiwadily been thought to be more
tiring than reading from paper, while there appears to betaraetendency for users to prefer
paper. Several caveats apply when considering how thess tyfgstudy apply to tool-based

www.manaraa.com

SECTION5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 86

inspection, including their length, the type of text usedj the task being performed. Lastly,
it should be noted that the quality of an individual displaiyl affect the usability of such a
tool, and that the ideal presentation will vary dependinghenindividual user, implying that
the ability to customise the tool is an advantage.

This section describes a controlled subject-based expatigesigned to investigate any
possible reduction in inspection efficiency when moving to@-based inspection process.
An appropriate measure of inspection efficiency is the nurobeéefects detected in a constant
period of time. When comparing tool-based and paper-basgaection the following null
hypothesisH,, can be formed:

There is no significant difference in performance betweelividuals performing
tool-based inspection and those performing paper-baspeation, measured by
the total number of defects found during a given time period.

The alternative hypothesifl; is simply:

There is a significant difference in performance betweeividdals performing
tool-based inspection and those performing paper-baspeation, measured by
the total number of defects found during a given time period.

Similar hypotheses can also be formed when consideringdtieqmance of inspection teams
as awhole.

5.2.1 Evaluations of Existing Inspection Support Tools

While there have been a number of attempts at implementoigtgpport for software inspec-
tion, the quality of evaluation of each tool varies enorntpus the case of ICICLE [12], the
only published evaluation comes in the form of lessons kérin the case of Scrutiny, in ad-
dition to lessons learned [44], the authors also claim thaltbased inspection is as effective
as paper-based, but there is no quantifiable evidence t@supys claim [43].

Knight and Myers [66] describe two experiments involvingitinspeQ inspection tool,
designed to support their phased inspection method. Thesfirgply provided information
on the feasibility of their method, and on the usability of #issociated toolset. The second
experiment involved inspection of C code, but provided nmparison with paper-based in-
spection. Mashayekhi [83] reports on the implementatiothcde prototype tools, with the
aim of investigating distribution and asynchrony in softev@ngineering. Again, no com-
parisons with paper-based inspection are made, excepeéiocae of group meetings, where
comparable meeting losses are found using both the tool aperfbased methods.

www.manaraa.com

SECTION5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 87

Finally, CSRS (Collaborative Software Review System) heenused to compare the cost
effectiveness of a group-based review method with that afidividual-based review method
[116]. Again, since both methods are tool-based, there isdication of the relative merits
of tool-based and paper-based inspection.

Although the evaluations described above attempt to measuvarious ways, the effec-
tiveness of tool support, the fundamental question “Is-tzaded software inspection as effec-
tive as paper-based inspection?” remains unansweredtidatcall existing support tools
provide the level of support required to test the hypothet®sd above. Given that favourable
comparison with paper-based inspection is the means bywihad-supported inspection will
become acceptable, it is surprising that there is littlegtigation of this nature.

5.2.2 Experiment Design

The testing of the hypotheses required two groups of subjecnspect a single document,
one using a tool-based approach and the other using a papedlapproach. To ensure that
any effect was not simply due to one group of subjects beingjgiier ability, the subjects
must also inspect a second document, this time using thmaliee approach. The inspection
process used was an abbreviated Gilb and Graham type. listechsf two phases: an indi-
vidual detection phase, where each subject inspected thewt for defects, and a group
collection meeting, where individual lists were consal@thinto a single master list for the
group. The group phase also provided an additional defdetctien opportunity. An IPDL
process implementing this inspection was written and usddput to ASSIST for the tool-
based parts of the experiment. The appropriate inspeatiahiing the correct participants
and documents was initiated for each group as required.

Subjects

The experiment was carried out during late 1996 as part chmteased Software Engineer-
ing course run by Strathclyde University's Department ompater Science for third year
undergraduates. The students already had a firm groundmgiiry aspects of Computer Sci-
ence. In particular, they had been taught programming ire®eh C++ and Eiffel, and had
also completed a course in the fundamentals of Softwareneegng. Subject motivation was
high, since the practical aspects of the experiment fornatigs their continual assessment
for this course, the final mark of which contributes to theiell degree class.

A total of 43 subjects participated in the class, split imto approximately equal sections.
Section 1 had 22 subjects and Section 2 had 21 subjects. Tiheap achieved by ordering

www.manaraa.com

SECTION5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 88

subjects according to their mark in a C++ programming cl&ssH was chosen as the type
of code to be used in the experiment). Adjacent subjects thereblocked into sets of four,

with two randomly chosen subjects assigned to one sectiibh the remaining two subjects

assigned to the other. Within the two sections the subjeetg wrganised into groups of
three (and a single group of four). This was done in such a vgalp a&reate equal ability

groups, based on their C++ programming marks. Section Efitwer consisted of six groups
of three subjects and one group of four subjects, while 8e@icontained seven groups of
three subjects.

Materials

Having previously assisted with the running of several detietection experiments [90,
122], it was decided that the most appropriate material $péct would be C++ code. A
number of factors influenced this decision. Initially, steicode was chosen as the appropriate
material due to ease with which defects in code can be defifleid.is in contrast with, say,
English language specifications, which provide many proklef ambiguity. It is also easy
for inspection of such material to degenerate into arguserséer English style and usage.
Intelligent seeding of defects in code avoids these probkemd provides a well-defined target
against which performance can be judged. It is also easigh®experimenter to classify
defects and hence subject performance is more accuratelyurez.

Subject experience was also taken into account. Inspentigst be performed by per-
sonnel with experience in the type of document being ingokckt was therefore important
to choose material in a form which the subjects had expegigmcThis also avoids teaching
a new notation or language which subjects may spend mucheafttme trying to under-
stand and become familiar with, instead of finding defeditsc&the subjects were competent
in C++, material in that language was chosen for the experim&he decision was further
ratified by the availability of high quality material from adal replication of Kamsties and
Lott's defect detection experiment [62]. Of course, theodchoosing a single material type
affects the extent to which the results can be generaliddad.félt, however, that the results
are applicable to inspection of source code in general.

For the training materials, a selection of programs oritlynased in Kamsties and Lott's
experiment were used, since each program had an approppietdication, a list of library
functions used by the program and a comprehensive deféeclTli®se programs were origi-
nally written in non-ANSI C and were translated into starmd@r+ for the experiment. The
programs used wereount.cc (58 lines, 8 defects}pkens.cc (128 lines, 11 defects)
andseries.cc (145 lines, 12 defects). A further exampémple _sort.cc (43 lines,

www.manaraa.com

SECTION5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 89

4 defects) was created for use in the tool tutorial.

Since the Kamsties and Lott material had already been us#tkisame class the pre-
vious year, the two programs to be used for the experimerd, (hance, the assessment),
were specifically written afresh. One prograamélyse.cc , 147 lines, 12 defects) was
based on the idea of a simple statistical analysis prograengdn [28]. The second program
(graph.cc , 141lines, 12 defects) was written from a specification fBogran graph plot-
ting program, originally found in [8]. For each program, asffication written in a similar
style to that of the Kamsties and Lott material was also peghaalong with appropriate lists
of library functions.

There is no clear consensus on the optimal inspection raie e¥ample, both Barnard
and Price [7] and Russell [103] quote a recommendation oflit&3 of code per hour. On
the other hand, Gilb and Graham [41], recommend inspectitgden 0.5 and 1.5 pages per
hour, translating to between 30 and 90 lines of code. All aaethat lower rates improve
defect detection. Each practical session lasted two hgiuigig an inspection rate of around
70 lines per hour. This figure represents a compromise sugests were not professional
inspectors and could not be expected to perform at the highesmmended rates. At the
same time, there was enough time pressure to make the tdskicealwo hours is also a
standard inspection meeting length.

The actual inspection task was to use the program speaiiicatid list of library functions
to inspect the source code for functionality defects, mgkise of a checklist. Use of a check-
list is standard inspection procedure, and subjects weypli®d with the checklist described
below. Subjects were specifically discouraged from findiafipdts relating to other qualities,
such as efficiency. Each program was seeded with functiyra#iects and with checklist vi-
olations. These were based on those naturally occurringnwieeprograms were written, and
those found in the Kamsties and Lott material. For the twoeerpental programs, defects
in one program were matched, in terms of type and perceivifidudiy, with defects in the
other program, in an effort to match the overall difficultytbé programs. All programs used
compiled with no errors or warnings usi@Cunder SunOS 4.1.3.

The checklist used was derived from a C code checklist bydWdd1], a C++ checklist by
Baldwin [3] (derived from the aforementioned C checkligile C++ checklist from [51] and a
generic code checklist from [33]. Items which were consddp be irrelevant were removed
from the C and C++ checklists (for example, no programs madensive use of macros),
along with esoteric items, such as those dealing with tle@@dogramming and signals. From
the generic checklist, items not relevant to C++ were rerdoi®iplicates were then removed
and the remaining items grouped into a number of categodesadditional category was

www.manaraa.com

SECTION5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 90

added concerning differences between the specificatiobelmnaviour of the program. Finally,

another edit was performed on the checklist to reduce thebeuwt categories, allowing the
checkilist to fit on two sides of paper. It was felt that a shiwecaklist covering the major

points to consider would be more effective than a much lgngere detailed checklist which

the subjects would struggle to cover in the time allowed sTbilows practice recommended
by Gilb and Graham [41]. The checklist and all other matsrigded in the experiment are
presented in Appendix D.

Instrumentation

For paper-based inspection, each subject was given aridodidefect report form, like that
in Appendix D.3, containing blank entries to be filled witltkalefect found. For group meet-
ings, the scribe was given a similar form to prepare the méistepresented in Appendix D.4.
During tool-based inspection, ASSIST was used to keep Inatividual lists and the master
list. Each practical session was limited to a maximum of 2reolAlmost all participants
made use of the full two hours.

For each subject, data collected were the total number oécodefects found, along with
the number of false positives submitted (i.e. defects whidbjects incorrectly identify), and
similarly for each group. Also calculated were meeting Ifrasmber of defects found by at
least one individual in the group, but not reported by theugras a whole), and meeting gain
(number of defects reported by the group, but not reporteanyyindividual) for each group.
Finally, for each defect in each program, the frequency @luio@ence was obtained, both in
tool-based and paper-based inspection.

Experiment execution

The practical element of the course ran over a period of texkaieThe first six weeks were
devoted to providing the subjects with training in softwarspection and using ASSIST,
as well as refreshing their C++ knowledge. These practiessi®ns were interspersed with
lectures introducing each new topic where appropriateerdftspection of each program was
complete, the subjects were presented with a list of defadtsat program. The remaining
four weeks were used to run the actual experiment. AppendidBtails the exact timetable
used. Each practical session was run twice, once for eatiosed the class, thus ensuring
their separation when using different methods on the sawgram. Both practicals occurred
consecutively on the same afternoon of each week.

www.manaraa.com

SECTION5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 91

Threats to Validity

Any empirical study may be distorted by influences whichéftependent variables without
the researcher's knowledge. These are threats to inteatfidity, and the possibility should
be minimised. The following such threats were considered:

e Selection effects may occur due to variations in the nafealormance of individual
subjects. This threat was minimised by creating equaltsglioups.

e Maturation (learning) effects concern improvement in tee@mance of subjects dur-
ing the experiment. The data was analysed for this and nateffas found. Sec-
tion 5.2.3 describes this analysis in more detail.

¢ Instrumentation effects may occur due to differences iretpeerimental materials used.
To help counteract the main source of this effect in the arpaEnt, both groups of
subjects inspect both programs.

¢ Presentation effects may occur since both sets of subjspect the programs in the
same order. It is believed that if such an effect exists,syimmetric between both sets
of subjects, and that the effect presents less risk thar&igéspism effect possible when
the order of presentation is reversed for one set of subjects

¢ Plagiarism was a concern in our experiment since the groapgbf each experimental
run took place one week after the individual session, hemgeiging an opportunity
for undesired collaboration among subjects. This was @iigid by retaining all paper
materials between phases. With the same purpose in miralfrdat the tool regarding
the individual phases was extracted immediately after sashion. Furthermore, access
to the tool and any on-line material was also denied. Any ipl&m effect between
groups would be noticeable by any group presenting an abem@age meeting gain.
No such groups were detected.

e Boredom may have affected the results. Subjects were askpdrform a total of
six inspections. Although these were spread over ten watlks]ikely that subject
enthusiasm was waning towards the end of the experimenth©ather hand, the use
of the tool may have provided some novelty to mediate thitofac

Threats to external validity can limit the ability to geniésa the results of the experiment
to a wider population, in this case actual software enginggractice. The following were
considered:

www.manaraa.com

SECTION5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 92

Program| analyse.cc graph.cc
Section 1 2 1 2
Method | Tool Paper | Paper Tool
Subjects| 22 21 22 21
Mean 7.68 7.76 | 6.64 6.00
St. Dev. | 1.55 1.92 143 2.05
St. Error| 0.33 042 | 0.30 0.45
F Ratio 0.02 1.40

F Prob. 0.88 0.24

Table 5.1: Analysis of variance of individual defect scores

e The subjects involved in the experiment may not be reprasigatof software engi-
neering professionals. This was unavoidable since theceladisubjects was limited by
available resources.

e The programs and defects used may not be representative tefrthth and complexity
of those found in an industrial setting. The programs use®@ wkosen for their length,
allowing them to be inspected within the time available. l¢wer, the amount of time
given to inspect each program was representative of inidbtactice quoted in popular
inspection literature.

e The inspection process used may not correspond to that ndadustry, in terms of
process steps and number of participants. For examplerdloegs used did not involve
the author presenting an overview of the product, giving oistext for the inspection.
A rework phase was also not used. However, the detectidagtimin approach used in
the experiment is a standard process [41].

These threats are typical of many empirical studies, e.g, $8]. They can be reduced
by internal and external replication of the experimenthwvather subjects, programs and pro-
cesses.

5.2.3 Results and Analysis

Defect Detection

The raw data from the experiment can be found in AppendixlE.Table 5.1 presents
a summary of the data and the analysis of variance of theiohgi phases of both inspec-
tions. For each program, the method used by each sectiorbicis is shown, along with
the number of subjects in that section and the mean numbefeéis$ found in the program.

www.manaraa.com

SECTION5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 93

Program| analyse.cc graph.cc
Section 1 2 1 2
Method | Tool Paper| Paper Tool
Groups 7 7 7 7
Mean 10.86 10.71| 9.57 8.86
St.Dev. | 0.69 095 | 1.27 1.07
St. Error| 0.26 0.36 | 0.48 0.40
F Ratio 0.10 1.29

F Prob. 0.75 0.28

Table 5.2: Analysis of variance of group defect scores.

The standard deviations, standard errors Brrdtios and probabilities are also shown. For
analyse.cc , itis obvious that there is very little difference in penficance, and this is con-
firmed by the analysis of variance. Fgraph.cc
appear to outperform that using the tool, although thisedéifice is not significant. In both
cases the null hypothesis concerning individuals cannotjeeted.

Table 5.2 presents a summary of the data and the analysisiafga of the group phases
of both inspections. These results follow the same pattetiorindividual: analyse.cc

provides a larger difference,

, the section using paper-based inspection

provides very similar results between methods, whikgph.cc
but which is not statistically significant. Again, the nwigothesis as applied to groups cannot
be rejected.

Under further investigation, the data from the individulahpe of thegraph.cc
tion failed the Levene test for homogeneity of variancess Tprobably due to the increased

inspec-
difficulty of graph.cc , discussed next. However, the ro-
bustness of th& test is well documented. For example, Boneau [10] has diudieeffects
of violating the assumptions which underlie theest, and generalised these results toRhe
test. Provided samples sizes are sufficient (around 15) atwhlNy equal, and a two-tailed

compared withanalyse.cc

test is used, non-homogeneity of variances should not ddiffesilties. A similar conclusion
is presented by Edwards [34]. As a safeguard, the Kruskalli$\hon-parametric test was
applied to all four sets of data, and gave results similahtsé for the parametric tests, with
no significance.

The data was analysed for any effect stemming from the omdevhich the methods
were used and for any difference caused by the two progranie rdsults are shown in
Table 5.3. There proved to be no significant difference betwsubjects who used the tool
first and those who used paper first. However, the resultsateld a significant difference in

www.manaraa.com

SECTION5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 94

Effect F Ratio| F Prob.
Order 0.34 0.56
Program 33.78 | <0.01
Order<Program| 2.20 0.15

Table 5.3: Analysis of variance of method order and program.

the difficulty ofanalyse.cc =~ compared witlgraph.cc . This was also supported by one of
the post-experiment questionnaires (described in moweldiatier in this section). The greater
difference in performance witgraph.cc may imply that tool-based inspection becomes
less efficient as the material under inspection becomes owmrplex. This could be due to
the use of the tool interfering with the cognitive task ofet#fdetection. Finally, the data was
analysed for any effect from the order in which the methodsewsed combined with the two
different programs. No significant result was found.

The next set of data to be analysed concerned the detecéqoencies of individual
defects. Comparing the frequencies achieved by each metbatti allow the discovery of
defects which tool users found particularly easy or difficalcomparison with paper-based
inspection. This might then indicate benefits of the toolways in which the tool could be
improved. It should be noted, however, that due to the naititiee data in some cases these
differences will be due to natural variation, and hence dbaoorespond to any underlying
effect. Therefore, although examining the data at thid iewgseful, caution must be exercised
to avoid hypothesising about effects which do not exist.

Figure 5.1 summarises the frequency with which each defastfaund inanalyse.cc
during the individual phase. In most cases there is no gréfarehce between the scores
achieved with the tool compared to those using paper. Cerisglithe four defects with the
largest differences (1, 4, 7, and 8), there is no clear ininavhy such differences exist.
Defect 1 is an array indexing error, defect 4 concerns owppearing at the wrong point in
the program, defect 7 concerns missing functionality arféale8 is a failure to initialise an
array. In theory, defect 8 should be found by all subjectsesiit is explicitly covered by a
checklistitem. The difference may indicate that it is moif@allt to use the on-line checklist
(lack of screen space). On the other hand the low scoresfooamtan overall lack of checklist
use. Hence, the promotion of checklist usage may be a meangythwhich tool support can
increase inspection efficiency.

Figure 5.2 shows the frequency of detection for the groupseld theanalyse.cc
inspection. The largest difference is for defect 3 with oohe tool-based group finding it,

www.manaraa.com

SECTION5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 95

100 »

Detection Rate (%)

Defect

Figure 5.1: Summary defect detection datadoalyse.cc (individuals).

compared to three paper-based groups. The reason for tosras apparent by considering
the individual results. Only two tool users found this défeach belonging to distinct groups.
One group reported the defect, while the other did not. Irtres, three paper-based subjects
found the defect, each of whom belonged to a different grdpthree groups managed to
report this defect. Given a different makeup of groups, difference could have been reduced
to zero.

Figure 5.3 summarises the defect detection frequency foirttlividual phase of the in-
spection ofgraph.cc . The largest difference appears for the third defect, whiak found
by 90.9% of the paper-based inspectors, yet only 61.9% dgbti@isers. This alone represents
35% of the overall difference between tool and paper. Thisa&oncerns a missing function
call, which means the program does not print some outpuifegedy the specification. In
fact, this is a very easy defect to detect using the searglityauf the tool. By entering the
function name as the target of the search, the inspectoriedredills to that function, almost
guaranteeing that the defect will be found. However, algioine mechanics of the find facil-
ity were explained, the use of the tool to detect such defgatsnot explicitly taught to the

www.manharaa.com

SECTION5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 96

100 «

80 +o

60 o

40

Detection Rate (%)

20«

- Paper
-Tool

Defect

Figure 5.2: Summary defect detection datadoalyse.cc (groups).

subjects. The reason for subjects performing paper-basgection finding this defect more
easily is not clear. A difference of just over 20% in favourpaiper-based inspection occurs
for defect 5 (variable names X and Y are transposed), buetisemo obvious reason for this
difference. The same applies to defect 11 (an incorrectita@ion), which has a difference of
just over 20% in favour of the tool.

The defect detection data for the group phase of the ingpeofigraph.cc is shown
in Figure 5.4. This time defect number 8 has the largest iiffee between methods. The
data for the individual phase already shows that this is tbetrdifficult defect to find. The
relatively poor performance of the tool can be explained ey flact that every individual
who found the defect belonged to a separate group, givingpaper-based groups a 3 to 1
advantage. Another paper-based group also managed to &mtkflact at the meeting, giving
4 to 1. Finally, the single tool user who actually found thé&deeither failed to mention it at
the group meeting or was talked out of it, since that groupndidreport it. A similar trend is
apparent with defect 9, with 4 individual tool users mapgirtg 4 groups, and 7 paper users
mapping into 6 groups. Again, these results show group n@akes an effect on the group

www.manharaa.com

SECTION5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 97

100 «

Detection Rate (%)

- Paper
-Tool

Defect

Figure 5.3: Summary defect detection datagmph.cc (individuals).

result. Different group makeups could have reduced botbetdéferences to 1, or it may have
increased the difference.

The overlap between group members' defect lists can havehadmnificant effect on
the group score. If there is a large overlap (i.e. individuzve many defects in common)
the group score is likely to be lower than that of a group witbnaall overlap (individuals
have few defects in common, hence the total score is higegups with individuals whose
defect lists have a greater overlap are disadvantaged,theeigh individual scores may be
very respectable. On the other hand, if more than one paaintireports an individual defect,
the risk of that defect becoming a meeting loss may be reduced

False Positives

In addition to the number of defects found by each subjee,nhmber of false positives

reported was also measured. False positives are itemgseepay subjects as defects, when
in fact no defect exists. It is desirable to investigate wubetool-supported inspection alters
the number of false positives reported, since an increasddveduce the effectiveness of

www.manharaa.com

SECTION5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 98

100 «

80 +o

60 o

40

Detection Rate (%)

20«

- Paper
-Tool

Defect

Figure 5.4: Summary defect detection datagaaph.cc (groups).

the inspection. On the other hand, if use of the tool in somg suppressed false positives,
the efficiency of the inspection would be increased, witk kese wasted on discussing these
issues.

Table 5.4 presents the analysis of variance for the falséiyp®data from the individual
phases of each inspection. While the tool appears to prandenprovement over paper for
analyse.cc , thisdifference is not significant. On the other hand, thamsdorgraph.cc
are almost identical, and this is confirmed by the ANOVA té&dte analysis of variance for
the false positive data of the group phases is shown in TableF®r both programs, there is
no difference between the tool-based and paper-basedag@s.

Examination of the false positives revealed no discerrdifference in those produced by
tool-based inspection as compared with paper-based. Ti@oimt of interest was that some
of the false positives which occurred were defects which dexiirred in training material.
Presumably the subjects had memorised these as defectaygesibmitted them as defects
without checking if they actually occurred, in the hope afreasing their score.

www.manharaa.com

SECTION5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION

99

Program| analyse.cc graph.cc
Section 1 2 1 2
Method | Tool Paper| Paper Tool
Subjects| 22 21 22 21
Mean 359 419 | 323 324
St. Dev. | 1.943 194 | 19 214
St. Error| 0.41 042 | 04 0.47
F Ratio 1.02 ~0.00

F Prob. 0.32 0.99

Table 5.4: Analysis of variance of individual false positv

Program| analyse.cc graph.cc
Section 1 2 1 2
Method | Tool Paper | Paper Tool
Groups 7 7 7 7
Mean 3.57 3.14 | 214 243
St.Dev. | 1.72 146 | 1.34 222
St. Error| 0.65 055 | 0.51 0.84
F Ratio 0.25 0.08

F Prob. 0.62 0.78

Table 5.5: Analysis of variance of group false positives.

www.manaraa.com

SECTION5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION

100

Program| analyse.cc graph.cc
Section 1 2 1 2
Method | Tool Paper | Paper Tool
Groups 7 7 7 7
Mean 0.29 0.14 | 043 0.57
St.Dev. | 049 038 | 0.79 0.53
St. Error| 0.18 0.14 | 0.30 0.20
F Ratio 0.38 0.158

F Prob. 0.55 0.698

Table 5.6: Analysis of variance of meeting gains.

Program| analyse.cc graph.cc
Section 1 2 1 2
Method | Tool Paper | Paper Tool
Groups 7 7 7 7
Mean 0.14 0.14 | 0.71 0.71
St.Dev. | 0.38 0.38 | 0.49 0.95
St. Error| 0.14 0.14 | 0.18 0.36
F Ratio 0 0

F Prob. 1.00 1.00

Table 5.7: Analysis of variance of meeting losses.

Meeting Gains and Losses

The final set of data to be analysed concerns meeting gainsssek. Synchronous meetings
are frequently cited as necessary because it is believééhtttars such as group synergy can
improve the output of the meeting, manifested in defectad&und at the meeting which
have not been found during the individual phase (providiefgdt detection, and not just
defect logging, is an objective of the meeting). On the otizrd, defects may be lost when
a participant fails to raise a defect found during the indiidl phase. It was hypothesised
there would be no difference between tool and paper-bas#ubaiefor both gains and losses.
Table 5.6 shows the analysis of variance of meeting gaingewhble 5.7 shows the analysis
of variance of meeting losses for group meetings in bothen8pns. It is clear there is no
significant difference between methods.

Overall, gains and losses are insignificant. The small mgeajain indicates that subjects
were not performing extra defect detection at the group mggetlespite being told that this
was an opportunity which could be exploited. The small nmeglioss perhaps indicates a lack

www.manaraa.com

SECTION5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 101

of discussion of each defect, or (more likely) subjects weptaying safe” by putting every
reasonable defect into the group list. On a per-defect ptmase are two possibly significant
occurrences. lgraph.cc defect 4 appears as a meeting loss for three groups and défect
appears as a meeting loss for four groups. Both are splitygbetween methods. Why these
defects have more significant meeting losses is not cleher dhan they appear to be two
of the hardest defects to find. Hence, subjects may be easidyipded they are not correct
defects.

Debriefing Questionnaires

During the course, subjects were asked to complete fourtipmesires. The first two were
given after the full practice using ASSIST, one after thevidual inspection (Questionnaire
1, 67.4% response rate) and one after the group meeting ([Quesire 2, 48.8% response
rate). These questionnaires focussed on eliciting qtigktéeedback on ASSIST. Two further
guestionnaires were then presented, one after the firsepifabe experiment was complete
(Questionnaire 3, 93% response rate), the other after tengdephase of the experiment was
complete (Questionnaire 4, 93% response rate). Theseiguesires concentrated on such
topics as the overall difficulty of the task and the relativerits of paper-based and tool-based
inspection. The full text of the questionnaires can be foundppendix D.11. This section
presents some results from these questionnaires.

Questionnaire 1 One concern when moving to tool-based inspection is thew#isavhich
the user can navigate around the document, since doing sap®r [5 very natural. When
asked to rate the difficulty of moving around the documen¥3cf the subjects found it very
difficult, 20.7% found it difficult, 24.1% found it averagey 3% found it easy and 13.8%
found it very easy. Overall, most people seemed to have ricudty, but around 25% of
subjects finding some difficulty is concerning.

A second factor, discussed previously, is the number of mivglwhich each user has to
have open at one time. When asked how the number of open waaléected theirinspection
efficiency, 13.8% of subjects said it improved, 31% said d ha effect and 55.2% thought
it reduced their efficiency. The conclusion here is obviatl® number of open windows is
definitely a problem. One possible solution is the use of gtal window manager”, which
gives users a number of workspaces which they can move betwite single keystrokes.
This allows all windows to be open full-sized without oveitag each other. The use of a
virtual window manager was not common among the subjects.

Finally, the question “Compared with manual (paper-bages})ection, do you feel that

www.manaraa.com

SECTION5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 102

computer-based inspection is more efficient, less efficienabout equally efficient?” was
asked, and subjects were also asked to give reasons. 55.88¢pmindents deemed it less
efficient, 26.6% thought it equally efficient, and 17.2% fdunmore efficient. The majority
of negative responses here concern the number of windovasarsg to a lesser extent, the
speed of the tool. Positive responses were generally giyahdse who found it easier to
manipulate their defect lists.

Questionnaire 2 Subjects were asked to rate the ease-of-use of the defemigabsystem.
14.3% of subjects found it difficult to use, 38.1% found it l@ge, 28.6% found it easy to
use, while 19% found it very easy to use. The voting mechampismvided by ASSIST was
deemed to be useful. 52.4% of subjects found it helped ressdues, 33.3 % said it had no
effect, and only 14.3% thought it hindered issue resolution

Subjects were asked to rate the effect ASSIST had on theipgneeeting. 4.8% said it
had a large negative effect, 19% said it had a negative eB8ct% said it had no effect, and
38.1% said it had a positive effect (no subjects said it haalgel positive effect). Overall,
the use of a tool would seem to have enhanced the meeting. A8ked whether a tool-
based meeting is more efficient than a paper-based mee8rigo3f subjects said it was less
efficient, 47.6% said it was equally efficient, while only 3% said it was more efficient.

Questionnaire 3 Subjects were first questioned about their understanditigeofode. 5%
of subjects understood 41-60% of the program, 25% undet€deB0% of the program, with
the remaining 70% claiming to understand 81-100% of the yammg Only 5% of subjects
thought there was not enough time to inspect the code, 8dught they were given the
correct amount of time, and 7.5% thought there was too mucé. ti

The group meeting was found to be a useful part of the ingpedtr most subjects.
When asked if their understanding of the program was chaagiéde meeting, 2.5% said
their understanding was confounded, 35% said their uraiedgig was unchanged, but 62.5%
said their understanding was increased. This finding supgioe common view that meetings
are a useful education mechanism. When asked to guess thiegngain for their inspection,
7.5% said that no gains had been made, 40% said that one oxtnaalefects had been found,
47.5% said that 3-5 extra defects has been discovered, aresBftated that more than five
had been found. Subjects obviously believed that groupudson of the program helped find
more errors, although these estimates seem very optimistibjects perhaps misunderstood
the phrase “meeting gains”, thinking it included defectsfd by other inspectors which they
themselves had not found. Subjects were also asked to éstih&ir meeting loss. 27.5%

www.manaraa.com

SECTION5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 103

said that no losses had occurred, 35% believed that one odéfects had been lost, 27.5%
estimated that 3-5 defects had been lost and 10% believednibve than five defects had
gone astray. In general, these estimates seem high (elpduise who said more than five).
Again, there may be misunderstanding of terminology — souigests may have assumed
“meeting loss” included defects discovered during inditpreparation but discarded at the
meeting because they were genuinely incorrect.

Subjects were asked to rate their overall group performamterms of the percentage of
defects which they believed their group had found. 2.5%ebeli they had only found 21-
40% of the defects, 30% thought they had found 61-80%, arsb6Believed they had found
81-100% of the total defects. In general, subjects seemddhtaly underestimate their group
performance, but not by much.

Finally, subjects who used ASSIST for this phase of the érpart were asked to rate
the usability of ASSIST, with 90.9% of the tool users resgagd 10% found it extremely
usable, 50% found it fairly usable, 35% found it average, a#dthought it fairly unusable
(no subjects found it totally unusable).

Questionnaire 4 As with Questionnaire 3, subjects were first asked about thnelerstand-
ing of the program. 2.5% understood only 21-40%godph.cc , 20% understood 41-60%
of the program, 37.5% understood 61-80% of the program, arg 40% understood 81-
100% of the code. Comparing this result with that from #malyse.cc inspection there
is an overall reduction in understanding of the program leydhbjects. When asked if suf-
ficient time was given to inspect the program, 35% of subjduisight that insufficient time
was given, 62.5% thought that the time given was about raggit,2.5% thought there was too
much time. Comparing this with the result from thealyse.cc inspection, it is obvious
that more people found it difficult to inspect the programkhie time given. Finally, the sub-
jects were asked to rate the complexitygpéph.cc compared tanalyse.cc . 49% of
subjects believedraph.cc to be much more complex, while 44% believed it to be slightly
more complex, and only 7% considered it to be of similar caxipy toanalyse.cc . These
results all support the earlier statistical analysis comog the difference between programs.
Once again, the group meeting was found to be useful. 25%bjdsts reported no change
in their understanding of the program, while 75% said thederstanding was increased. In
terms of meeting gains, 5% of subjects thought no gains had bwde, 60% thought one or
two extra defects had been found, 22.5% reported a gain ofié&eécts, and 12.5% thought
more than five extra defects had been found at the meetingrimstof meeting loss, 72.5%
of subjects believed no losses had occurred, 17.5% beli@vedr two losses had occurred,

www.manaraa.com

SECTION5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 104

10% reported losses of 3-5 defects, with no-one reportingertiean five losses. These figures
are more realistic than their counterparts from Questioer although still higher than the
true figures.

Tool users were asked to rate the usability of ASSIST, witB%®f users responding.
4.8% found it extremely usable, 33.3% found it fairly usab88% found it average, 33.3%
found it fairly unusable and 4.8% found it totally unusabéhis result is poorer than that
for those who used ASSIST to inspectalyse.cc , and may indicate that the difficulty of
graph.cc affected users perception of the tool.

Questionnaire 4 ended with some general questions abojgicssiboverall performance.
When asked to rate their understanding of software inspecti.5% of subjects believed they
understood it completely, 32.5% understood it well, 55%aratbod it reasonably well, while
5% were slightly unsure. Concerning their knowledge of C36% of subjects believed it to
be adequate for the tasks set and 20% believed it to be inatkequ

Subjects were then asked several questions comparingp&seld and paper-based inspec-
tion. When asked to compare their use of the checklist dwaa inspection, 37.5% stated
they used it more during paper-based inspection, 52.5% itsddut the same amount with
both methods and only 10% used it more with ASSIST. This i®abty due to the lack of
screen space during a tool-based inspection. Of the thrge thbocuments which inspectors
must use (product, specification and checklist), the cligtcklas probably regarded as the
least important by subjects, and hence its window would fhellesed most of the time.

Subjects were asked to indicate their preference for sdbased and paper-based docu-
ments. 15% stated a preference for screen-based, 20% hadfecepce and 65% preferred
paper. This overwhelming preference for paper is undouptiak to its familiarity and per-
ceived flexibility (e.g. ability to write comments on codéildy to spread documents out as
required, etc.).

The question “Overall did you feel you performed better dgrindividual inspection
using manual (paper-based) inspection or ASSIST, or weteegpally effective with both
methods?” was asked. 39% of respondents claimed to haverped better using paper-
based inspection, 39% had no preference, while 22% claimbédve performed better with
ASSIST. The low preference for ASSIST probably stems froenfttmiliarity of paper, which
people are comfortable with. Itis possible that extendaithing with ASSIST would increase
its user acceptance. When the same question was asked gati te the group meeting, the
number of people preferring paper-based inspection dibppd 9.5%, the number with no
preference increased to 61% and the number preferring AS8I8pped to 19.5%. This
change is probably due to the perception of the group meétiigg an easier task than the

www.manaraa.com

SECTION5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 105

individual phase. Collating defect lists is presumablyi&athan finding the defects in the
first place, therefore the method used to perform the colatiask is less important. There is
no clear correspondence between preferences for indivaahabpreferences for group: some
people who expressed a preference for paper-based indMvidspection then went on to
select ASSIST for the group meeting, others always prefeyeper-based or always preferred
ASSIST, yet others moved from preferring paper-based toreteence or from preferring
tool-based to no preference.

The qualitative statements indicating preference madeesting reading. People who
indicated a preference for paper-based inspection gaydikad the tactile nature of paper,
allowing them to scribble notes on the code itself. Othenspdy preferred reading code
on paper instead of on-screen. A number of people found itxswtt moving between the
code, specification and checklist windows of ASSIST. WHikedcribe's burden is reduced in
ASSIST, one subject commented that it Waseasy to propose defects and put them into the
master defect list, and therefore the phrasing of the defastnot usually considered as much
as when the scribe had to manually write it down.

People who preferred ASSIST pointed out the following adages. It was easy for the
group as a whole to see exactly where individuals' defecte vend it was also considered
easier to compile the master defect list, giving more timetlie group to search for further
defects. Others found it easier to traverse the code, andrdewof people preferred the
defect creation/editing facilities. The voting method flesolving defects was also considered
to be useful.

People who expressed no preference also made interestings.pd-or example: “[lt]
was easy to look through code when it was on paper, but ASSiSTits advantages such as
searching through the document for keywords...[Duringigrmeetings] paper-based inspec-
tion provoked more discussion, [but] ASSIST made it easiefthe] reader”.

5.2.4 Conclusions

The results from this experiment show that a straightfodvamputer-based approach to in-
spection does not degrade the effectiveness of the ingpectiany significant way. There
is no significant difference in the number of defects foundhe umber of false positives
reported and the amount of meeting gains and losses werenglasured, and again no sig-
nificant difference was found. Although the experiment made of student subjects and
inspected short pieces of code, the inspection processwagdealistic and the rate of in-
spection was typical of industry.

Some lessons about the facilities provided by ASSIST wemnbd. The defect proposal

www.manaraa.com

SECTION5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 106

and voting system was liked by subjects, and hence couldignaltered. The speed of the
tool appeared to be a concern among users, and methods alvimgpperformance had to be
investigated. Some facilities were obviously not beingdusetheir full extent, such as the
find facility. Hence, proper training is vital to ensure sedis are competent with the tool.

Suggestions for features to be added to ASSIST were alsapeddby the experiment.
The first concerns checklist usage. The questionnairetsdsdicated subjects made more use
of the checklist during paper-based inspection. An asgatiextool which could therefore be
improved is the ease of use of the checklist. It was also edtilcat subjects using paper-based
checklists marked items on the checklist as they compléiecht Devising an equivalent of
this for on-line checklists is therefore another line ofeaxh. Navigation around the docu-
ment was deemed to be easier on paper. Again, this is a feahich could be improved in
the tool. The number of windows used by the tool was a con@rmbst subjects, since all
the windows could not be open on the screen at one time. Thisl c® improved by min-
imising the number of windows used, making the windows moragact, providing resizable
windows and providing facilities for moving between windavin fact, the user interface may
have had a biasing effect on the experiment if subjectskaidlparticular aspects of the tool.
It may be that the effect of the interface of the tool obsctinescomparison of methods.

If the inspection efficiency cannot be increased by findingemtefects, perhaps the num-
ber of false positives can be reduced. This would increaseetficiency of the inspection
meeting, as well as reducing the amount of time required byaththor to tackle the defect
list. Many false positives found in the experiment were dusubjects' uncertainty concern-
ing aspects of C++. A standard C++ reference as part of tHertap help reduce this type of
false positive.

Having established that the concept of tool supported wigpeis not fundamentally
flawed, various methods of increasing the efficiency of icipa, based on the results of this
experiment, were investigated. The next chapter descifiteisimplementation.

www.manaraa.com

Chapter 6

Enhancing the Software Inspection
Process

aving compared basic tool-supported inspection with papsed inspection and found
Hno significant difference between the two, the next stagetvawestigate methods of
enhancing the efficiency of tool-support. This investigativas based on feedback from the
comparison experiment and requirements alluded to in varameas of the literature.

To begin with, navigation within documents and the numbewofdows used by the
tool were found to be problematic during the first experimehtitomatic cross-referencing
was thought to be a solution to these problems. Essentidi$yfacility would provide links
between related areas of documents. Instead of scrollinipdow to find the correct place,
or finding the correct window, the link would allow the usembove directly to the relevant
part.

Checklist usage during the first experiment appeared to be favo features were de-
signed to address this issue. Active checklists would alisers to mark off items as they
were used, something which subjects were observed to perath paper versions of the
checklist. Active checklists could also make use of the sregerencing facility to provide
links between document features and appropriate chedteias.

As some of the false positives produced by subjects in therexent appeared to stem
from weaknesses in C++ knowledge, an on-line referenceegwias an obvious addition.
Combining this with an active C++ checklist and the crogerencing mechanism could pro-
vide a complete C++ inspection environment. In this envinent, features of C++ code could
be automatically linked to relevant checklist items aneérmefice entries.

www.manaraa.com

SECTION6.1: AUTOMATIC CROSSREFERENCING 108

Finally, a major task at an inspection group meeting is tiolipmultiple defect lists into
a single master list. Automating this task could reduce @mgih of the meeting, or even
obviate the need for such a meeting. This was the final areaiaed.

The above features were implemented in a new version of ABS¥Eh the intention of
comparing the enhanced version with paper-based inspeclibis chapter describes these
features in detail.

6.1 Automatic Cross-referencing

The major difference between computer-based and papedbaspection is that documents
are now presented on-screen instead of being distributpapesr copies. Available screen
space is a limitation to the usability of an inspection tde&pection requires the participant to
frequently move between several documents, yet most gispla&ommon use are not capable
of simultaneously displaying several windows of sufficisize to be useful. This means that
windows have to be frequently closed and reopened, or te=dadindering the inspectors
performance. This type of “window overload” was reportedjirestionnaire responses from
subjects involved in the comparison experiment.

A feature which may help mitigate this problem is a crosemafcing system. Essentially,
this would link related parts of each document togetheresfighed properly, it could provide a
means of navigating within documents, as well as crossaréing between documents. The
major obstacle to such a system is the variety of documemstyfpat have to be dealt with:
the strategy applied to English language documents is ablyalifferent to that applied to
source code, and even different source languages will hiffeeaht strategies.

The open architecture implemented in ASSIST has already described. It allows
document-type specific browsers to be easily added, prdiidsy comply with a well-defined
interface. This feature provides the means to solve thesamfgrencing problem: each
browser can provide its own means of deriving referenced, the standard interface can
be used by the system to integrate and access these reference

The scheme developed consists of two stages. The first stagesovhen a new inspec-
tion is started. At this point each document to be used innibpection has cross-references
generated for it by the appropriate browser. These reference stored as part of the inspec-
tion data. The second stage occurs when an inspector usésalit® perform part of the
inspection. At that point, the references for all the docotaeised during the current phase
are combined to form a cross-reference table. This meansr$ectors are not given ref-
erences to documents which are not in use during this phalsis. cfoss-reference table is

www.manaraa.com

SECTION6.1: AUTOMATIC CROSSREFERENCING 109

ﬂ Simple Browser: Graph Specification ¥ | A

File Wndow Find References

£

Specification for progran “‘graph””

Hane

graph —- draw a graph

graph file

Description

Given an input file of ordered paire (%, y) of either positive or
negative integers asz input, the program displays the list of
points read in and plots then on a grid with a horizontal x-awis
and a wvertical y-axis which are appropriately labeled, and have
*tick’ marks every five units, A plotted point on the grid
appears as an asterisk (=), and the grid is scaled to fit into

an area with a maxinun width of 40 characters and a naxinun height
of 20 characters,

Yertical scaling is handled as follows, The total height of the
llgraph is calculated as the difference between the largest y value
{or zero if the largest iz negative) and the smallest y value

{or zero if the smallest value is positive), If this height is
less than the naximnum height of the graph, no scaling is carried
out and the graph iz plotted with verti~=1 enarinn of ana

line per integral unit {e.g., the poini vertical

on the sixth line above the origin; twmc
{3, 43}, Hote that the origin {point {(- =
the intersection of the axes (the x-axi Graph Specification, 22.6 (vertical)

*0Oth” line}, The origin is represented Graph Specification, 28.0 {vertical)
is drawn to ensure that the origin and .
Graph Specification, 33.34 (vertical) £

Graph Specification, 42.14 {vertical) | =

Figure 6.1: The ASSIST simple browser, showing a list of sroferences.

available to any browser through the standard interfadewilg lookups to be performed.

How this information is used is entirely dependent on theuser in question, but the browser
interface provides a call which, when given a document namaepasition, brings the appro-
priate window to the front of the screen (opening it if regai), and scrolls the document to
that position.

As an example, consider the simple browser provided in ASSTSis is intended to be
used for displaying ASCII source documents, more spedyi€aiglish language documents.
The cross-reference generator for this browser starts Wiglidg the text into words. Each
word is then checked against a stop list of information-freeds (such as “a” and “the”),
and discounted if it appears. Many stop lists have been itbesranging from a few tens of
words to hundreds of words [47]. The stop list used was [3B}{hé word does not appear
in the stop list it is stemmed to find the root of the word. Stengrallows words which
are related but not identical to be linked [47]. For exampbdculationwould also reference
calculatesandcalculated The stemming algorithm used was the popular Porter alyorit
[100]. The root, the whole word and its position are then addehe list of cross-references.

www.manaraa.com

SECTION6.2: ACTIVE CHECKLISTS 110

In use, selecting a word in the document brings up a list @rezfces to similar words in this
and other documents. Selecting a reference moves the dotuondhe appropriate position
or opens another browser, as required. Figure 6.1 showsitff@esbrowser and a list of
cross-references.

6.2 Active Checklists

Most software inspections make use of checklists. In itpsst form, a checklist consists of
a list of items which the inspector must investigate. Eaemits usually a simple statement
or question designed to highlight typical ways in which dtdemay manifest themselves in
the document under inspection. Checklists can be genertidlep can be specific to a single
document type, notation or language.

In their traditional guise, there is no requirement to altjuenswer the question or indicate
completion of the item. The checklist used for the experingscribed Section 5.2 is an
example of this. In fact, many of the paper checklists retdroy subjects after the experiment
had markings obviously showing which items had been appkedatural extension of this
idea is to present the checklist in such a way as to require ge to be completed. This
type of checklist has been implemented to a limited extefrispeQ [66]. Details are sparse,
however, and items can only be marked as completed.

Checklist items can obviously be written which require mitv@n binary answers. Active
Design Reviews [95] make use of questionnaires which inspebave to fill in and discuss
with the designer. It is obvious that answers may include lens) sentences, dates, etc. In
general, each checklist item would require the inspectgeidorm a task to answer it, the
performance of which may lead to finding defects. Preseritiage items on-line and storing
the answers provided by each inspector is an obvious areehvdain be supported by an
inspection tool.

A final possibility when checklists are presented on-lineiéink them directly to areas
of the document to which they may apply. This would promotecgtist usage, since appli-
cable checklist items can be easily found by users. For ebgnmpa C++ checklist there may
be items which must be applied to &k loops in the code under inspection. Sections 6.1
discussed a generic mechanism for cross-referencing batesbitrary documents. This can
be used as a means to achieve references between cheekfistanhd areas of the document.
It can be implemented by allowing a keyword to be associatddeach checklist item. The
browser which displays the document can then“plant” c@oesling keywords in appropriate
places within the document. To continue the example, the €heeklist items concerning

www.manaraa.com

SECTION6.2: ACTIVE CHECKLISTS 111

checklistsection
heading checklisiten"
[subheadingmultijopennumeri¢datgcheck

checklist
checklistsection
checklistitem

Figure 6.2: The format of a checklist.

for loops would have a unique keyword. The browser displayirgcbde would then as-
sociate this keyword with each occurrence of fbe loop, with the result that the system
would automatically provide links between the checklidd ande. The system would work in
both directions: for each checklist item, all appropriatesas of the document could be listed,
and for each area of the document all appropriate checteists could be accessed.

To allow checklists to be easily created, a specific definitanguage was derived. A
checklist is considered to consist of a number of secticash ef which consists of a heading
plus one or more individual checklist items. A checklistitean be one of the following:

e Subheading A subheading simply allows the checklist to be grouped gidally re-
lated sections.

e Multi : A multi is a multiple-choice question, where two or morege&ned responses
are supplied for the inspector to select from.

e Open: An open item allows textual answers to be supplied.

e Numeric: A numeric item is used when the answer is expected to be egent
¢ Date: Requires the answer to be in the form of a date.

e Check A check item can only be marked complete.

The basic format of a checklist is defined in Figure 6.2. Edemitype is defined in
Figure 6.3, along with the definition of the checklist headihe notation used is identical to
that used in describing IPDL.

The checklist heading consists of the keywbahding followed by the heading itself.
A subheading has a similar format. A multi consists of thevkeyd multi followed the
guestion and two or more responses. An open question raghieekeywordpen , followed
by the question and the maximum length of the answer requitadhe same manner, a
numeric question requires the keywandmeric , followed by the question itself and the
maximum answer length. Furthermore, the units following &mswer may be specified. A

www.manaraa.com

SECTION6.2: ACTIVE CHECKLISTS 112

heading heading string keyword,;

subheading subheading string keyword,,;

multi multi question response resporisextanswey,,; keyword,,;
open open question length texanswey,; keyword,,;

numeric numeric question length unit; numericansweg,; keyword,,;
check check question checlanswer,; keyword,;

date .= date question dateanswey,; keyword,,;

length = length integer

unit = unit string

textanswer = answer string

numericanswer = answer integer

dateanswer = answer DD“/"MM"“/"YYYY

checkanswer = answer [yes |no]

guestion = string

response = string

string = “ " character “' ”

character = Any printable character or white space.

integer = Any standard integer.

Figure 6.3: The definition of checklist items.

date question requires the keywatdte followed by the question. Similarly, a check item
only requires the keywordheck followed by the question to be specified.

Each item may have a “correct” answer associated with its Bniswer may be used for
ensuring the checklist has been completed correctly. Thevanis indicated by the keyword
answer followed by the answer itself, in the appropriate formandfy, each item may have
a keyword associated with it. This keyword is designed toseduor cross-referencing with
other documents, as described above.

This checklistlanguage was implemented in ASSIST as theldiseBrowser. Itis shown
in Figure 6.4 displaying the C++ checklist used in the firshparison experiment. In this
case, each item is a simple check, which can be marked as emudpkhen the inspector
has finished with that item. Items requiring more complexnars have associated spaces in
which to type the answers. Clicking on an item gives a menh wibss-references for that
item. Selecting a reference brings the appropriate windothi¢ front, scrolls it to the correct
position, and highlights the referenced item, just as dlesdrin Section 6.1.

www.manaraa.com

SECTION6.3: A C++ INSPECTIONENVIRONMENT 113

1| Checklist Browser: Moderator_Checklist | @l

File References |« <2 | < b =3 | =] ||

Is pointer arithnetic ever used on non-array pointers? |

m.aph.cc, 29.4

Has ¢ Yraph.cc, 35.4 =n placed at the innediate right of the r

condi geaph.cc, 41.6

Is tF graph.cc, 57.1 r
graph.cc, 120.4

Are b graph.cc, 121.4 1closed in braces, as required? |
graph.cc, 122.4

Swi graph.cc, 123.4
graph.cc, 129.1

Is ar ’ break or return? |
graph.cc, 130.1

Does Yraph.cc,131.1 corresponding case? |
graph.cc, 132.1

ULEEN Moderator_Checklist, 36 UICELLELLUES |
C++ Reference, 1.4

For

Has a senicolon nistakenly been placed at the innediate right of the o

header?

Has the body been correctly enclosed in braces? |

Has the proper initialisation expression been supplied? |

Has the proper incremnent expression been supplied? | /

Figure 6.4: An example of an active checklist.

6.3 A C++ Inspection Environment

The cross-referencing system and active checklists destsgo far are applicable to inspec-
tion of any document type. With a view to repeating the papertgol experiment, their use
in inspecting C++ was investigated. The browser used fguldisng the code under inspec-
tion in the original experiment was a simple generic browsih no specific facilities. A
C++ specific browser, with knowledge of the language andasyntas an obvious avenue to
explore. Feedback from the first experiment also gave inddion on ways to improve the
system in general. When designing this browser, the follgweatures were deemed to be
necessary:

e Links between variable declarations and usages. This walldd/ users to easily de-
termine the type of variables, how they have been initidlis@d where in the program
they are used, hence supporting defect detection.

e Links between function declarations and usages. Userslamiermine whether func-
tion calls are being made correctly, and where in the progeach function is used.

www.manaraa.com

SECTION6.3: A C++ INSPECTIONENVIRONMENT 114

Again, this would help support defect detection.

¢ References to appropriate checklist items. This would ptenchecklist usage, a per-
ceived weakness in the first version of ASSIST.

e An on-line guide to C++, preferably linked to the code. Thpeyof false positive
reported by subjects during the first experiment suggestgdide to C++ would be
useful.

e Character-level annotation. The browser used in the fifgtement could only annotate
a single line. The ability to annotate any contiguous blotkeat would allow more
precise positioning of defects.

To provide useful information about the code under inspeatequires intelligent parsing
of the code. Since writing a C++ parser is a non-trivial taslgublic domain C++ parser,
cppp [26], was used. This parser creates an abstract syntax gfafite program which
allows information about the major constructs in the codegonore easily extracted.

For each variable and function in the source cag@p assigns a unique identifier. This
identifier is placed in the syntax graph whenever the vaeiaisl function is referred to in
the source code. The C++ browser parses the tree lookingufdr &lentifiers and creates
references to them for the appropriate place in the sourde.d&hen completed, this gives a
complete cross-reference table for all functions and éem To the user, this information is
available by clicking on a function or variable name. Doindsings up a list of references to
all other uses of that object. Selecting a reference mowebribwser to the appropriate place
and highlights the occurrence. The C++ parser also provittesmation about the types of
each variable, and this information is shown in the refegelst. This allows inspectors to
easily decide whether implicit type conversion is happguiaring an expression, and whether
data is being lost as a result.

Creating references to checklist items is fairly straighifard. The checklist used in
the first experiment was rewritten in the checklist formasa#ed above. Each item in the
checklist was given a unique keyword. For each C++ featuthensyntax graph, the C++
browser inserts the appropriate keyword in the referenstefdir the corresponding location
in the source code. For example, the C++ keywavtide andfor have references to the
checklist items concerning the corresponding loop typelendil operators have links to the
items concerning order of evaluation, implicit type corsien and so on. Some checklist
items were also supplemented by supplying extra informatamcerning how to use the tool
to apply that item. For example, the item concerning 'deat'chad an extension suggesting
the use of the cross-referencing mechanism and the findtyacil

www.manaraa.com

SECTION6.3: A C++ INSPECTIONENVIRONMENT 115

| Help Browser: C++ Reference ||

Hle Find References | History Back | | Contentsl Previousl Up | Ne:ill

1 5 Th' The switch multiple selection structure

C++ Reference, 1.5 {(The switch multiple selection structure)
C++ Reference, 3.5 (default)

Moderator_Checklist, 40 {Switch)
switch graph.cc, 98.4 (switch)
sta

graph.cc, 99.7 {case)
graph.cc, 99.18 (case)

Statenent . graph.cc, 100.7 (case) onally a
default lal ase label has
the forn 4Yraph.cc,100.18 {case)

graph.cc, 101.7 {case)
case 1. graph.cc, 102.7 {default)

vhere label iz a constant integral expression. All case labels must be unique,
Typically, the action after each case label ends with a break statenent, If
there is no break statement, execution falls through to the next statement in
the succeeding case or default.

If no case label iz selected, control passes to the default label, if there is
one, Default labels are not required, although their use iz considered good
|progranning practice.

See Also

3.3 break

v
-

Figure 6.5: The C++ reference, displayed using the Help Beyw

Another goal was to have some form of on-line C++ referencath& than incorporate
this directly into the C++ browser, a more generic form wassgn. Another browser was
created, known as the Help Browser. This browser implemarsisbset of HTML tags and
allows a document to be presented as a series of sectionsusdcsions, each of which
is displayed as single page. It also generates a contenés gad allows keywords to be
associated with each page. This allows references betweas af code and pages in the
Help Browser. A short C++ guide was then written, with pagesmajor constructs, types
and keywords, and including information on the standarthiijp Each page has a keyword
associated with it. When the C++ browser parses the coder imsjgection, it inserts these
keywords into the reference list for appropriate placehadode, in the same manner as for
checklists. For example, if#include directive refers to one of the standard libraries, the
keyword associated with that library is generated at the@pate position. When while
loop is detected, the keyword for thehile construct page is inserted. Therefore, when the
cross-reference data for the code and C++ guide are combiraggks in the guide provide
links to parts of the code to which they apply. Similarly, Creserved words likéor and

www.manaraa.com

SECTION6.3: A C++ INSPECTIONENVIRONMENT 116

:l C++ Browser: graph.ce
Fle Focus Wndow Find Annotations References Line: |95 Col: |12 Coverage:
int Y3

struct pointnode *Hext:
3 PointHode:

f
=
|-

|typedef PointHode =PointHodePtr:

void InsertPoint{int X¥alue, int YYalue, PointHodePtr PointlList}:
void PrintPointList{PointHodePtr PointlList}:
void PlotGraph{PointHodePtr PointList, float XShift, float YShift,
float XScale, float YScale, char Dutput[GHIDTHILGHEIGHTI1};
void DrawGraph{PointHodePtr PointList};

int main{int argc, char ==argv)

|£

PointHodePtr Pointlist = HULL:
ifstrean InputF:l=*

char #Filenane InputFile (declaration}
int X =0, Y =

if {argc != 2}
cerr << "lUsa h. 34.4 {1 tFil dl;
exit{l}; RIEITEE: (InputFile) :

graph.cc, 35.8 (Inputhile)

Filenane = arg

InputFile,open graph.cc, 37.6 {Inputhile})
if (InputFile.: graph.cc, 40.11 (InputFile)

cerr £{ "Fil
InputFile,cl 4raph.cc, 41.10 (InputFile)

enit{l}; graph.cc, 45.9 (InputFile)
while {(InputFi graph.cc, 4.4 {Inputhile})

iF (Inputfil \oderator_Checklist, 2 (General)
else £
cerr <{ "Error:i no Y value for X = " {{ ¥ << endl;
InputFile,close(};
exit{l};

3
InputFile.close():
DrawGraph{PointList}; £

]

O vow | oo | stow | we

Figure 6.6: The C++ browser.

while have links to the corresponding pages of the guide. The Hedp&er displaying the
C++ guide is shown in Figure 6.5. This shows the page omswiteh statement, with a list
of references to other relevant pages in the referencektibeitems and appropriate sections
of the code under inspection.

The C++ browser creates all internal references, linkseatiecklist and links to the C++
reference with one pass through the syntax graph producepyy. Unfortunately,cppp
lacks some features to allow truly comprehensive crossreeting. For example, wheppp
encounters a named constant it substitutes the value ofoiingtant rather than leaving the
name. Hence, it is impossible to provide a link between tleeais: constant and its declara-
tion. For the purposes of tool evaluation, these links catabd were) inserted manually. A
more complete C++ parser would allow everything to be penfd automatically.

Finally, several other enhancements were made. The brawserin the first experiment
could only annotate at the line level, with defect positibeéng given as line numbers. To
allow more accurate defect positioning, it was deemed sacggo allow annotation at the

www.manaraa.com

SECTION6.4: AUTOMATIC DEFECTLIST COLLATION 117

character level. Feedback from the first experiment alsavsdahat subjects became confused
during the group meeting because the browser showed ddfelinging to all participants,
and it was not clear who had prepared which annotation. Hemzeher facility implemented
allowed users to choose between displaying all annotatiotise code, only their annotations,
or no annotations at all. The C++ browser is shown in Figue B.list of references for the
declaration of the variableputFile is shown. These include places in the code where the
variable is used and a checkilist item.

6.4 Automatic Defect List Collation

The group meeting present in almost all inspection proseissexpensive to set up and run,
requiring the simultaneous participation of three or moesgle. Some would argue that
their cost is unjustified and they should be replaced alteaget For example, Votta [118]
presents evidence that meeting costs outweigh their bemefit suggest their replacement by
depositions. Asynchronous inspection via a supportingitbanother proposed method for
replacing synchronous meetings, e.g. [83, 117]. Propen&igroup meetings, on the other
hand, contend that the benefits of group meetings are ndy easintified. Education of new
inspectors is one quoted benefit, while synergy, found inynsamall group situations [105],
is another.

A major component of the group meeting is collating indivatidefect lists into a single
master list. To reduce the amount of effort required at theting, Humphrey [50] recom-
mends that the moderator should perform the collation lectfoe meeting. The collated defect
list then becomes the agenda for the meeting. Although mbicpkarly demanding, collat-
ing defect lists can be time consuming. This section dessrédutomatic defect list collation
(auto-collation), designed to allow multiple lists of iesuwr defects to be combined into one
with duplicate entries automatically removed.

It is unlikely that duplicate items from different insperdavill be identical, hence some
form of approximate matching must be used. A defect or issu&3SIST has several com-
ponents (Figure 6.7):

e The title of the item.
e The document in which this item occurs.
e The position within the document where the item occurs.

¢ A free-form text description of the item.

www.manaraa.com

SECTION6.4: AUTOMATIC DEFECTLIST COLLATION 118

| Show Item JE [
Item ‘ﬁ
Title: Ilvlrong variable nane used
Document: W Position: |45
endstr is used instead of startstr
4
Type: Data Class: Wrong Severity: Major

=

Figure 6.7: Editing an item in a list.

e Up to three levels of classification.

When comparing items for duplicates, document name andiposire considered together
as the position, the title and text description are considiewgether as the content of the issue,
and the classification is considered on its own. The mechanged is to score items on their
similarity in each of these facets. If two items match withcare above a threshold, one of
the items is discarded.

In terms of position, the closer the physical locations @& to items, the higher the
score is given, with O representing no match and 1 represgidientical positions. Items
occurring in different documents are given a score of 0. tws in ASSIST are given as one
or more integers, separated by points if necessary. Forgbeamsimple line number is given
as23. A specific character on that line may B8.12 . The scheme can be extended to as
many levels as required, and its hierarchical nature allibwsbe used for many document
types. For example, chapter and section numbering in Bndtisuments follows this scheme.
When performing a comparison, each component of the posiiweighted according to its
importance, with leading numbers being more significant.

When comparing the contents of two items, the first step iseteegate a list of words
occurring in each item. Any words appearing in the stop idgtical to the one described in
Section 6.1) are removed, since these words contribuke idtthe meaning of the contents.
The remaining words are stemmed, again using Porter'sitliigor The two word lists are
compared and the number of common words found, expresseftzasian of the total number
of words in the smaller list, gives a score of between 0 and lie fore words which are
common to both items, the higher the score.

The three classification levels also contribute to the siritif score, with the levels scaled
in the ratio 2:1:1. This allows one classification factor éodiven importance over the other

www.manaraa.com

SECTION6.4: AUTOMATIC DEFECTLIST COLLATION 119

—| Auto Collate o |
Contents
0.50
| ==
Classification
0.25
1
Position
0.25
1
fAcceptance Threshold
0.50
| e
Status
ISetting factors,..click OK to proceed...

o] _Gnea]

Figure 6.8: Auto collation of defect lists.

two. Each classification level in one item is checked withabieesponding level in the other,
and a simple binary decision made whether they match or rfeecking all three levels gives
a score between 0 and 1.

To allow more flexibility when performing the auto-collatipthe relative importance of
each facet can be altered. Figure 6.8 shows the control wirfdothe implementation of
auto-collation in ASSIST, which allows the various factaffecting the auto-collation to be
set. TheContents, ClassificationandPositionvalues indicate the relative importance of the
each facet when calculating the similarity between two gerfihe total of all these factors
must sum to 1, hence increasing (decreasing) one factoealses (increases) the others. The
similarity value is calculated by multiplying the individlvalues by the appropriate factor,
adding them together, then scaling to give a value betweenid a

Finally, the similarity value for two items must be compaseith a value used to deter-
mine whether the items are sufficiently similar to be dedataplicates. This value is the
Acceptance Threshold and it can be defined by the user. The higher the threshole viie
more similar two items must be to be declared duplicates.higlo a threshold, however, will
result in no matches being made.

An initial investigation into the use of auto-collation peal encouraging, and it appeared
to be an efficient way of removing duplicate items. As can bagimed, however, the set of
values used as factors has a huge effect on the result of thecallation, with the outcome
ranging from discarding virtually all items to performing nemovals. Hence, a more rigor-
ous experiment was performed to determine the ranges withioh these factors are most
usefully set. This experiment is described in Section 7.2.

www.manaraa.com

SECTION6.5: CONCLUSIONS 120

The resulting system also provides a new format for the icispe meeting. Each partic-
ipant can prepare in their own time in the normal way. Priotht® meeting, one participant
can use the auto-collation mechanism to combine defest Wdtthe group meeting only one
participant needs to access the tool, to show documentsdinthe master defect list. This
participant essentially takes the role of the reader anitbescwhich is possible since both
roles are less arduous with the help of computer supportdigpay from the single tool can
be projected for all participants to see. This makes the lisstof the tool both in individ-
ual preparation and as an administrative aid during the imgebut also allows the meeting
to proceed in a traditional, face-to-face way. Furthermdrere is no need to have multiple
computers arranged in an appropriate way in a communal room.

6.5 Conclusions

The basic version of ASSIST used in the comparison expetisteswed no significant differ-
ence between the effectiveness of tool-based and papedbaspection. This system could
then be used as a vehicle to explore facilities for enhantieginspection process. Sev-
eral such facilities were identified from the first experirneA method of cross-referencing
both within and between documents was identified as a meaassadting users in managing
the large number of windows which have to be used in an inBpesupport tool. Active
checklists are designed to promulgate checklist usage gshaisers. Along with the cross-
referencing system and a C++ code browser, they have bedrnasecate a C++ inspection
environment. This environment links checklist items wighewant areas of the code. It was
hoped that this more streamlined environment would proveeraeer-friendly, allowing users
to concentrate on the task of finding defects. At the same, tthee new features such as
variable tracing should help with the detection of defeéimally, collating defect lists was
identified as a time-consuming task. This has been addrdéssddveloping a method for
automatically collating defect lists while removing natentical duplicate items.

Several miscellaneous improvements suggested by useesimgarporated into the new
version of ASSIST. Originally, many of the windows used bySAST did not resize properly,
and some did not resize at all, hence users had to deal witmhenof large windows clutter-
ing the screen. All windows were now properly resizable.e8alvspeed improvements were
made to reduce the amount of time users spent waiting foroilewhich caused frustration
in the first experiment. These, combined with an upgrade ¢ontchines used to run the
experiment, made a faster environment for the user.

To evaluate the new version of ASSIST, implementing the roéd features described in

www.manaraa.com

SECTION6.5: CONCLUSIONS 121

this chapter, it was decided to re-run the comparison experi described in Chapter 5. This
experiment would compare paper-based inspection withrthareced version of the tool. To
assess the efficiency of the auto-collation mechanism, staezided to carry out a rigorous
experiment using data from both comparison experimentse rldxt chapter presents these

experiments in detail.

www.manharaa.com

Chapter 7

Evaluation of Enhanced Tool Support

aving investigated various methods of improving the efficieof inspection, the next
Hstep was to evaluate their impact. This chapter describestaadled experiment com-
paring paper-based inspection with inspection using aiaesf ASSIST implementing the
C++ inspection environment described in the previous arapthe environment provides
cross-referencing within and between documents, andeackiecklists with links to relevant
features in the code. This chapter also describes an igatisn into the effectiveness of the
auto-collation system.

7.1 Comparing Enhanced Tool-based and Paper-based Software
Inspection

7.1.1 Introduction

To investigate the effectiveness of enhanced tool supfuetexperiment comparing tool-
based inspection with paper-based inspection was re-this.SEcond experiment was identi-
calin all respects, except the version of ASSIST used fedittire support detailed in the previ-
ous chapter, namely the C++ browser, C++ reference, adtigekdists, and cross-referencing
[70]. Feedback from the first experiment also resulted inralmer of miscellaneous bug fixes,
interface updates and feature enhancements.

The null hypothesis for this experimeri,, is identical to that of the first experiment:

There is no significant difference in performance betweelividuals performing
tool-based inspection and those performing paper-baspeation, measured by
the total number of defects found during a given time period.

www.manaraa.com

SECTION7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 123

The alternative hypothesi#l; is also identical:

There is a significant difference in performance betweeividdals performing
tool-based inspection and those performing paper-baspeation, measured by
the total number of defects found during a given time period.

Similar hypotheses can again be formed regarding the pedioce of groups.

7.1.2 Experiment Design

The design of this experiment was identical to the previoggement. Testing of the hy-
potheses requires two groups of subjects to inspect a Silogiement, one making use of the
tool and the other using paper. Subjects then swap methatipeform an inspection on
another document, ensuring that any effect observed isutalone group of subjects being
of greater ability. The same inspection process was usedjsting of an individual detection
phase, followed by a group collection meeting.

This experiment was carried out during Autumn 1997 in theesagiting as the previous
experiment. The subjects used were participating in thé session of the same team-based
Software Engineering course for third year undergradyated had identical experience to
their counterparts in the first experiment. Again, the pcattaspects of the experiment
formed part of their continual assessment for this courszeasing subject motivation.

A total of 49 students participated this time, split into teygproximately equal sections.
Section 1 had 24 subjects and Section 2 had 25 subjects. Tihsapachieved in an identical
manner to that for Experiment 1. Section 1 consisted of egghtips of three students, while
Section 2 contained seven groups of three students and onp gf four students.

The same materials used for the first experiment were usddsrexperiment, presented
in an identical manner. Again, the practical element of therse ran over ten weeks, with
six weeks devoted to training in software inspection anchgr?ASSIST, also providing an
opportunity for the subjects to refresh their C++ knowledg#en each training program had
been inspected, subjects were given a list of defects inpiteagram. An extended version
of the tool tutorial used in the first experiment was creaggdng more information on how
best to use ASSIST to find defects, and tackling the use oféhef@atures. Four weeks were
then used to run the experiment. The exact timetable is givappendix D.1. Each practical
session was run twice, once for each section of the class.d8@stions occurred consecutively
on the same afternoon of each week.

Instrumentation of the experiment was also identical. Esabject used the individual
defect report form (Appendix D.3) during paper-based icsipa, with the scribe making use

www.manaraa.com

SECTION7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 124

Program| analyse.cc graph.cc
Section 1 2 1 2
Method | Tool Paper | Paper Tool
Subjects| 23 25 24 25
Mean 6.52 6.68 | 592 5.88
St. Dev. | 1.83 1.77 153 1.33
St. Error| 0.38 0.35 | 0.31 0.27
F Ratio 0.09 0.01

F Prob. 0.76 0.93

Table 7.1: Analysis of variance of individual defect scores

of the master defect report form (Appendix D.4) for the grompeting. ASSIST was used to
keep both individual and master defect lists during toddahinspection. The data collected
was similar to that of the first experiment: the total numbe&carrect defects found, the

number of false positives submitted (both for each indigicand for each group), meeting
loss and meeting gain for each group, and frequency of detefdr each defect. Since this

experiment is identical in all respects to the previous expent, the threats to validity remain

the same and are not repeated here.

7.1.3 Results and Analysis
Defect Detection

The raw data from this experiment can be found in AppendixZE Table 7.1 summarises
the data and the analysis of variance of the individual pha$&oth inspections. The table
shows the method used by each section of subjects for eaghapnro The number of subjects
participating in each phase, the mean number of defectsdfahe standard deviations and
standards errors are shown for each treatment. Note thadudsject from Section 1 failed to
participate in the individual inspection ahalyse.cc . TheF ratios and probabilities for
the comparisons of paper and tool are also shown.

Foranalyse.cc , there is very little difference in performance, confirmedtbe anal-
ysis of variance. Fograph.cc , the difference in performance is even smaller. Again, this
is confirmed by the analysis of variance. For both programsnilll hypothesis relating to
individual performance cannot be rejected. The advancatifes provided by ASSIST give
no increase in performance over paper-based inspectionetty, compared to the previous
experiment there is much less of a difference between metivbeén applied tgraph.cc

The defect detection data for groups is summarised in TaBleHaper-based inspection

www.manaraa.com

SECTION7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 125

Program| analyse.cc graph.cc
Section 1 2 1 2
Method | Tool Paper | Paper Tool
Groups 8 8 8 8

Mean 950 10.25| 8.88 8.63
St. Dev. | 1.69 0.89 | 1.25 0.74
St. Error| 0.60 0.31 | 044 0.26
F Ratio 1.24 0.24
F Prob. 0.28 0.63

Table 7.2: Analysis of variance of group defect scores.

Effect F Ratio| F Prob.
Order «<0.01| 0.96
Program 4.97 0.03
Order<Program| 0.22 0.64

Table 7.3: Analysis of variance of method order and program.

appears to outperform tool-based inspectioranalyse.cc , but this difference is not sta-
tistically significant. The difference is probably due teead favourable allocation of subjects
to groups, with group members having less distinct subgetsfects. Another factor is meet-
ing gain, which is higher for those performing a paper-basegting (see later). The results
for graph.cc show very little difference, with no statistical significan In both cases the
null hypothesis concerning group performance cannot leeteg.

All defect detection data passed the Levene test for honeteof variances. As a safe-
guard, all four sets of data were subjected to the Kruskalig/mnon-parametric test, giving
results similar to the parametric tests.

Table 7.3 shows the results of the analysis for effects stiaegifmom the order in which
methods were used and differences in the two programs. Tibere significant difference
between subjects performing tool-based inspection firstpared to those who performed
paper-based inspection first. As with the first experimeatyéver, there is a significant dif-
ference in the difficulty of each program. The post-expentrguestionnaires showed that
subjects in this experiment also regardgdph.cc as more complex thaanalyse.cc
Unlike Experiment 1, however, there is less of a performatediit between methods when
inspectinggraph.cc . This contradicts the previous suggestion that the tool begome
less efficient as the material under inspection becomes coonplex. This may be due to the

www.manaraa.com

SECTION7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 126

100 «

Detection Rate (%)

- Paper
-Tool

Defect

Figure 7.1: Summary defect detection datadoalyse.cc (individuals).

extra facilities provided by the second version of ASSISH,ibis difficult to say for certain.
An experiment comparing the basic version of ASSIST withghlkanced version may be able
to determine if this is indeed the case. Finally, analysisfty effect due to the combination
of order of method and program was performed, but no sigmificesult was found.

The individual detection frequencies of each defect wei@yaed in the same way as
the first experiment. Figure 7.1 summarises frequency adietn of each defect during the
individual inspection ofnalyse.cc . The defects with the greatest differences in detection
frequency are 1 and 5. Defect 1 (an array indexing error) waad by more subjects using
paper-based inspection than by those performing toolehas&roring a similar result from
Experiment 1. Defect 5 has a large difference in favour ottiod, which does not correspond
to any similar result from the last experiment. This defextaerns a missing cast of a variable.
A checklistitem exists to cover both types of error, and ithimases ASSIST provides explicit
cross-references between the checklist items and possiblerences in the code. Hence, it
is difficult to claim that the facilities of ASSIST are resmiple for the increase in detection
frequency for defect 5, when they should at least preventdabefrom performing worse

www.manharaa.com

SECTION7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 127

100 «

80 +o

60 o

40

Detection Rate (%)

20«

- Paper
-Tool

Defect

Figure 7.2: Summary defect detection datadoalyse.cc (groups).

on defect 1. Defect 1, however, may be considered as reguiniore thought: a thorough
understanding of the code is necessary to detect it. Thétiesiof ASSIST, on the other
hand, lead the inspector straight to defect 5 with littlechfee understanding.

Figure 7.2 shows the frequency of detection for éimalyse.cc group meeting. Com-
pared with the first experiment, there are more variatiorta/éen methods, but these varia-
tions are smaller. There are no clear correspondences éettlve results of the two experi-
ments. Differences for two defects stand out: 8 and 12. Térerao parallels with Experiment
1. Defect 8 is a calculation error, while defect 12 is a looerBoth were found by more
paper-based groups than tool-based, but there is no corrdepce with the results from the
individual phase. Instead, these variations are due toltbeation of subjects to groups. A
different group allocation could have reduced the dispaaihd could also have increased it
(meeting gains and losses have no effect on these partibefiacts).

The defect detection frequencies for the individual insjpexcof graph.cc are shown
in Figure 7.3. Overall, the profiles for each method are vemyilar, with the exception of
defect 10, which has an above average advantage in favobeabol. This defect concerns

www.manharaa.com

SECTION7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 128

100 «

80 +o

60 o

40

Detection Rate (%)

20«

- Paper
-Tool

Defect

Figure 7.3: Summary defect detection datagmaph.cc (individuals).

an incorrect initialisation, for which there is an explickiecklist item. In the case of the tool,
each variable declaration has an explicit reference to fieeldist item, which may account
for the difference. This theory is supported by the fact timsuch difference occurred in the
previous experiment, where the tool did not support cre$srences between the code and
checklist. While the large difference observed in favoupaper-based inspection for defect
3 in the first experiment has been reduced, there is stillggnstifference. Frustratingly, this
defect is even easier to find with the second version of the @tigking on a function name
gives a list of lines where that function is used. Non-use &irection results in an empty
list. Finding this defect cannot be made any simpler! Thealws/conclusion is that subjects
need more time to become familiar with all aspects of the &mol how they are used to find
defects.

Finally, the defect detection frequency of the group megtiith graph.cc is shown
in Figure 7.4. Two large differences occur, one for defechl another for defect 12. As
with the group results foanalyse.cc , there is no correspondence with the results from
the individual phase, but defect 8 had a large differencééngroup phase of the previous

www.manharaa.com

SECTION7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 129

100 «

80 +o

60 o

40+

Detection Rate (%)

20«

- Paper
-Tool

Defect

Figure 7.4: Summary defect detection datagaaph.cc (groups).

experiment. As with the previous experiment, however, difference is due to the allocation
of subjects to groups. This is also true for defect 12.

False Positives

The number of false positives found by each subject was atelli to try to determine
if tool-supported inspection reduces the amount reporfdds might be the case if subjects
used the on-line C++ reference to check features of C++ wthiels were unsure of. The
analysis of variance of false positives from individualgastion is presented in Table 7.4. For
analyse.cc thereis a significant difference at the 5% level, with toapgorted inspection
producing fewer false positives. This trend is not contthweth graph.cc , indeed it is
reversed, although the difference is not significant. Frioese results it could be hypothesised
that subjects in Section 1 were less prone to false posj@dsugh there is no clear reason
why this should be so.

Table 7.5 shows the results for false positives reportedoyms. For both programs there
is no significant differences in the numbers reported, aigfiogroups in Section 1 consistently

www.manharaa.com

SECTION7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 130

Program| analyse.cc graph.cc
Section 1 2 1 2
Method | Tool Paper | Paper Tool
Subjects| 23 25 24 25
Mean 4.13 6.20 | 2.79 3.36
St.Dev. | 290 2.77 | 144 2.00
St. Error| 0.60 0.55 | 0.29 0.40
F Ratio 6.40 1.29

F Prob. 0.02 0.26

Table 7.4: Analysis of variance of individual false possv

Program| analyse.cc graph.cc
Section 1 2 1 2
Method | Tool Paper | Paper Tool
Groups 8 8 8 8
Mean 3.88 5.00 | 2.38 2388
St. Dev. | 1.55 214 | 0.92 1.46
St. Error| 0.55 0.76 | 0.32 0.52
F Ratio 1.45 0.68

F Prob. 0.25 0.42

Table 7.5: Analysis of variance of group false positives.

produce fewer false positives than their counterparts catddoe predicted from the results
for individuals.

As with the first experiment, there was no obvious patterrthéntypes of false positives
produced by each method. Again, some were obviously defédth had occurred in training
material which subjects had memorised and submitted beanmslar code was found in the

experiment programs.

Meeting Gains and Losses

Finally, meeting gains and losses are examined. As with tegqus experiment, it was
hypothesised there would be no difference between tool aperpbased methods for both
gains and losses. Even though the version of ASSIST usedebgutbjects had the list auto-
collation facility, it was disabled for the experiment. Hyation of this facility can be found in
Section 7.2. Table 7.6 shows the analysis of variance fotingegains, while Table 7.7 shows
the analysis of variance for meeting losses for each ingpecAs with the first experiment,

www.manaraa.com

SECTION7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 131

Program| analyse.cc graph.cc
Section 1 2 1 2
Method | Tool Paper | Paper Tool
Groups 8 8 8 8
Mean 025 063 | 1.25 0.38
St.Dev. | 046 0.74 | 1.16 0.52
St. Error| 0.16 0.26 | 0.41 0.18
F Ratio 1.46 3.78

F Prob. 0.25 0.07

Table 7.6: Analysis of variance of meeting gains.

Program| analyse.cc graph.cc
Section 1 2 1 2
Method | Tool Paper | Paper Tool
Groups 8 8 8 8
Mean 025 025 | 0.38 0.38
St. Dev. | 0.46 0.46 | 0.52 0.52
St. Error| 0.16 0.16 | 0.18 0.18
F Ratio 0 0

F Prob. 1.00 1.00

Table 7.7: Analysis of variance of meeting losses.

there was no statistically significant difference betweethods, despite paper-based inspec-
tion of graph.cc appearing to produce larger meeting gains than tool-basétbugh this
difference is not significant, there is evidence in the dgoestires completed by subjects
(presented next) that tool-based inspection provideddppsrtunity for the group to engage
in additional defect detection.

When individual defects are considered, there are threptpaoif interest. Defect 5 of
analyse.cc

tool-based inspection; the other four belonged to papsedgroups. This defect was found

provided the largest meeting gain for that program. Only gai@ was due to

by four individual tool users, but no paper-based subjestsdespite the tool apparently en-
abling users to find this defect more easily, this is not tietes into the meeting, indicating a
lack of defect detection during tool-based meetings. Phpsed meetings, however, allowed
subjects to find more instances of this defect, even thoughdiaidual found it. Considering
graph.cc , one meeting loss (concerning defect 4) and one meeting(gaiirterning defect
12) are of interest. Defect 4 was lost by three groups (twaepamne tool). This is one of
the least well-reported defects, It is likely that subjegts found this defect on their own

www.manaraa.com

SECTION7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 132

were dissuaded from reporting it by other group members.e&ef2 was gained by three
tool-based groups and three paper-based groups, far memeatty other. This defect means
that the program prints the graph upside-down. While qudéfecult defect to find, it is very
memorable. Hence, it is suspected that collusion betwebjeas resulted in the spread of
this defect among other groups. Unfortunately, since a vetased between the individual
phase and the group phase, such collusion is practicaytaide, especially when subjects
are motivated to gain the highest marks possible.

Debriefing Questionnaires

The four questionnaires distributed during the first experit were also used during this ex-
periment (with minor updates). Again, Questionnaire 1§94 response rate) was given after
the first full individual practice with ASSIST, while Quegtinaire 2 (97.9% response rate)
was given after the first full group practice session. Questaires 3 (93.9% response rate)
and 4 (95.9%) were distributed after the first and secondgshaithe experiment respectively.
The full text of the questionnaires can be found in AppendikD

Questionnaire 1 With respect to ease of navigation around the document ungpection,
no subjects found it very difficult, 2.3% of subjects saidtfaund it difficult, 33.3% said they
found it average, 55.5% found it easy and 8.9% said they féuwery easy. These results
compare favourably with those from the previous experin{@m%, 20.7%, 24.1%, 37.9%
and 13.8% for the respective categories). When asked whigth@umber of windows used
by ASSIST had any effect on their inspection efficiency, 20%ubjects said it increased their
efficiency, 44.4% said it had no effect and 35.6% thought tfficiency was reduced. Again
this compares well with the previous experiment (13.8%, 3% 55.2%). Taken together,
these results suggest an increase in the general usalhifi§®IST compared to the previous
version.

An increase in acceptance of tool-based inspection waswken subjects were asked
which mode of inspection they thought more efficient. 24.4%ubjects thought tool-based
less efficient, 33.3% thought it equally efficient and 42.2%uight it more efficient. The
corresponding results from the first experiment were 55.26%6% and 17.2% respectively,
giving a large swing in opinion. Although there is no quaabfe increase in performance
from subjects, it is clear that the improved version of tha te more acceptable.

Questionnaire 2 When asked to rate the usability of the defect proposal systd at the
meeting, 4.2% of respondents found it very difficult to us% found it difficult, 37.5%

www.manaraa.com

SECTION7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 133

found it to be average, 35.4% found it easy to use and 18.8%dftwery easy to use. These
figures are roughly comparable with those from the previoypeement (0%, 14.3%, 38.1%,
28.6% and 19% respectively), which is unsurprising sinesdisfect proposal mechanism was
unchanged from the first version of ASSIST. More surprisi@ghe response to the question
concerning the usefulness of the voting mechanism. 12.5%spbndents thought it hindered
the resolution of issues, 64.6% thought it had no effect a@% thought it helped. The
corresponding figures from Experiment 1 were 14.3%, 33.3%5h4%. Around the same
proportion of respondents thought it hindered issue regiubut far fewer people thought it
helped resolve issues.

Subjects rated the effect ASSIST had on their group meeliad% of subjects thought it
had a large negative effect, 22.9% felt it had a negativegfil.8% considered it to have no
effect, 35.4% felt it had a positive effect and 8.3% thougjhtid a large positive effect, The
corresponding figures from the previous experiment are 48%0, 38.1%, 38.1% and 0%,
showing no real trend in terms of change of opinion, othentleaver people having a neu-
tral opinion. When asked to compare the efficiency of toddshand paper-based meetings,
33.3% thought tool-based less efficient, 27.1% thoughtutéy efficient and 39.6% thought
it more efficient. When compared to the figures from the firgteziment (38.1% 47.6% and
14.3%), there is a definite positive swing in favour of toalsbd meetings. The reason for this
change in opinionis probably due to the facilities desidgioethdividual inspection (the active
checklist, cross-referencing, etc.) also being found tadegul during the group meeting.

Questionnaire 3 When questioned about their understanding ofdhalyse.cc code,
8.7% of respondents reported understanding 41-60%, 32r&dérstood 61-80% of it, and
58.7% reported understanding 81-100% of it. The correspgiigures for the first exper-
iment were 5%, 25% and 70%, showing a slight overall decréasmderstanding of the
program. 10.9% of subjects thought there was not enoughttinrespect the code, 82.6%
thought there was just enough time and 6.5% thought theret@zamuch time. These are
very similar to the figures from the first experiment (5%, 838.8nd 7.5%).

When asked if the group meeting changed their understarafitite code, no subjects
said their understanding was confounded, 39.1% reportechange in understanding, and
60.9% reported an increase in understanding. Comparedhgtprevious experiment (2.5%,
35% and 62.5%), these figures are very similar. This reig®tbe view that the inspection
meeting helps consolidate understanding of the produchgstayroup members. Meeting
gains were reported to be slightly lower than those in Expernit 1. 17.4% reported no gains,
39.1% reported one or two gains, 32.6% reported gains otttodive defects and 10.9%

www.manaraa.com

SECTION7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 134

reported a gain of more than five defects. The respectivedggiar the first experiment were
7.5%, 40%, 47.5% and 5%. Meeting losses, on the other haréd, tiwveught by subjects to
be greater. 23.9% of respondents thought no losses hadredc@B.9% thought one or two
losses had occurred, 43.5% thought three to five defectsdwallbst and 8.7% thought more
than five losses had occurred. The figures for Experiment & ®&ér5%, 35%, 27.5% and
10% respectively.

In terms of their group's performance, 2.2% of respondémasght their group had found
41-60% of all the defects in the code, 34.8% thought 61-80%heidefects had been found
and 63% thought 81-100% had been found. These figures aresiveiigr to those from the
first experiment (2.5%, 30% and 67.5%).

88% of tool users responded to the question concerning tealbwsability of ASSIST.
18.2% thought it extremely usable, 50% thought it fairly hlsa 18.2% thought it average,
13.6% thought it fairly unusable (no respondents classtddtly unusable). Compared with
the first experiment, where the figures were 10%, 50%, 35% &hdeSpectively, there are
less subjects with a neutral opinion. The changes in opiaierevenly split between finding
ASSIST extremely usable and finding it fairly unusable.

Questionnaire 4 Asked about their understanding@faph.cc , 4.3% of subjects under-
stood 41-60% of the program, 57.4% understood 61-80% of thgram and 38.3% under-
stood 81-100% of it. Subjects seemed to think they undedistio® program more than the
subjects in the previous experiment, where the correspgrfitjures were 20%, 37.5% and
40% (with 2.5% of subjects only understanding 21-40% of tiog@m). Despite this, subjects
in the last experiment slightly outperformed subjects ia tarrent experiment. Concerning
the time given to inspect the program, 23.4% of respondémsght insufficient time was
given, 74.5% thought that just enough time was given, ang 111% thought that too much
time was available. Compared with Experiment 1, where tmeesponding figures were 35%,
62.5% and 2.5%, slightly more people thought the time gives sufficient to complete the
inspection task. Comparing the complexity of the two progga53.2% of subjects thought
graph.cc much more complex thaanalyse.cc , 34.1% thought it slightly more com-
plex, 2.1% thoughtit to be of similar complexity and 10.6%qgeéved it slightly less complex.
This is similar to the results for Experiment 1 (49%, 44% a®xdréspectively, with no subjects
finding graph.cc less complex), although a number of subjects in the secopererent
foundgraph.cc less complex than their counterparts in the first experiment
Concerning the group meeting, 6.4% of respondents indidhtsr understanding of the
program was confounded, 34% reported no change in unddiataand 59.6% indicated an

www.manaraa.com

SECTION7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 135

increase in understanding. Compared to Experiment 1, fe@eple reported an increase in
understanding (0%, 25% and 75%). Subjects reported morémgegains than their counter-
parts in Experiment 1. A gain of zero was reported by 12.8%ubjexcts, 44.6% reported a
gain of one or two defects, 29.8% reported a gain of three eodefects and 12.8% reported
a gain of more than five defects. The corresponding figuregh®previous experiment were
5%, 60%, 22.5% and 12.5%. On the other hand, meeting lossegerceived to be virtually
identical. Zero losses were reported by 70.3% of respoisd&at1% reported a loss of one or
two, 8.5% reported a loss of three to five and 2.1% reportedsaddbmore than five, compared
to 72.5%, 17.5%, 10%, and 0% from the previous experiment.

100% of tool users responded to the question concerning shbility of ASSIST for
inspection. 16.6% thought it extremely usable 45.9% thoudhirly usable, 33.3% thought
it average and 4.2% found it fairly unusable (no subjectsigin it totally unusable). This
compares favourably with the results of the previous expent, where the corresponding
figures were 4.8%, 33.3%, 23.8%, 33.3% and 4.8%. The advaeetdres in the second
version of ASSIST appear to have increased its acceptamee he

Subjects were asked to rate their understanding of softimapection. No subjects rated
their understanding as complete, 51.1% thought they utwteist well and 48.9% believed
they understood it reasonably well. Compared with Expeninde where the corresponding
figures were 7.5%, 32.5% and 55% (with 5% of subjects sliglniyure), there is less of a
spread of answers, but no real trend. Asked if their knowdeolgC++ was adequate for the
tasks set, 17% thought it inadequate and 83% thought it adeglbeing almost identical to
the first experiment, with 20% and 80% respectively.

When subjects were asked to compare their use of the chiesitiseach method, 38.3%
thought they used it more with paper-based inspection,%46.18ed it the same with both
methods and 14.9% used it more with ASSIST. Although morgesih made use of their
checklist with ASSIST compared with Experiment 1 (where tberesponding figures are
37.5%, 52.5% and 10%), it is not a great increase. This isijiglisappointing, since one
of the major features of the second version of ASSIST was ¢ltigeachecklist mechanism,
designed to increase the use of the checklist. As with thiegiseriment, the lack of screen
space probably forces users to discard the checklist winidgweference to the code and
specification.

In terms of preference of screen-based documents verses, §a%6 of subjects preferred
screen-based documents, 42.6% expressed no preferene® @dd preferred paper docu-
ments. Compared with the first experiment (with figures of 12886 and 65%), more people
have no preference, at the expense of paper documents. dulgsiodicate that the second

www.manaraa.com

SECTION7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 136

version of ASSIST is more usable, with more people happy ®aither type of document
rather than being averse to screen-based.

Finally, subjects were asked to compare their performarsteguool-based and paper-
based inspection. With individual inspection, 14.9% ofjeats thought they performed bet-
ter with paper, 57.5% thought they performed equally wellhwoth methods, and 27.6%
felt they performed better using the tool. Like the prefeefor document type, more people
are equally amenable to both methods compared to the preexperiment (where the cor-
responding figures were 39%, 39% and 22%). When considdmangroup meeting, 21.3%
of subjects felt they performed better with paper, 63.8%tfedy performed equally well with
both methods, and 14.9% felt they performed better usingl88SThere is a slight drop
in preference for ASSIST compared to the previous experin®5%, 61% and 19.5%),
although not by much, and there is no clear trend.

The qualitative statements of preference were generaitylai to those from the first
experiment. Those who preferred paper-based inspected to be able to write their own
notes directly on the code and found it easier to organisenabieu of sheets of paper on
the desk than a number of windows on-screen. In general, ttreyght paper to be more
natural (although one user who preferred ASSIST noted #ating code on-screen was more
natural!). Some subjects indicated they performed moréiaddl defect detection at a paper-
based group meeting than when using the tool, and thatgs#tia computer inhibited group
discussion.

Subjects with a preference for ASSIST found the cross-egiging facilities to be useful
when finding dead code and for tracing function and variakkge. It also helped find ap-
propriate checklist items. The on-line C++ reference wasigiht to help save time, obviating
the need to find and search a C++ textbook. Defect list maaijoul was regarded as easier,
especially during the group meeting where the scribe doebanee to write out each defect
again. The voting mechanism also had advocates.

Subjects with no preference pointed out advantages andwdistages of both methods.
Some felt that while the facilities of ASSIST were usefulidgrindividual inspection, the use
of ASSIST hindered the group meeting, since group members sgaced further apart. This
was accentuated by the layout of the computer laboratornygdaows of machines side-by-
side. Users found it difficult to look at the screen and atrthelleagues. A circular layout
for each group would be more appropriate. Alternativelyr@pss consisting of a tool-based
individual phase followed by a face-to-face meeting coddibed.

www.manaraa.com

SECTION7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWAREINSPECTION 137

7.1.4 Conclusions

The results from this experiment fail to show an increasénegerformance of subjects us-
ing enhanced tool-based inspection compared with tho$erpgng paper-based inspection.
Although statistically significant results were not fouresponses to questionnaires indicated
greater user acceptance of the enhanced version of theuveothe basic version. Compared
with Experiment 1, more subjects perceived tool supporetmbre efficient than paper-based
inspection, both for individual preparation and the grougeting. Document navigation was
found to be easier, and the number of windows used by ASSISTlegs of an issue, perhaps
indicating that the cross-referencing mechanism was hglpsers. Some individual defects
were found by more tool users than paper-based inspectuosyiisg the usefulness of the
checklist linked to document features. Other defects welldaund more easily on paper.
More research has to be carried out to discover which paaticefect types can be found
more easily on paper, and hence explore mechanisms for giqgptheir detection on-line.
Regarding the inspection meeting, less defect detectiemsé to occur at tool-based meet-
ings than paper-based meetings. Subjects appeared toeus®tisimply as a mechanism for
combining defect lists. This certainly needs to be addassther by training or by improving
the facilities offered by the tool.

As with the Experiment 1, this experiment was limited by &ale resources. The use of
student subjects and short pieces of code limit the extemhioh these results can be gen-
eralised, although a realistic inspection process anceirtegn rate were used. Further work
is required in replicating this experiment both in similaveonments and in an industrial
setting. For example, although the training tutorial waslified to help subjects find the best
way of using the tool, the training itself was still brief, \gh undoubtedly had an adverse ef-
fect on their performance with the tool. Prospective sulsjetust preferably be experienced
in inspection and the use of whichever tool is to be investidaSome features of the tool may
have had a positive effect, while other factors producedgatiee effect. Isolating features
and experimenting with them individually may provide marérmation. Only such repeated
experimentation will provide a definitive answer to the digsof the relative effectiveness
of paper-based and tool-based inspection.

www.manaraa.com

SECTION7.2: AUTOMATIC DEFECTLIST COLLATION 138

7.2 Automatic Defect List Collation

7.2.1 Introduction

Automatic defect list collation, introduced in Section@idesigned to increase the efficiency
of inspection by merging defect lists and removing dupésatithout human intervention.

Several factors can be set by the user to influence the resutte collation. These are

the relative importance of the three facets used to compefects (position, content and

classification) and the threshold value above which iterasansidered to be duplicates. To
find the range within which these factors are most usefultytbe defect lists produced by

subjects in both comparison experiments were used as smategial.

7.2.2 Method

The individual defect lists produced by subjects using A3SWhen inspecting the two ex-
periment programanalyse.cc andgraph.cc were used to perform this evaluation. 22
lists were available from the first experiment wahalyse.cc , while 21 lists were avail-
able from the first experiment witgraph.cc . The second experiment provided 23 and
25 lists respectively. The items in each individual list evésigged with a number indicating
the defect (according to the defect lists in Appendix D),amoved if the defect was a false
positive. Auto-collation was then applied to groups of thoe four lists, as determined by
the group allocation from the appropriate experiment, gisimumber of factor settings. The
factor settings used were

¢ Content (importance of the contents when checking for dapdiitems): 0.05 - 0.95, in
steps of 0.05.

¢ Position (importance of the position when checking for dtgik items): 1 minus the
current Content setting.

¢ Classification (importance of the classification when coesing duplicates): always
set to 0, since subjects were not asked to classify theictefe

e Threshold (value which the similarity score must reach Yoo ttems to be considered
duplicates): 0.05 — 0.95, in steps of 0.05.

For each setting of the content factor, the position factas wet appropriately and auto-
collation applied for each threshold value.

For each group of lists the optimal defect list which coulddreduced was calculated,
consisting of the set of all defects found in all lists minuplicates. The quality of the output

www.manaraa.com

SECTION7.2: AUTOMATIC DEFECTLIST COLLATION 139

100

% 80

60

40

~ 0O M®—==0

20

1.0

2 2 . Threshold

Figure 7.5: Average percentage of correct defects in aalldists for each value of content
and threshold (Experiment 1 data).

from auto-collation can then be measured as the percentage optimal defect list retained
(hereafter known as the percentage of correct defects). widist case list for each group
was calculated as the concatenation of all lists. Perfocear duplicate removal can then
be measured as the number of duplicates in each auto-ablisteexpressed as a percentage
of the total possible duplicates in the list. The data fohhmiograms was grouped together,
however the data for both experiments was treated sepgarafbis was because the defect
positions for the first experiment consist only of line numshevhile those in the second
experiment consist of line numbers and character positounesto the different browsers used
to display the code.

7.2.3 Results

Figure 7.5 shows the performance of auto-collation in teofrthe percentage of correct de-
fects in the generated list, applied to defect lists frométkpent 1. Overall, the performance
is very stable, with the graph having three distinctive ared/ith low thresholds<{=0.25)
most items are discarded, as expected, since items eas#ytipa similarity test. With high

www.manaraa.com

SECTION7.2: AUTOMATIC DEFECTLIST COLLATION 140

100

%
D 80 o o <
u © o

p <

| 60 ° o

i <o

c o < o
a 40 o o

t <o o <

e <>

S 20 Lo

10 RSB RS SR Rt 285800 1.0

2 &%

. 4
Content 2 2 Threshold

Figure 7.6: Average percentage of duplicates in collate$ fior each value of content and
threshold (Experiment 1 data).

threshold valuesx=0.6), most items are kept, since the similarity test is hardgass. In
between these threshold values, there is steady incredlse percentage of correct defects,
with the rate of this increase rising with larger contentdas. Note that the lowest value for
each setting of the content factor is always just above znze one defect must be put in
each list to begin the auto-collation.

The average percentage of duplicates left in each list fdowa values of content and
threshold is shown Figure 7.6. This graph shows a similardite Figure 7.5, although the
threshold values corresponding to the three distinctieasiare higher than their counter-
parts, at around 0.45 and 0.65. The content factor settingahaeffect here similar to that
in Figure 7.5: as it increases so too does the rate of incrieatbe percentage of duplicates
remaining.

To find the optimal settings for the content and thresholtbiag the percentage of correct
defects in the list must be compared with the percentagefahies remaining. The optimal
settings occur when all the correct defects are presentewalsimany duplicates as possible
are removed. Figures 7.7, 7.8 and 7.9 show the performaniggrits of correct defects and

www.manaraa.com

SECTION 7.2: AUTOMATIC DEFECTLIST COLLATION 141

100 ¥ %k ¥ %k %
+

++++++1 % X % Duplicates

o _ - + % Correct

00 2 4 6 8 10

Percentage

Threshold

Figure 7.7: Average percentage of defects remaining ancgeeercentage of duplicates in
collated defect lists for a contents factor of 0.05 (Expenmtnl data).

100 gk kK ok ¥

+

+++4+++T x X o Duplicates

° - + o correct

00 2 4 6 8 10

Percentage

Threshold

Figure 7.8: Average percentage of defects remaining antgeeercentage of duplicates in
collated defect lists for a contents factor of 0.5 (Expentriedata).

www.manharaa.com

SECTION7.2: AUTOMATIC DEFECTLIST COLLATION 142

+ ke k ok ok ¥k

X
+

++++++ + X o Duplicates

- + o correct
10

Percentage

Threshold

Figure 7.9: Average percentage of defects remaining ancgeepercentage of duplicates in
collated defect lists for a contents factor of 0.95 (Expenmtnl data).

duplicates for varying threshold factors for content fastaf 0.05, 0.5 and 0.95, respectively.
For a content factor of 0.05 (Figure 7.7), 100% of defectauioet a threshold of 0.7, but so
also do 100% of duplicates. The threshold value of 0.65 ex@sting, since less than 10% of
duplicates occur, but only around 95% of correct defectainc€his presents an interesting
dilemma: is it more efficient to remove 90% of duplicates,reifeit means losing one or
two real defects? When the content factor is set to 0.5 (Eigu8), the 100% region for
defects occurs at a threshold of 0.6. At this threshold ald&Bf6 of duplicates occur. At
a content factor of 0.95 (Figure 7.9), 100% of defects octwa tareshold of 0.55. At the
same threshold only 65% of duplicates remain. Overalljregthe threshold to around 0.6
along with a contents factor of at least 0.5 appear to givebde results, removing about a
third of duplicates, with no loss of defects. If the loss okarr two defects is acceptable
then the contents factor can be be reduced and the numbepbfates removed increased
significantly.

The graphs of performance for the data from Experiment 2 arg similar to their Exper-
iment 1 counterparts. Figure 7.10 shows the average pegewf correct defects in each list
versus the content and threshold settings. Again, thréendisegions appear in the graph.
The lower region, with threshold being less than 0.2, is whertually all defects are dis-
carded. The upper region, above a threshold of 0.6, is wHiedefacts are kept. The middle
region provides a steady increase in the number of defetamesl, with the rate of increase
rising as the value of the content factor rises. Figure 7Hows the average percentage of
duplicates for the data from Experiment 2. Once again, thptyhas a similar form, with the

www.manaraa.com

SECTION7.2: AUTOMATIC DEFECTLIST COLLATION 143

100

% 80

60

40

~o0—~ =00

20

1.0

. 4
Content 2 2 Threshold

Figure 7.10: Average percentage of correct defects in tulllsts for each value of content
and threshold (Experiment 2 data).

boundaries occurring at threshold values of 0.35 and 0.6.

Figures 7.12, 7.13 and 7.14 show the average percentagdemtsleemaining and the
average percentage of duplicates for contents factor96f 0.5 and 0.95 respectively. These
graphs follow their counterparts for the Experiment 1 dagay\closely. Considering Fig-
ure 7.12, if the criteria applied is that 100% of correct d&enust occur then these settings
are obviously not useful, since 100% of duplicates occuafgrthreshold setting where 100%
of defects occur. If, however, the condition is relaxed g with around 99% correct be-
ing acceptable, then the threshold value of 0.65 allowstieje of almost 60% of duplicates.
Since the 99% value is an average, in most cases 100% of alttdedre being found with
just a single instance of perhaps one defect being lost.rmpesison with the same values for
the Experiment 1 data, slightly fewer defects are lost,calgh many more duplicates remain.
In Figure 7.13, when the 100% criterion for correct defestfuifilled, less than 5% of du-
plicates have been removed. Relaxing the criterion slgjities just over 20% of duplicates
removed at a threshold of 0.6. This is a slightly worse rethalh for the Experiment 1 data,
both for correct defects and duplicates remaining. Figutd follows the pattern observed so

www.manaraa.com

SECTION7.2: AUTOMATIC DEFECTLIST COLLATION 144

100

8

80

60

40

wuo o ——0c0O

Figure 7.11: Average percentage of duplicates in collastd for each value of content and
threshold (Experiment 2 data).

100 4 %3k K kK

4+ 44+ ++ X X 9 Duplicates

0 xX .+ 9% correct

00 2 4 6 8 10

Percentage

Threshold

Figure 7.12: Average percentage of defects remaining asichge percentage of duplicates in
collated defect lists for a contents factor of 0.05 (Expemt2 data).

www.manharaa.com

SECTION7.2: AUTOMATIC DEFECTLIST COLLATION

145

+
++++++ T

Percentage

0

+ % Kk Kk K
+

X o Duplicates

00 2 4

Threshold

- + o correct

10

Figure 7.13: Average percentage of defects remaining aeichge percentage of duplicates in
collated defect lists for a contents factor of 0.5 (Expentizdata).

++++++ x

Percentage

0

+ 3 Kk Kk K
x

+
+

X o Duplicates

- + o correct

00 2 4

Threshold

10

Figure 7.14: Average percentage of defects remaining aeichge percentage of duplicates in
collated defect lists for a contents factor of 0.95 (Expemt2 data).

www.manharaa.com

SECTION7.2: AUTOMATIC DEFECTLIST COLLATION 146

far. At a threshold value of 0.55, it provides slightly worssults than the Experiment 1 data
in terms of correct defects and duplicates remaining. Adaimacceptable duplicate removal
performance, a small loss of real defects has to occur.

One reason why the data for Experiment 2 provides slightlgseeesults than that from
Experiment 1 is the difference in the way in which defectstpmss are represented. In Exper-
iment 1 only line numbers are used, while both line numberdratacter positions are used
in Experiment 2. This more accurate positioning system g&egjes small differences in de-
fect positions. For example, when using line numbers only,defects on the same line have
identical positions. When using both line number and cliarguosition, two defects on the
same line may have positions such as 32.0 and 32.4. Someulnay consider the defect
to occur at the start of the line (even if there is blank spatleeastart of the line), while others
may mark its position exactly. Instructing subjects on gami method of deciding defect
positions would help reduce this variability. The effecttioé positioning strategy should be
reduced as the contents factor is increased, since the athe position factors decreases at
the same time.

One factor which may generally have had an adverse effechemesults of the auto-
collation experiments was the variability in spelling argosubjects. Misspelling of long
words such as 'initialisation' was commonplace. Such meiegs reduce the effectiveness
of word matching between items, stop list matching and stergnT he result is a reduction
in the probability of two items being declared duplicaté®reby reducing the effectiveness
of auto-collation. Although misspellings could have beerdibefore the experiments were
carried out, this would not have reflected real usage. Th&aobkwsolution to this problem is
provision of a spelling checker within the tool. Subjectscaiended to use varying terminol-
ogy. In an industrial setting terminology would probably inere consistent, which would
also improve performance.

Another factor which may have an effect is the type of def&ime defects can be re-
ported more accurately than others, and are less likelyrgphetween subjects. For example,
the use of the wrong operator can be easily described in tefpssition and contents. Miss-
ing functionality, on the other hand, is subject to more afaility in description and perceived
position.

7.2.4 Conclusions

With the strict criterion of absolutely no loss of defectaf@collation can reliably remove
10%-35% of duplicates. If the criterion is relaxed slightiyith one or two losses being
acceptable, the rate of removal can be as high as 60-90%. tdwtign of whether the defect

www.manaraa.com

SECTION 7.2: AUTOMATIC DEFECTLIST COLLATION 147

loss is acceptable to reach such removal rates is a diffiogltto answer, and depends on the
context in which the system is being used and the relativis @gl benefits. The performance
of the auto-collation system would almost certainly be iayad by correcting misspellings
in defects and more consistent use of terminology.

www.manharaa.com

Chapter 8

Conclusions

8.1 Summary

Software inspection is widely regarded as an effective defetection technique. Computer
support for software inspection has been suggested as asmé#urther increasing its effi-
ciency and effectiveness. This has resulted in the devedopof a number of prototype tools.
Unfortunately, these systems suffer from a number of sbantngs.

This thesis has investigated the requirements of softwesgeiction support systems. Ex-
isting support tools were critically reviewed and the maj@aknesses were identified. Two
such weaknesses were found. The first concerns process anthédot independent support.
Virtually all existing tools support only a single inspextiprocess, while there are a number
of variations which may require support. Existing tools aliso limited to inspection of a sin-
gle document type. Support for multiple documents typessetial if computer supported
inspection is to be integrated with existing developmenrirenments. The second concerns
enhancing performance during inspection. Existing tosksaisimple static representation of
the document which the inspector may annotate. In factetisescope for providing facilities
to enhance the inspection process.

To tackle the first concern, a language to allow modellingnspiection processes was
defined. The language, IPDL, was derived by studying thetgigitesses reviewed in Chap-
ter 2. IPDL was implemented in a prototype inspection supjoal known as ASSIST. The
tool can execute any process written in IPDL, ensuring thatgrocess is followed precisely
and that the correct documents are available at each phagefirgt version of the tool also
provided the all basic facilities required to support ingjen, including a number of browsers,
an annotation mechanism, and a voting system to help ressives at the inspection meeting.

www.manaraa.com

SECTION 8.2: CONTRIBUTIONS AND RESULTS 149

The tool was also designed to allow new browsers to be addezhaged, allowing support
for multiple document types.

Having implemented a tool providing the basic set of faeditrequired to support an in-
spection, an evaluation was performed to compare the eféeess of paper-based inspection
with tool-based. Questionnaires from the experiment glediuseful feedback on the usabil-
ity of ASSIST. The experiment also suggested features WABSIST could provide to ease
the task of the inspector. A number of features were thenahasd implemented. These
included automatic cross-referencing and active cheskhghich were used to create a C++
inspection environment. A means of automatically coliginultiple defect lists into a single
master list, with non-identical duplicates being remoweds also designed.

The new version of ASSIST was then used in a second evalyatiomparing the enhanced
version of ASSIST with paper-based inspection. This wastidal in execution to the first
comparison experiment. An experiment was also performeg@dbthe effectiveness of the
auto-collation mechanism.

8.2 Contributions and Results

Several major contributions to computer supported sofvirggpection have been made. The
first concerns IPDL, a language which can be used to descréyg imspection processes.

Process descriptions can be used to unambiguously comatartitat process, or as input
to an inspection support tool to provide support for thatcess. The language is of low

complexity, enabling processes to be quickly and easilytewi Process descriptions are
short, and the English-like syntax of IPDL provides veryd&lale processes.

This thesis has also introduced ASSIST, a prototype ingpesupport tool used as a
vehicle to implement this research. Table 8.1 compares 88SVith the other on-line in-
spection tools described in Chapter 3. As can be seen, tlyfeatiure not implemented by
ASSIST concerns analysis of documents to automaticallydefdcts. In other regards, AS-
SIST provides the most comprehensive set of features ofr@pection support system. In
addition, ASSIST implements IPDL, allowing support for niplle inspection processes. The
architecture of ASSIST also allows the support of many daenirtypes.

The first reported comparisons of paper-based and tookbiaspection are presented
in this thesis. The first compared a basic version of ASSISIh waper-based inspection,
and could detect no significant difference in the perforneamicsubjects using each method.
Hence, it was concluded that the concept of tool-based atigmewas not fundamentally

www.manaraa.com

ASSIST ICICLE CSI InspeQ Scrutiny TAMMi DClI CSRS CAIS AISA NlinspectA hyperCode WiH
Linked Annotations
Defect Classification . . . ® ® ® ® . . .
Cross-referencing . ®
Automated Analysis ®
Checklists . . ® .
Supporting Material . .
Distributed Meetings ® .
Decision Support . . .
Data Collection . ° . .

Table 8.1: Comparison of ASSIST with other on-line inspattiools.

www.maharaa.com

S1TNSIYANY SNOILNEIYLINGD :2'gNOILD3S

0ST

SECTION 8.3: FURTHERWORK 151

flawed, and could be explored further. Feedback from theraxgeat also provided informa-

tion on ways in which the tool could be improved, and tasksciwlsiubjects found difficult.

The second experiment compared an enhanced version of AS@tB paper-based inspec-
tion. Again, no significant difference was found. Althoudfistresult was disappointing,
feedback from subjects indicated that the usability of ASShad been increased.

8.3 Further Work

The research presented in this thesis can be extended irmabenags. To begin with, IPDL is
currently implemented as a text-only language. AlthouglsiS implements a helper which
will produce a skeleton process definition, there is scopegfoviding an easier means of
producing definitions. For example, IPDL could be partialifully implemented as a graph-
ical language. This is most beneficial when considering tdercand type of process phases.
With an appropriate editor, symbols representing eachetygee could quickly and easily be
assembled in the correct order. Documents and particigants also be handled graphically
as named objects. The checklist definition language wostlanefit from graphical editing,
easing the creation and modification of checkilists.

Evaluation of the research undertaken has been a major tinghig thesis. In this respect,
there is still more research which should be performed. Npeéments comparing paper-
based and tool-based inspection should be repeated to gadidence in their results. To
this end, a package containing all materials required tbase these experiments has been
created and is freely available to interested researcliés could also be used to perform
similar experiments. Similarly, ASSIST itself is also figavailable. Other researchers could
make use of ASSIST as a platform to investigate computer @tgh software inspection,
extending it as required.

Although the experiments could be replicated without cleartigere are a number of re-
spects in which they could be improved. To begin with, theafsstudent subjects limits the
extent to which the results may be generalised. The use o$trid| participants would greatly
enhance the external validity. Using industrial code samplould also increase external va-
lidity. Some procedural aspects of the experiments cowld aé improved. For example, the
enhanced version of ASSIST may not have provided an inciedaesspection efficiency due
to the abbreviated training given to subjects. Performimg éxperiments with experienced
users of the tool would increase validity. Features of ASSi8uld be evaluated individually,
since it may be that a gain from one feature is being offset lpsa from another. For ex-
ample, active checklists are designed to increase cheadkla&ge. An experiment comparing

www.manaraa.com

SECTION 8.4: CONCLUDING REMARKS 152

checklist usage may provide more insight into their value.

IPDL is based on existing paper-based processes. As psyistated, it may be the case
that the introduction of tool support alters the manner imollthese processes are performed.
This effect may vary depending on the particular facilibéfered by an individual tool, along
with the familiarity of users with that tool. A simple tool ivencourage less change in the
method of inspectionthan a feature-rich tool. An expert uskthave developed an individual
manner of using the tool, and will be capable of using moréufes. Hence, these type of
effects should be investigated. There is also an oppoyttmitivestigate processes which are
only feasible with the aid of tool support. Asynchronouspiestion is such a process which
has already been investigated. Such investigation maytteaefinement and extension of
IPDL to model such tool-dependent processes. IPDL prosemgealso static, and ASSIST
does not allow their modification once underway. Anothemnaneof research could consider
the area of dynamic process change, allowing the inspeptimress to be modified part-way
through execution.

The auto-collation experiments could also be repeatedvierabways. To begin with, the
use of other defect lists would help provide confidence ipé@gormance. The same defect
lists could also be used, this time with spelling errors ectied, to test the hypothesis that such
spelling errors had an adverse effect on the auto-collatiechanism. Finally, the defects in
the lists used were not classified. Lists of classified defeatld be used to investigate the
effect of classification.

Appendix A describes two related areas of research coresidier this thesis but not
pursued. One concerns methods of enhancing the defectidateapability of participants,
with specific reference to object-oriented systems. Thssaech is necessary since features
of the object-oriented paradigm can hinder the inspectémk.t The second concerns the
collection and analysis of inspection data. Several usekisidata are explored, including
general inspection process improvement, checklist fdonatnd improvement and estimating
defects remaining after inspection.

8.4 Concluding Remarks

From the research performed, it is clear that computer sapgaoftware inspection is a
valuable line of research. When tool-based inspection wasgpared with paper-based, no
difference in inspector performance could be detecteds ptovides a baseline for exploring
more advanced tool support, with enhanced facilities tp hedpectors find defects. When
coupled with the less quantifiable advantages of tool supgibie ability to easily collect data,

www.manaraa.com

SECTION 8.4: CONCLUDING REMARKS 153

process rigour, the use of electronic versions of documsafgport for distributed inspection,
etc. — the result indicates that a move to computer supporggeection could, in general, be
beneficial.

The research methodology employed proved to be ideal. Tiobéth, existing tools were
investigated and their weaknesses identified. These wea&aavere used to help create the
specification for ASSIST. Existing inspection processeeevused to help design IPDL. The
first version of ASSIST was then implemented and evaluatér r€sults of this evaluation
were used to design improvements for the second version. cAnskeevaluation was then
performed. This cycle of design/evaluation could have lregeated as required. There is
one caveat: feedback from subjects during the second empetiwas less useful than that
from the first. The limited experience of subjects may havenb& factor here. Hence, the
design/evaluation cycle would be more effective if contidwith software professionals.

There is much scope for further research in computer supgaaftware inspection. The
full potential of inspection may not yet have been reached,janovative research in this area
may be the means of achieving even greater results than ting pasitive experience reports
already found in the literature. As one of the most succédsfiect finding techniques in use,
it deserves much more research to explore its full potential

www.manaraa.com

Bibliography

[1] T. K. Abdel-Hamid and S. E. Madnick. Lessons learned frmdelling the dynamics
of software developmen€ommunications of the ACN32(12):1426—-1438, December
1989.

[2] J.E. Arnold and S. S. Popovich. Integrating, custongsand extending environments
with a message-based architecture. Technical Report QUIBD5, Department of
Computer Science, Columbia University, New York, 1995.

[3] J. T. Baldwin. An abbreviated C++ code inspection chistkAvailable on the WWW,
URL: http://www.ics.hawaii.edu/ johnson/FTR/Bib/Balth®2.html, 1992.

[4] S. Bandinelli, A. Fuggetta, and C. Ghezzi. Software psx model evolution in
SPADE. IEEE Transactions on Software Engineerii®(12):1128-1144, December
1993.

[5] S. Bandinelli, A. Fuggetta, C. Ghezzi, and L. LavazzaABE: An environment for
software process analysis, design and enactment. In AelStgin, J. Kramer, and
B. Nuseibeh, editorsSoftware Process Modelling and Technologlgapter 9, pages
223-247. Research Studies Press, Ltd., 1994.

[6] H. J. Barnard and R. B. Collicott. COMPAS: A developmenigess support system.
AT&T Technical Journal62(2):52—64, March/April 1990.

[7] J. Barnard and A. Price. Managing code inspection infttion. IEEE Software
11(2):56—69, March 1994.

[8] V.R. Basiliand R. W. Selby. Comparing the effectivenetsoftware testing strategies.
IEEE Transactions on Software Engineerii§(12):1278-1296, December 1987.

[9] Bell Communications ResearciCICLE User's GuideJanuary 1993.

www.manaraa.com

BIBLIOGRAPHY 155

[10] C. A. Boneau. The effects of violations of assumptionderlying thet test. Psycho-
logical Bulletin, 57(1):49-64, 1960.

[11] G. Booch. Object-Oriented Analysis and Design with Applicatioienjamin Cum-
mings, second edition, 1994.

[12] L. R. Brothers, V. Sembugamoorthy, and A. E. Irgon. Kihedlge-based code inspection
with ICICLE. In Innovative Applications of Artificial Intelligence 4: Preedings of
IAAI-92, 1992.

[13] L. R. Brothers, V. Sembugamoorthy, and M. Muller. ICIELGroupware for code
inspections. InProceedings of the 1990 ACM Conference on Computer Sumporte
Cooperative Workpages 169—-181, October 1990.

[14] N. Brown. Industrial-strength management strategie€E Software13(4):94-103,
July 1996.

[15] Bull HN Information Systems, Inc., U.S. Applied Resgat aboratoryScrutiny User's
Guide May 1994.

[16] Bull, S.A. Inspection Process Assistant: User Guide V&€ptember 1997.

[17] A.Burrand M. Owen Statistical Methods for Software Qualityternational Thomson
Computer Press, 1996.

[18] T. Cai, P. A. Gloor, and S. Nog. DartFlow: A workflow marggent system on the
Web using transportable agents. Technical Report PCS-PR36Dartmouth College,
1996.

[19] J. K. Chaar, M. J. Halliday, I. S. Bhandari, and R. Chélge. In-process evalua-
tion for software inspection and tesiEEE Transactions on Software Engineering
19(11):1055-1070, November 1993.

[20] Y. Chernak. A statistical approach to the inspectioadiist formal synthesis and im-
provement.|IEEE Transactions on Software Engineeri2@(12):866—874, December
1996.

[21] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Hallida. S. Moebus, B. K. Ray, and
M-Y. Wong. Orthogonal defect classification: A concept fmprocess measurements.
IEEE Transactions on Software Engineerit§(11):943-956, November 1992.

www.manaraa.com

BIBLIOGRAPHY 156

[22] A. M. Christie. A graphical process definition language its application to a main-
tenance project.Information and Software Technolag$5(6/7):364—374, June/July
1993.

[23] R. Conradi, M. Hagaseth, J-O. Larsen, M. N. Nguyén, BMBnch, P. H. Westby,
W. Zhu, M. L. Jaccheri, and C. Liu. EPOS: Object-orientedparative process mod-
elling. In A. Finkelstein, J. Kramer, and B. Nuseibeh, edif§Software Process Mod-
elling and Technologychapter 3, pages 33—70. Research Studies Press, Ltd., 1994

[24] R. T. Crocker and A. von Mayrhauser. Maintenance suppeeds for object-oriented
software. InProceedings of COMPSAC '9fages 63—69, 1993.

[25] C. B. Darling. Embrace change with workflow toolBatamation 42(16):102-111,
October 1996.

[26] A. Davis.cppp -a C++ parser. Available from the Brown Computer Sciencevéare
Catalog, URLhttp://www.cs.brown.edu/software/catalog.html

[27] D. B. Davis. Software that makes your work floRatamation 38:75-78, 15th April
1991.

[28] H.M. Deitel and P.J. DeitelC: How to Program Prentice-Hall International, second
edition, 1994.

[29] A. Dillon. Reading from paper versus screens: a critiegiew of the empirical litera-
ture. Ergonomics35(10):1297-1326, October 1992.

[30] B. S. Doherty and S. Sahibuddin. Software quality tlyiodistributed code inspection.
In C. Tasso, R. A. Adeyi, and M. Pighin, edito&pftware Quality Engineeringages
159-168. Computational Mechanics Publications, 1997.

[31] E. P. Doolan. Experience with Fagan's inspection neth8oftware—Practice and
Experience22(2):173-182, February 1992.

[32] R. G. Ebenau. Predictive quality control with softwarepectionsCrossTalk7(6):9—
16, June 1994.

[33] R. G. Ebenau and S. H. Strau§oftware Inspection ProcesslcGraw-Hill, 1994.

[34] A. L. Edwards. Statistical MethodsHolt, Rinehart and Winston, Inc, second edition,
1967.

www.manaraa.com

BIBLIOGRAPHY 157

[35] S. G. Eick, C. R. Loader, M. D. Long, L. G. Votta, and S. Aander Weil. Estimating
software fault content before coding. Rroceedings of the Fourteenth International
Conference on Software Engineerjpgges 59-65, May 1992.

[36] S. G. Eick, J. L. Steffen, and E. E. Sumner Jr. Seesofteohfor visualizing line
oriented software statisticeEEE Transactions on Software Engineering(11):957—
968, November 1992.

[37] M. E. Fagan. Design and code inspections to reduceseinoprogram development.
IBM Systems Journal5(3):182-211, 1976.

[38] M. E. Fagan. Advances in software inspectitBEE Transactions on Software Engi-
neering 12(7):744-751, July 1986.

[39] International Institute for Applied Systems Analysisibrary search stop list. URL:
http://www.iiasa.ac.at/docs/R _Library/libsrchs.html

[40] D. Georgakopoulos, M. Hornick, and A. Sheth. An ovewief workflow manage-
ment: from process modelling to workflow automation infrasture. Distributed and
Parallel Databases3(2):119-153, April 1995.

[41] T. Gilb and D. GrahamSoftware InspectianAddison-Wesley, 1993.
[42] J. W. Gintell. A brief history of Scrutiny, February 199Personal communication.

[43] J. W. Gintell, J. Arnold, M. Houde, J. Kruszelnicki, R.ddenney, and G. Memmi.
Scrutiny: A collaborative inspection and review systemPhoceedings of the Fourth
European Software Engineering Conferenseptember 1993.

[44] J. W. Gintell, M. B. Houde, and R. F. McKenney. Lessomshed by building and using
Scrutiny, a collaborative software inspection system.Pinceedings of the Seventh
International Workshop on Computer Aided Software EngingeJuly 1995.

[45] R. Gribben. Software snags hold back air-traffic confmanch. Daily Telegraph 9th
April 1996.

[46] L. Harjumaa and I. Tervonen. A WWW-based tool for softertnspection. InPro-
ceedings of HICSS-98olume Ill, pages 379-388, 1998.

[47] D. Harman. Automatic indexing. In R. Fidel, T. B. Hahn,M. Rasmussen, and P. J.
Smith, editorsChallenges in Indexing Electronic Text and Imagsdsapter 13, pages
247-264. Learned Information, Inc., 1994.

www.manaraa.com

BIBLIOGRAPHY 158

[48] D. Heimbigner. The ProcessWall: a process state sagroach to process program-
ming. ACM SIGSOFT Software Engineering Not&8(5):159-168, December 1992.

[49] K. E. Huff and V. R. Lesser. A plan-based intelligentiatmnt that supports the soft-
ware development proces8CM SIGSOFT Software Engineering NotE3(5):97-106,
November 1988.

[50] W. S. Humphrey. Managing the Software Processhapter 10, pages 171-190.
Addison-Wesley, 1989.

[51] W. S. HumphreyA Discipline for Software Engineering\ddison-Wesley, 1995.

[52] J. B. Iniesta. A tool and a set of metrics to support téchimeviews. In2nd Interna-
tional Conference on Software Quality Managemealume 1, pages 579-594, 1994.

[53] I1SO. Information Processing Systems - Open Systems IntercbhomecLOTOS, A
Formal Description Technique based on the Temporal OrdeahObservational Be-
haviour. International Organisation for Standardisation, ISOB3ugust 1988.

[54] M. L. Jaccheri and R.Conradi. Techniques for procesdehevolution in EPOSIEEE
Transactions on Software Engineerji®(12):1145-1156, December 1993.

[55] P. M. Johnson. An instrumented approach to improvirftysare quality through formal
technical review. InProceedings of the 16th International Conference on Soéwa
EngineeringMay 1994.

[56] P. M. Johnson. Supporting technology transfer of fdrteahnical review through a
computer supported collaborative review system.Phmceedings of the 4th Interna-
tional Conference on Software Qualityctober 1994.

[57] P. M. Johnson and D. Tjahjono. CSRS users guide. TeahRigport ICS-TR-93-16,
Collaborative Software Development Laboratory, Departieg Information and and
Computer Sciences, University of Hawaii, 1993.

[58] C. Jones. Gaps in the object-oriented paradiggEE Computer27(6):90-91, June
1994,

[59] C. L. Jones. A process-integrated approach to defestgmtion.IBM Systems Journal
24(2):150-167, 1985.

www.manaraa.com

BIBLIOGRAPHY 159

[60] G. E.Kaiser, N. S. Barghouti, and M. H. Sokolsky. Prétiary experience with process
modelling in the Marvel software development environmesrhiel. InProceedings of
the 23rd Hawaii Conference on System Scienpages 131-140, January 1990.

[61] G. E. Kaiser, P. H. Feller, and S. S. Popovich. Inteliggssistance for software devel-
opment and maintenancEEE Software5(3):40-49, May 1988.

[62] E. Kamsties and C. M. Lott. An empirical evaluation ofagl defect-detection tech-
niques. Technical Report ISERN-95-02, International @afe Engineering Research
Network, May 1995.

[63] S. Kaplan, W. J. Tolone, D. P. Bogia, and C. Bignoli. s, active support for
collaborative work with ConversationBuilder. Proceedings of the ACM Conference
on Computer Supported Cooperative Wdr92.

[64] G. Kappel, B. Proll, S. Rausch-Scott, and W. Retselgger. TriGS;.,, active object-
oriented workflow management. Rroceedings of the 28th Hawaii International Con-
ference on System Sciengeages 772—736, January 1995.

[65] J. C. Knightand E. A. Meyers. Phased inspections andithplementation Software
Engineering Notesl6(3):29-35, July 1991.

[66] J. C. Knightand E. A. Meyers. An improved inspectiorftieicue.Communications of
the ACM 36(11):51-61, November 1993.

[67] M. M. Lehman. Software engineering, the software psscand their supporgoftware
Engineering Journal6(5):243—-258, September 1991.

[68] M. Lutz. Programming PythonO' Reilly & Associates, first edition, 1996.

[69] F. Macdonald. ASSIST V1.1 User Manual. Technical RegdfoCS-22-96, Depart-
ment of Computer Science, University of Strathclyde, Fabyd 997.

[70] F. Macdonald. ASSIST V2.1 User Manual. Technical RegdfoCS-28-98, Depart-
ment of Computer Science, University of Strathclyde, Mate88.

[71] F. Macdonald and J. Miller. Modelling software insgeatmethods for the application
of tool support. Technical Report EFoCS-16-95 [RR/95/18@&Jpartment of Computer
Science, University of Strathclyde, December 1995.

www.manaraa.com

BIBLIOGRAPHY 160

[72] F. Macdonald and J. Miller. ASSISTing with software jprestion. InProceedings
of the 1st International Software Quality Week/Eurofeftware Research Institute,
November 1997.

[73] F. Macdonald and J. Miller. Automated generic supparsbftware inspection. IRro-
ceedings of the 10th International Software Quality W&altware Research Institute,
May 1997.

[74] F. Macdonald and J. Miller. A software inspection pregelefinition language and
prototype support tool.Software Testing, Verification and Reliability(2):99-128,
June 1997.

[75] F. Macdonald and J. Miller. ASSIST - a tool to supportta@ire inspection. Submitted
to the Journal of Information and Software Technology, 1998

[76] F. Macdonald and J. Miller. A comparison of computer [goi systems for software
inspection. Submitted to Automated Software Engineerifaginternational Journal,
1998.

[77] F. Macdonald and J. Miller. A comparison of tool-basedl gpaper-based software
inspection. Empirical Software Engineering: An Internatinal Journ8(3), Autumn
1998.

[78] F. Macdonald, J. Miller, A. Brooks, M. Roper, and M. Woo4 review of tool sup-
port for software inspection. IRroceedings of the Seventh International Workshop on
Computer Aided Software Engineerjmges 340-349, July 1995.

[79] F. Macdonald, J. Miller, A. Brooks, M. Roper, and M. Woodpplying inspection to
object-oriented codeSoftware Testing, Verification and Reliabili§(2):61-82, June
1996.

[80] F. Macdonald, J. Miller, A. Brooks, M. Roper, and M. Woodutomating the soft-
ware inspection proces®utomated Software Engineering: An International Journal
3(3/4):193-218, August 1996.

[81] B. Marick. A question catalog for code inspections. Walhle via anonymous FTP
from cs.uiuc.edu as /pub/testing/inspect.ps, 1992.

[82] J. Martin and W.-T. Tsai. N-Fold inspection: A requirents analysis technigu€om-
munications of the ACMB3(2):225-232, February 1990.

www.manaraa.com

BIBLIOGRAPHY 161

[83] V. Mashayekhi. Distribution and Asynchrony in Software EngineeringhD thesis,
University of Minnesota, March 1995.

[84] V. Mashayekhi, J. M. Drake, W.-T. Tsai, and J. Reidl. thisited, collaborative soft-
ware inspectionlEEE Softwarge10(5):66—75, September 1993.

[85] V. Mashayekhi, C. Feulner, and J. Reidl. CAIS: Colladdtve Asynchronous Inspec-
tion of Software. InProceedings of the Second ACM SIGSOFT Symposium on the
Foundations of Software Engineeririgecember 1994.

[86] I. R. McChesney. Towards a classification scheme famsok process modelling ap-
proachesInformation and Software Technolad7(7):363—-374, July 1995.

[87] E. A. Meyers and J. C. Knight. An improved software insji@en technique and an
empirical evaluation of its effectiveness. Technical ReddR-92-15, Department of
Computer Science, University of Virginia, May 1992.

[88] J. Miller and F. Macdonald. ASSISTing management denisin software inspection
processes. IRroceedings the 13th IEEE Conference on Automated Softwveyimeer-
ing, October 1998.

[89] J. Miller and F. Macdonald. An incremental approachdol levelopment and evalua-
tion. Submitted to the Journal of Systems and Software, 1998

[90] J. Miller, M. Roper, and M. Wood. Further experienceshwgcenarios and checklists.
Journal of Empirical Software Engineering(1):37—64, 1998.

[91] J. A. Miller, D. Palaniswami, A. P. Sheth, K. J. KochuhdaH. Singh. WebWork:
METEOR,'s Web-based workflow management systelmurnal of Intelligent Infor-
mation Systemd40(2):1-30, 1998.

[92] J. A. Miller, A. P. Sheth, K. J. Kochut, and D. Palaniswaithe future of Web-based
workflows. InProceedings of the International Workshop on Reserahcdbogs in
Process Technologyuly 1997.

[93] P. Murphy and J. Miller. A process for asynchronous wafe inspection. IrPro-
ceedings of The 8th International Workshop on Softwareri@olgy and Engineering
Practice pages 96—104, July 1997.

[94] D. L. Parnas, J. Madey, and M. Iglewski. Precise docuat@n of well-structured
programs. IEEE Transactions on Software Engineeri2§(12):948-976, December
1994.

www.manaraa.com

BIBLIOGRAPHY 162

[95] D. L. Parnas and D. M. Weiss. Active design reviews: Eptes and practices. In
Proceedings of the Eighth International Conference onvaf Engineeringpages
132-136, August 1985.

[96] W. De Pauw, R. Helm, D. Kimelman, and J. Vlissides. Vigiag the behaviour of
object-oriented systems. Rroceedings of the 8th International Conference on Object-
Oriented Programming Systems, Languages and Applicat@ages 326-337, 1993.

[97] J. M. Perpich, D. E. Perry, A. A. Porter, L. G. Votta, and W. Wade. Anywhere,
anytime code inspections: Using the web to remove bottlksetlarge-scale soft-
ware development. IRroceedings of the 19th International Conference on Soéwa
Engineeringpages 14-21, 1997.

[98] C. Ponder and W. Bush. Polymorphism considered hatr#GM SIGSOFT Software
Engineering Notesl9(2):35-37, April 1994.

[99] A. A. Porter, L. G. Votta, and V. R. Basili. Comparing detion methods for software
requirements inspections: A replicated experimelfEE Transactions on Software
Engineering21(6):563-575, June 1995.

[100] M. F. Porter. An algorithm for suffix strippind?rogram 14(3):130-137, 1980.

[101] M. Putaala and I. Tervonen. Inspecting Postscriptudzents in an object-oriented
environment. Irbth European Conference on Software Qualli§97.

[102] J. Reidl, V. Mashayekhi, J. Schnepf, M. Claypool, and-Eankowski. Suitesound - a
system for distributed collaborative multimediBEE Transactions on Knowledge and
Data Engineering5(4):600-610, 1993.

[103] G. W. Russell. Experience with inspection in ultrgkxscale developmentdEEE
Software 8(1):25-31, January 1991.

[104] V. Sembugamoorthy and L. R. Brothers. ICICLE: Intg#int Code Inspection ina C
Language Environment. IRroceedings of the 14th Annual Computer Software and
Applications Conferen¢cg@ages 146-154, October 1990.

[105] M. E. Shaw.Group Dynamics: The Psychology of Small Group BehaviddeGraw-
Hill, 1971.

[106] E. Soloway, J. Pinto, S. Letovsky, D. Littman, and Ruripeert. Designing documenta-
tion to compensate for delocalized plaif@mmunications of the ACN81(11):1259—
1267, November 1988.

www.manaraa.com

BIBLIOGRAPHY 163

[107] P. Sparaco. Board faults Ariane-5 softwardviation Week and Space Technolpgy
145(5):33-34, 1996.

[108] M. Stein, J. Riedl, S. J. Harner, and V. Mashayekhi. 8ecstudy of distributed, asyn-
chronous software inspection. Rroceedings of the 19th International Conference on
Software Engineeringpages 107-117, 1997.

[109] S. M. Sutton, Jr., D. Heimbigner, and L. J. OsterwelPFAL/A: A language for software
process programmingACM Transactions on Software Engineering and Methodaglogy
4(3):221-286, July 1995.

[110] M. Suzuki and T. Katayama. Metaoperations in the gegsaodel HFSP for the dy-
namics and flexibility of software processes.Rroceedings of the First International
Conference on the Software Procgsages 202—-217, 1991.

[111] K. D. Swenson. A visual language to describe collatigavork. In Proceedings of
the 1993 IEEE Symposium on Visual Languagesust 1993.

[112] K. D. Swenson, R. J. Maxwell, T. Matsumoto, B. Saghanid K. Irwin. A business
process environment supporting collaborative planniogirnal of Collaborative Com-
puting, 1(1):119-153, Spring 1994.

[113] I. Tervonen. Consistent support for software desigaad inspectorsSoftware Quality
Journal 5:221-229, 1996.

[114] 1. Tervonen. Support for quality-based design angétsion IEEE Softwarel3(1):44—
54, January 1996.

[115] C. Thompson and J. Riedl. Collaborative asynchrorosigection of software using
Lotus Notes. Technical Report TR 95-047, Computer SciereggaDment, University
of Minnesota, 1995.

[116] D. Tjahjono. Comparing the cost effectiveness of graynchronous review method
and individual asynchronous review method using CSRS: IResipilot study. Tech-
nical Report ICS-TR-95-07, University of Hawaii, Janua8g5.

[117] D. Tjahjono. Exploring the Effectiveness of Formal Technical Reviewtdtscwith
CSRS, a Collaborative Software Review Systmb thesis, Department of Information
and Computer Sciences, University of Hawaii, June 1996.

www.manaraa.com

BIBLIOGRAPHY 164

[118] L. G. Votta. Does every inspection need a meetingPrbteedings of the First ACM
SIGSOFT Symposium on the Foundations of Software Engimpgrages 107-114,
December 1993.

[119] E. F. Weller. Lessons from three years of inspecticlad&EE Software10(5):38-45,
September 1993.

[120] S. A. Vander Wiel and L. G. Votta. Assessing softwarsiges using capture-recapture
methods.IEEE Transactions on Software Engineerid§(11):1045-1054, November
1993.

[121] N. Wilde, P. Matthews, and R. Huitt. Maintaining oljeciented software.|EEE
Software 10(1):75-80, January 1993.

[122] M. Wood, M. Roper, A. Brooks, and J. Miller. Comparingdacombining software de-
fect detection techniques: a replicated empirical study! Jazayeri and H. Schauer,
editors,Proceedings of The Sixth European Software Engineerinde@amce / Fifth
ACM SIGSOFT Symposium on the Foundations of Software Esrgigepages 262—
277, September 1997.

[123] K. Yasumoto, T. Higashino, and K. Taniguchi. Softwarecess description using LO-
TOS and its enaction. IRroceedings of the 16th International Conference on Soéwa
Engineeringpages 169-178, May 1994.

[124] E. Yourdon.Structured Walkthroughsrourdon Press, fourth edition, 1989.

www.manaraa.com

Appendix A

Future Directions in Computer
Supported Software Inspection

Providing computer support for software inspection is aerepnded task. This appendix
details some avenues of research considered for this thegisiot pursued. There are two
main themes of research which require much consideratidre fifst concerns facilities to

enhance the defect detection process, allowing inspeictéirad more defects with less effort.

One of the most important areas here is considered: the supipabject-oriented software.

The second theme concerns the collection of data from theeat®n to predict and control

the process. Several areas within this theme are described.

A.1 Applying Inspection to Object-Oriented Code

The last decade or so has seen an explosion in the use of -objected techniques, with
languages such as C++ and now Java becoming incredibly @opdlhe object-oriented
paradigm is claimed to provide a number of benefits [11]. €heslude improved modu-
larity, data hiding and encapsulation via the class meamanivhich results in low coupling
and high cohesion. Reuse via inheritance and generic slassmother quoted benefit, and
reduced maintenance costs are also claimed. Given thagdtisp is supposedly the most
cost-effective means of finding defects, and the popularfitgbject-oriented programming
languages, it is surprising that there is no published é&pee of inspecting object-oriented
code, as indicated by Jones [58] and supported by a searhk bfdrature.

www.manaraa.com

APPENDIXA: APPLYINGINSPECTION TOOBJECTFORIENTED CODE 166

In fact the very features of object-oriented languages twhie believed to deliver benefits
also make the code more difficult to inspect. A similar effeas been found in when testing
object-oriented software. The problems are compoundedhéystatic nature of inspection:
the effect of many object-oriented constructs can only ls8yeseen when the program is ex-
ecuted. Similar problems have been reported concerningterence of object-oriented code
[121]. Like inspection, maintenance requires understamnadi the code. Unlike inspection,
maintenance is by definition performed on a complete (andéémeoretically executable)
system.

A typical object-oriented system can consist of many claeseh of which may contain
many small methods. Each of these methods provides onlyeflinctionality (for examples
of this, see Wildeet al. [121]). Therefore to understand more than just trivialtpaf the
system, large numbers of these methods must be cognitivelypgd together and chains of
method invocations followed. This is similar to the “deltisad plans” proposed by Soloway
et al. [106], which occur when conceptually related code is sp@aer spatially distributed
parts of the program.

Inheritance also causes difficulty in understanding code tduthe distribution of be-
haviour over several classes. With single inheritance,nvéu@ inherited method is called
the inspector must traverse the inheritance hierarchy tbifendefinition. In deep hierarchies
with many inherited classes the definition may take some torlecate, with the inspector
moving further and further from the original code. Multipigheritance causes similar prob-
lems, but these are exacerbated by having a number of patbaw when searching for a
method or feature definition.

Polymorphism is the ability to take more than one form. Ineabjoriented programming,
it generally denotes the ability of a declaration to refemiore than one class of object.
Polymorphism goes hand in hand with dynamic binding, whitdwss the function associated
with such a reference to be inferred at run time. This cotgragth static binding, where the
exact function call is known when the executable is produ@ée concept of polymorphism
is very powerful, but this power comes with a price. Pondel Bash [98] have written about
the problems that polymorphism causes for program undeistg due to dependence on the
dynamic data state of the program. The problem is espedalliye when combined with
inheritance. Essentially, the specific methods called whemrogram is executed depend on
the state of data within the program and cannot be easilyreaddrom a static code listing.

Genericity is used to define a related family of classes. Tasscs defined with one
or more type parameters which can then be used as normalwjthen the class definition.
When the class is instantiated with the appropriate tyddnstances of the argument are

www.manaraa.com

APPENDIXA: APPLYINGINSPECTION TOOBJECTFORIENTED CODE 167

replaced by the new type to produce a new class. Genericeslase difficult to inspect
because the behaviour of the class depends on its instantiat

So far it has been assumed that the entire system is capabkingf inspected at once.
In reality, most systems will be far too complex to be inspddh a single step, and will be
partitioned into smaller sections according to the appaterinspection rate. For a simple
object-based system, the problem is no worse than for mogtdaedural code. For a system
with a large inheritance hierarchy, the problem is much nafécult. There are many de-
pendencies which must be resolved, and if the system iganbjitsplit then inspectors may
be left with references to code which they have no access toeriihheritance is involved
there is a problem similar to that found in testing, wheré@ligh it is tempting to inspect a
class in isolation, it must actually be inspected in the exnof its parent classes because of
the possibility of hidden interactions. On the other hamij methods may be too small a
unit to inspect, with very little semantic information tdal an accurate characterisation of
the behaviour of the system.

Two techniques which can make code more amenable to inepeaté better program-
ming styles, such as limiting the use of inheritance, antebelocumentation, such as that
proposed by Solowagt al. [106] or Parna®t al. [94]. These are not considered further here.
Instead, the opportunities for tool support for existinge@re investigated.

Existing inspection tools treat code as a static documeawmkhe above discussion it is
clear that this is not sufficient, since the dynamic behavidthe system is far more important
with object-oriented code. The static nature of inspeciioould not change when it is applied
to object-oriented code, however. Exploration of the dyiegenoperties of an object-oriented
system should not require that the code be executable vaeethe nature of the inspection
itself has been altered and moved towards testing. Theigsolatay come from intelligent
browsers which allow the inspector to explore possible etten paths without requiring the
entire system to be finished and executable. For examplengiypolymorphic function call,
the browser could list all possible functions which may bikeckin the subset of the system
which is being inspected. The inspector is presented withoeeractive document which
allows the dynamic properties of the program to be explored.

Tools designed to support maintenance have some value gpedation. One example
is Valhalla, a prototype object-oriented development mmunent described by Wildet al.
[121]. This system provides object animation capabiljte®wing the viewing of messages
passed between objects. This can aid understanding of tleerdy properties of the system.
Instead of analysing static pages of text, the inspectiomavihen consist of analysing these
animations. Among the tools described by Crocker and Mayba[24] are several which

www.manaraa.com

APPENDIXA: APPLYINGINSPECTION TOOBJECTFORIENTED CODE 168

would be useful for inspection. Theheritance hierarchy generat@enerates a graph of the
inheritance relationship in the system, which can then beistl to enhance understanding of
the system. Aode browsecan be used to display the program and, when used in conjuncti
with the code slicer allows the view of the program to be limited by certain aiigsuch as
occurrences of a certain variable or method call.

Given that a major problem in inspecting object-orientedects tracing method calls and
references over several classes, it may be useful to have f&wm of reduced representation,
providing an overall view of the code being inspected. Suapaesentation would be similar
to that used by Seesoft, as described by Eicl [36]. Seesoft is a tool designed for visu-
alising line-oriented software statistics. The main wiwdmnsists of a number of columns,
each of which represents a source code file. Within theserewdya horizontal line is used
to represent a line of code within the file. These lines arew@d according to the value of
some attribute, e.g. age. A separate scale is used to dig@agntire value range for this
attribute. The user can click on values in this scale, or tlerans and lines themselves to
toggle each value on and off. This allows the display of coité just a certain value or a
range of values, and allows the user to find useful pattertissicode. This type of tool could
be extended to assist inspection of object-oriented codielas/s. While inspecting code in
a reading window the reduced representation would hightigdcurrent line of code. If this
line was a method invocation, the definition of that methodil@lso be highlighted. The
inspector could then immediately move to that definitiord an on. The history of such a
progression may be stored and when the inspector comes ttablswnderstanding of some
method, it would be possible to quickly backtrack to the pras method, where this under-
standing could be applied. This process would continud tivgioriginal starting point was
reached. By speeding the traversal between methods, isisrdar an inspector to gain an
understanding of the code, forming a mental picture of tistesy with the reduced representa-
tion. This system could also be to help decide which codelshmiincluded in an inspection.
By tracing method invocations, the classes required toopmrthe inspection could quickly
be found.

Other visualisation systems designed for object-orientste may provide help with in-
spection. For example, De Pawet al. [96] describe a language independent visualisation
system which uses a preprocessor to instrument prograrhscatte which generates events.
These events can be received by a visualisation applicatidch can use the data to update
one or more views of the program, such as an inter-class etixnshowing patterns of com-
munication between each class. Although intended for udelirugging and code tuning and
relying on having the entire system available and runnihg drinciples could be applied to

www.manaraa.com

APPENDIXA: DATA COLLECTION AND ANALYSIS 169

smaller sections of code. Visualisation could allow theogion team to provide summary
information on which methods and classes are used by eash. cleghey can then use this
information to partition code for inspection.

There is much research ongoing in program understandingvesudlisation tools for
object-oriented software. Software inspection is an igéstform for evaluating this research,
since a fundamental task during inspection is understgrmbde. Defect detection efficiency
of the inspection can indicate the usefulness of a certaithadeor tool. Note that a fuller
discussion of all the above issues can be found in [79].

A.2 Data Collection and Analysis

Gathering data concerning the inspection process is easemimprove and fine-tune the
process [41]. While collecting such data manually is tirmesuming and error-prone, auto-
matic collection can occur transparently, with far greateguracy. All effort can therefore be
expended on the main task of inspection: finding defectsldmenting such data collection
facilities is also vital when empirically investigatingethinspection process. Data collected
can provide insights into which aspects of the tool and me@e working well, and it may
be possible to measure improvements. IPDL already proddsssic facility to express data
collection, although user-controllable data collectismot available in its implementation in
ASSIST.

The data collected must be used in some meaningful way tiyjuist collection. Tool
support provides an opportunity to automatically analysghdata and provide instant feed-
back on the inspection. It also allows non-traditional nuees to be collected and to be used
in ways specific to tool-based inspection. This sectionmiless scope for data collection and
the uses of such data.

A.2.1 Process Measurement

Gilb and Graham [41] define over fifty measures which shoulddiiected. Measures defined
by others, such as Ebenau and Strauss [33], are simply suif¢bbse provided by Gilb and
Graham, perhaps using differing terminology. They can lvéldd into three different cate-
gories: size measures, duration measures and rate meashese are described separately,
along with representative examples and how they may beatetle Note that the names of
these measures are those used by Gilb and Graham and do essaily reflect terminology
used in other literature, although they are still valid mges in all inspection processes.

www.manaraa.com

APPENDIXA: DATA COLLECTION AND ANALYSIS 170

Size Measures

Size measures are the simplest to collect, involving sirdpkct measurement of such vari-
ables as document lengths and defect counts.

number of checkers- the number of inspectors actually searching for defectsduhe
inspection. While this may appear to be a simple measurellectait is complicated by the
fact that there may be one or more participants in the ingpeatho does not perform defect
detection, e.g. the author.

items-noted- a generic count of all issues and defects raised by an tha@inspector.
This is simply the count of items in an inspector's defedt lisdefect classification is used,
the count can be subdivided according to type, class andiseve

pages-studied the number of pages which have been inspected during ohavprepa-
ration (where a page is a well-defined entity, e.g. a specibicwount or line count). In its
simplest form itis the length of the document under inseGtivhich is easy to automatically
collect. A tool-supported system could also collect theceamount of the document viewed.
For example, the text browser in ASSIST has the idea of a &ntriocus”, i.e. an area of the
document currently under scrutiny. The sum of all parts efdbocument which have been the
focus can be considered to be the amount inspected.

Duration Measures

Duration measures concern the amount of time required foipercertain activities.
checking-time- total time spent by all inspectors in individual prepavati This is another
measure which is easy to define but more difficult to collecith\gaper-based inspection,
each inspector can make an estimate of their time, althduglestimate is rather error-prone
(either intentionally or unintentionally). With a tool-bed inspection, it is theoretically easy
to collect: the system simply measures how long the insperdes the tool. In practice,
however, an inspector may start up the tool then becomeraaketd on another task, either
on the computer or away from the computer. The result is aficaatly inflated time. This
can be partially overcome by monitoring the position of theuse pointer and only counting
time when the mouse pointer is within windows belonging ®itispection tool.
logging-meeting-duration - the time spent in the group meeting. This can be split into
two subcomponents: tHegging duration (time spent reporting issues) and tiscussion-
duration (time spent discussing issues). The purpose of keeping gwdscomponents sepa-
rate is to provide a more exact estimate of the time spensipgation activities. A tool-based
inspection could easily support the collection of theseponents by providing the moderator

www.manaraa.com

APPENDIXA: DATA COLLECTION AND ANALYSIS 171

with a control to indicate when the meeting goes from isspenting to issue discussion, and
vice versa.

Rate Measures

Rates are not measured directly. Instead they are caldufieden various size and duration
measures.

logging-rate - the number of items logged per minute during the group meeft his is
simply the total number of items logged divided by the loggimeeting-duration, and can be
easily calculated by a support tool.

defect-density - the number of defects per page in the product. This is caledl by
dividing the total number of defects found in the product by size of the product. Again,
this is easily calculated by the tool

efficiency - defects found per hour of time spent detecting and congaiefects. This
is the total number of defects found divided by the total tispent detecting defects and
removing them. This also easily calculated by the tool pitediall time invested is logged.

A.2.2 General Process Feedback

In its most basic form, the data gathered can provide simlegss feedback. A database of
information from previous inspections would be stored l®ytitol, which could be queried on
parameters such as the inspection process used, numbspetiors, product type inspected,
and so on. One use of this data is to determine the parametetsef most cost-effective
inspection of each product type, in terms of the process,usedber of inspectors, etc.

Historical data for the appropriate inspection type can o@mared with data from the
current inspection. If the data from the current inspectippears to fall outwith the bounds
considered “normal” for that inspection type, further aatcould be taken. For example, the
number of defects found can be compared against the higt@verage, allowing the mod-
erator to estimate whether the inspection has been sutlicigunccessful or if a re-inspection
should be held. The defect profile (i.e. the relative mix dédetypes found) could be studied
to check for abnormalities [19]. Other measures, such asctiditection rate and time spent
in inspection, can be considered in a similar manner.

A more formal approach to the above can be found in StatifRiceess Control [17]. SPC
is based around a control chart which allows process variatio be monitored. The chart
plots the value of the attribute under consideration oveetithe mean value of the attribute
and an upper and lower control limit. The format of a contiwdut is shown in Figure A.1.

www.manaraa.com

APPENDIXA: DATA COLLECTION AND ANALYSIS 172

60

A
(@)

AN
o

UCL

W
(@)

Defect Density
(defects per 1000 lines)

N

(@)

/]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Inspections

Figure A.1: The format of a control chart. The data preseigdrypothetical.

The mean is defined as:

Y oqdefects;

>y part size;

Since the part size (i.e. document size) varies, Ebenaud@g@gests simplified upper and

lower control limits, which are held constant over a set adlgsed inspections. The upper

ﬂ:

control limit is calculated as:

L
average work product size

UCL=p+ 3¢
The lower control limit is:

LCL:M—:M K

mazximum work product size

or 0, whichever is greater. Rather than use the average wordupt size, Ebenau recom-
mends that the maximum size is used to “increase the satstfthe control chart to poorly
inspected products”. If the value of the measure falls dilttviese control limits, it may in-
dicate the need for further investigation. This is perfodnosing charts of dispersion, where
other measures are investigated to determine whetheraheutside process norms. Ebenau
[32] recommends that document size and inspection ratagddhbe investigated if the defect
density lies outside control limits. This can be used to wheitee if the inspection has been

www.manaraa.com

APPENDIXA: DATA COLLECTION AND ANALYSIS 173

performed correctly. An inspection support tool can be usehaintain and display these
charts, and to even automatically flag inspections wheresurea fall outside their control
limits.

A.2.3 Checklist Formation and Improvement

Checklists are an important aspect of the inspection psocésgood checklist consists of
hints that help inspectors quickly and easily find defectbedklists must be dynamic. As
new items are discovered (e.g. from previous inspectiomreapce), they must be added to
the checklist. As old items become obsolete they must bevedhd he length of the checklist
frequently becomes an issue, however. On one hand, thel@iastiould be as comprehensive
as possible, to help find the maximum number of defects. Owtier hand, the size of the
checklist may hinder the inspector, with far too many itemstieck, or too many irrelevant
items. Gilb and Graham [41], therefore, recommend that a&ldist should not exceed one
page, and should reflect the latest experience in the dodugpEnunder review.

One approach to tackling this problem has already beenitdesian this thesis. The C++
inspection environment described in Section 6.3 providdsslbetween features in the code
under inspection and the checklist in use. The checklisttoarefore be longer and more
comprehensive, with the system presenting only links te¢hitems which are relevant. With
this method, the inspection is driven by the product rathantthe checklist.

Returning to a checklist-driven inspection, Chernak [288cibes a method for the statis-
tical checklist formation and improvement, based on thdyaisof defect data. Defects are
classified using Orthogonal Defect Classification [21]. écling to this system, a defect has
two attributes. Chernak uses ttlefect typeas an indication of where to look for that defect,
while thedefect triggemives an indication of how to detect the defect. Multiplggers can
be associated with each type, corresponding to differefecti¢ypes occurring in a single
document feature. When existing defect data is classifiedrdmg to this scheme, the defect
types and triggers which cover the majority of defects camtieacted and used to prepare a
checklist. In a tool-supported inspection environmens tdould be accomplished automat-
ically by allowing users to classify defects as they are thwas is possible in ASSIST. One
drawback is that new checklist items could not automatidad generated and would have to
be added manually.

An alternative approach in a checklist-driven inspecti®rid monitor checklist usage.
The active checklists described in Section 6.2 allow inggedo provide an answer to each
checklist item. Monitoring these answers would allow tregjfrency of use of each checklist
item to be found. Items which are used infrequently can eitleeautomatically removed or

www.manaraa.com

APPENDIXA: DATA COLLECTION AND ANALYSIS 174

flagged for attention. The item can then be studied to determwihy it is infrequently used.
For example, it may be genuinely irrelevant or it may simpiydadly written. Alternatively,
the checklist can be prioritised, with less frequently uisexhs assigned lower priorities. The
inspector can then start with high priority items and movdoiwer priority items as time
permits. As with the defect monitoring system describedsabthis system can only remove
infrequently used items. New items still have to be gendratel added manually.

In summary, while checklists are a vital part of the inspatprocess, a checklist which is
too long is unmanageable and will be ignored. Hence, thektisemust either be shortened
or relevant items brought to the inspectors attention. $opport can help with both of these
solutions.

A.2.4 Estimating Defects Remaining

Despite its effectiveness, an inspection is unlikely to fifictlefects in a product. Hence, it
would be useful to estimate how many defects remain in themieat. Ecological capture-
recapture methods, used for estimating animal populatizege been suggested as a means
to determine this, e.g. [35, 120]. When applied to wildld#egumber of animals belonging to
the population under consideration are trapped and matked,released back into the wild.
After some time (to allow marked and unmarked animals to raiggcond trapping occurs.
The ratio of marked to unmarked animals in this trapping t@mte used to estimate the total
population.

In the context of software inspection, each inspector Exat number of defects in the
document, corresponding to a single trapping. The overdwéen inspectors can provide an
estimate of the total number of defects in the document. Abermof different models can be
used, allowing for differences in the difficulty of findingaradefect and in inspector ability.

Computer support can apply capture-recapture methodspmators' defect lists to esti-
mate the number of defects remaining, requiring only a stiange to the inspection process.
This would consist of an extra phase after the inspectiortimggevhere inspectors tag each
defect in their list to show which defect in the master listdrresponds to. The system can
then use this information to produce the estimate. A numberaalels may be used, with the
moderator being presented with a summary of estimates, ahline decision whether or not
to re-inspect can be made. The tagging process can also héysiee system to gather data
on the false positive/real defect ratio and meeting gains.

www.manaraa.com

APPENDIXA: CONCLUSIONS 175

A.2.5 Inspector Experience and Behaviour

The final use of data gathered during inspections concedigidlual inspectors. The use of
performance data as a means of evaluating individuals iallydorbidden during inspection,
however, other data can be collected and used for more cmtis® purposes.

Data on inspector experience can be gathered by the tooh &perience includes the
number of inspections performed, the document types insgdemles played, and so on. This
experience data can then be used by moderators to decidgmpapte participants for each
inspection. For example, several experienced inspectaydrateamed with an inexperienced
inspector for educational purposes. On the other hand tigatrdocument may require the
participation of the most experienced inspectors. A topipguted environment could make
suggestions about appropriate inspectors based on theatyperiticality of the inspection
about to be undertaken.

An inspector's behaviour during the inspection may alsodoended. This is important
for three reasons. Firstly, data such as time spent in inigpeust be collected to measure
the inspection process, as discussed above. Secondlysieisl in terms of process enforce-
ment. Monitoring inspector behaviour can help decide wéethe inspection task is being
being tackled in a uniform and correct way. For example, kligtausage may be monitored
to ensure they are being uniformly applied. If participamase different responsibilities it is
helpful to know that they are following these responsil@itand their efforts are not over-
lapping. Thirdly, data on how inspectors perform inspettioay be useful as a means of
understanding what makes a good inspection. Some stratgiployed by inspectors will be
more effective than others. If these strategies can be eapand shared with others, the over-
all inspection effectiveness can be increased. For exaragbarticular reading strategy for
some documents may enhance defect detection. Tool sugpostgection provides an oppotr-
tunity for collecting fine-grain data on inspector behaviathich simply cannot be collected
with paper-based inspection.

A.3 Conclusions

Two main areas of research in tool support for software in8pe have been identified. One
concerns methods for enhancing the defect detection dépaijiinspectors. Support of the
object-oriented paradigm is one important area here, witikhmscope for the application of
visualisation, maintenance and program understanding.tobhis type of feature must be
properly evaluated in an appropriate setting to gauge gfulrsess.

www.manaraa.com

APPENDIXA: CONCLUSIONS 176

The second major area concerns the collection and analfysispgection data. Tool sup-
port allows many traditional inspection measures to beraatitally collected and analysed.
In addition, non-traditional measures, e.g. checklisgpesaan also be captured and used to
monitor and improve the process, providing even greatefifaek. As with features intended
to enhance defect detection, data collection facilitigsine testing with large amounts of real
data to have confidence in their usefulness.

www.manharaa.com

Appendix B

ASSIST V2.1 User Manual

B.1 Introduction

Asynchronous/Synchronous Software Inspection Suppat (RSSIST) is a generic tool de-
signed to allow the enforcement and support of any inspegiocess. This is achieved with
a custom-designed process modelling language (InspeRtmoess Definition Language, or
IPDL), and a flexible document type system. ASSIST is based olient/server architec-
ture, where the server is used as a central repository ofrdents and other data. ASSIST
supports both individual and group-based phases of ingmedGroup-based phases can be
performed synchronously or asynchronously, with the ohofcsame-place or different-place
synchronous meetings. This section provides an introdnd¢d installing, starting and using
ASSIST.

B.1.1 Requirements

This software requires Python 1.5, available frbttp://www.python.org and Tcl/Tk
8.0. Python must be compiled with support for Tk and dbm. ASShas been tested on
Solaris 2.5.1.

B.1.2 Installation

Start by usingincompress andtar to uncompress and extract the féssist.tar.Z
A number of configuration options will have to be set for yoystem. These are detailed on
a per-file basis.

www.manaraa.com

APPENDIXB: INTRODUCTION 178

assist/assist _server
Edit the following environment variables:
e PYTHON - your Python interpreter (full path).

e ASSISTHOME - the location of the ASSIST directory (endingassist , as this is
the directory created when you untar the file)

e PYTHONLLIBS - the location of the standard Python libraries.

This file should be placed in an appropriéta directory.

assist/assist
Edit the following environment variables:
e PYTHON - your Python interpreter (full path).

e ASSISTHOME - the location of the ASSIST directory (endingassist , as this is
the directory created when you untar the file)

e PYTHONLLIBS - the location of the standard Python libraries.
e ASSIST.RX_HOST - the name of the machine on which the server is running.

This file should be placed in an appropriéta directory.

assist/lib/assist _defs.py

ASSIST can make use of Netscape and Ghostview to view HTMLParsdiScript documents.
This file defines where these executables can be found witfolibeving lines:

NETSCAPE = 'lusr/X/local/netscape'
GHOSTVIEW = 'lusr/local/gnu/bin/ghostview'

The paths should be changed to those appropriate for yoteraysr to any other HTML and
PostScript viewers you may have.

The tools to support distributed inspection require sevdgéinitions. These are the TTL
value, the multicast address to use and the multicast parséo They are defined with the
following lines:

www.manaraa.com

APPENDIXB: INTRODUCTION 179

MULTICAST_TTL = 2
MULTICAST_ADDRESS = '224.0.1.0'
MULTICAST_PORT = 5000

The address and port can usually be left as is, however thgyeqaire changing if permanent
conflicts arise. The TTL value must be changed if you requiredid distributed inspections
between non-local machines.

Finally, the executables to be used must be defined. Thewfimitplines perform this
function:

WB_PATH = ‘/usr/local/mbone/bin/wb'
NV_PATH = 'fusr/local/mbone/bin/nv'
VAT _PATH = 'lusr/local/mbone/bin/vat'

These paths should be changed as appropriate for your system

B.1.3 Starting the Server
The server is started by typing
assist_server

at the prompt. After a few seconds, two windows will appearskown in Figure B.1. The
main window has two panels. The left hand side is an inforomatiindow in which messages
pertaining to the state of the server appear. These maidigate client connects/disconnects.
The right hand side contains a list of clients currently cacted. There are only two controls
on the server. Th&emove Userbutton disconnects a client. To use this, simply select the
name of the required client then click the button. This starily be used if the machine on
which that client is running has crashed, leaving the seérven inconsistent state. Ti@#ose
button closes down the server, but only if all clients haverbdisconnected. ThRemove
User button may be used to clear any clients remaining, if reguir€he second window
display status messages from the Discourse server.

B.1.4 Starting the Client
Provided you have been entered into the personnel datah8SEST may be started by typing

assist

www.manaraa.com

APPENDIXB: INTRODUCTION 180

ASSIST Receiver @ lyal

User fraser at host lyall.cs.strath.ac.uk port 5 frazer
7001 connected,

i Remove User

{ Discourse Receiver @ lyal

Figure B.1: The ASSIST server.

at the prompt. After a few seconds the main ASSIST window apibear, as shown in Fig-
ure B.2. It consists of a list of pending inspections and almemof menus. The functionality
available via these menus will depend on the role that has defned for you within ASSIST.

For example, an inspector simply has the facility to corgian existing inspection, while a
moderator will have the facility to start a new inspectiohefollowing menus are available:

o File

— About Provides copyright and author information on ASSIST.
— Quit Quits ASSIST.

¢ Inspection

— New- Starts a new inspection, allowing you to associate pemland documents
with the inspection. See Section B.2.5.

— Continue - Continues an inspection from where you last left off. Youstselect
an inspection from the list before you click the button. Adtatively, you can

www.manaraa.com

APPENDIXB: PREPARING FOR ANINSPECTION 181

ASSIST 2.1

Hle Inspection Databases

Exanple

Figure B.2: The main ASSIST window.

double-click directly on the name of the inspection you wiglcontinue. See
Section B.3.

o Databases

— Document- Allows you to browse and edit the database containing tlceehents
available to ASSIST. See Section B.2.2.

— Personnel- Allows you to browse and edit the personnel database, wdetegls
of personnel available to perform inspections are stored. &ction B.2.3.

— Process Allows you to enter a new inspection process, or to edit dstiexg one.
See Section B.2.4.

B.2 Preparing for an Inspection

B.2.1 Introduction

Before you can use ASSIST to carry out inspections, thers@reral tasks which must first
be undertaken. First of all, documents which are going tobpécted, along with documents
used to support the inspection must be registered with ABS¥Bich will then store copies of
these in its own database. Secondly, personnel capablegingpout the inspection task must
be registered with the system. Finally, ASSIST must have yeguired inspection process
entered and compiled. Although ASSIST provides some peE=® get you started, it is
inevitable that these will not completely match your neé&dwey can be copied and edited as
required.

www.manaraa.com

APPENDIXB: PREPARING FOR ANINSPECTION 182

Document

series.cc

4 Product <» Source

& Criteria > Detection Aid
<r Plan <» Report

&> Standard

Figure B.3: The main document window.

B.2.2 The Document Database

A fundamental action is the registering of documents withAlSSIST system. This includes
all products to be inspected, standards that may be usezttihet aids which may be avail-
able, and so on. ASSIST will then make copies of these doctsvaerd allow them to be
accessed from any client. Selecting hecumentoption from theDatabaseanenu reveals
the document control window (Figure B.3).

The window consists of a number of buttons for selecting #rpired document type.
For each document type, the available documents are l[iB@clments may be of one of the
following fundamental types:

e Product - A document undergoing inspection.

e Source- A document used to produce the document undergoing inspedbr exam-
ple, the design document for a section of code.

e Criteria - This document type is a list of criteria which must be saigfiAll criteria
documents must be in a specific format which ASSIST can interplrhe format is
described in Section B.6.

e Standard - The product will usually have to conform to a set of standdod that doc-
ument type. These standards are used for compliance clgedkiimg the inspection.
Other standards include the procedures to be used at eaghdftthe inspection, lists
of terminology and so on.

e Report - A report simply details the outcome of a phase, or of an emtispection. It is
usually completed by the moderator. Like criteria, repantsst be in a specific format

www.manaraa.com

APPENDIXB: PREPARING FOR ANINSPECTION 183

Mame: |series.ce
Path: |/tnp_nnt/hone/sb/assist/a
Basic Type: Ipr‘oduct 3elect Basic Type
Content Type: [Ce+ Select Content Type

Date added: IThu Oct 9 16:31:12 1997

[ox e

Figure B.4: The document edit window.

which ASSIST can interpret, described in Section B.6.

e Plan - The definitive description of the inspection process amdgople who will be
involved in it. Plans must also be in a specific format for ASEISee Section B.6 for
more details.

e Detection Aid - A document which assists the inspector with finding erretgh as
checklists.

The following items are available in tH2ocumentmenu:

e New- Allows you to enter the details of a new document. The opanadf this window
is described below.

e Edit - Edits the current document, indicated by the current sieledin the document
list. A shortcut for this action is double-clicking on thepappriate document in the
document list.

e Delete- Deletes the current document, indicated by the curremictien in the docu-
ment list. Warning: there is no 'undo' option to restore document details rexdy
accidental deletion.

e Save- Opens up a window allowing a copy of the document to be samegbar own
file system.

e CloseCloses the document database window.

Both theNew and Edit commands bring up the same window (Figure B.4). The only
difference is that th&dit option preloads the data entry fields with the values for tireanit
document, which can then be edited, while thew option ensures that all fields are blank.
The fields and associated controls are as follows:

www.manaraa.com

APPENDIXB: PREPARING FOR ANINSPECTION 184

Personnel Database

rson

fraser
janes
assist
hurray
narc

jiJ
Figure B.5: The main personnel window.
¢ Name -The name by which the document is known within ASSIST. Thisudd be
fairly descriptive (e.g. 'ASSIST Server Design')

e Path - Clicking on theSelect Pathbutton brings up a dialogue box allowing the se-
lection of the physical document to be associated with this/e When the document
details are completed, this document is copied across teditver.

e Type - Indicates the fundamental type of the document. UseStilect Typemenu to
select the appropriate type.

e Content Type - Indicates the type of the contents of the document. Theuttefz
ASCII, and more can be added by the user (see Section B.8)theé&zlect Content
Type menu to select the appropriate content type.

e Date added- The date indicates when this document was added to theatsabhis
field is not editable; it is automatically filled when a new dowent is added, or an
existing document updated.

e OK - Submits the new or updated details to the server, and ctbheesindow.

e Cancel- Closes the window, ignoring any changes or additions made.

B.2.3 The Personnel Database

Before an inspector can use ASSIST, that person must beesgdswith the system. This
is achieved with the personnel database function (onlyl@vai to administrators). Selecting
thePersonneloption in theDatabaseanenu reveals the window shown in Figure B.5.

The following actions are available under thersonmenu:

e New- Allows you to enter the details of a new person. The openatfdhe window for
this facility is described below.

www.manaraa.com

APPENDIXB: PREPARING FOR ANINSPECTION 185

User name:

|fraser

Hame:

|Fraser Hacdonald

Email:

|fraserBcs, strath, ac,uk
M koderator
|Thu Rpr 18 13:52:42 1996
M Administrator
|Thu Rpr 18 13:53:59 1996

Figure B.6: The personnel edit window.

o Edit - Edits the details of the current person, indicated by thveecis selection in the
personnel list. A shortcut for this action is double-clitffion the appropriate person in
the personnel list.

e Delete- Deletes the current person, indicated by the current 8efen the person-
nel list. Warning: there is no "undo' option to restore personnel details vechdy
accidental deletion.

e Close- Closes the personnel database window.

Both theNew and Edit commands bring up the same window (Figure B.6). The only
difference is that th&dit option preloads the data entry fields with the values for tiveent
person, which can then be edited, while tew option ensures that all fields are blank. The
fields are as follows:

e User name- The person's UNIX login name. If users from more than oneXJ8listem
are expected to use ASSIST (e.g. over a WAN), it is the adtnati's responsibility to
ensure that login names do not clash.

e Name- The person's real name.
e Email - The person's e-mail address (used for sending notificafrom ASSIST).
e Moderator - This checkbutton indicates the person's ability to moigesa inspection.

e Administrator - This checkbutton indicates the person's ability to penfadministra-
tive tasks, such as adding new personnel to the system.

www.manaraa.com

APPENDIXB: PREPARING FOR ANINSPECTION 186

Hie

inspection "Fagan Code Inspection”
declarations
docunents

Code product
Design source
Defectsl list
Def ects2 list
Def ects3 list
Defectsd list
Defectsh list
Haster_defects list
Heeting_report report
Follow_up_Report report
Haster_Plan plan

end

participants

Inspectorl is inspector
lists Defectsl end
Inspector? is inspector
lists Defects? end
Inspector3 is inspector
lists Defects3 end
Hoderator is moderator
lists Defectsd end
Author is author
lists DefectsS end
end
classification "fagan”
end
Process
planning "Planning’
participants Hoderator
outputs Haster_Plan
end
overview ‘Overview’
location local
participants
Hoderator
Author

Inspectorl y
P
o

Figure B.7: The new process window, with a process loaded.

B.2.4 The Process Database

Another requirement before starting an inspection is hguaiminspection process for ASSIST
to enforce. Although ASSIST comes with several well-knonspection variants, it is highly

likely that some variations of these processes, and evemplebaly new processes, will be

required. Selecting thBrocessitem from theDatabasesmenu gives access to the facilities
for creating and compiling a new inspection process. Triticepresents ASSIST's facilities
for entering and compiling processes. For more details atingrnew IPDL processes, see
Section B.4 and Section B.5.

The New Inspection Process Window

This window (Figure B.7) allows you to enter a new inspecponcess, or to edit an existing
process, which can then be compiled ready for use. The matnrke of this window is a
simple text editor for entering processes. The remainiadufes are available from the file
menu:

www.manaraa.com

APPENDIXB: PREPARING FOR ANINSPECTION 187

e New - Clears the current process, allowing a new process to lexhfrom scratch.
This is the default state when the window is first opened.

e Load - Loads an existing process, either from the server, or frolocal file. The
process can then be edited or refined as required. The titleeoivindow changes to
reflect the process name and where it was loaded from.

e Save- Saves the current process under the current name. Thmdptonly available if
the process has previously been saved uSine As or if the process has been loaded
from the server or from a file.

e Save As- Allows the current process to be saved under a new name.igthie only
save option available for a newly entered process. You capnsgbetween saving the
process on the server, or to a local file. After this operatibe title of the window
changes to reflect the process name and where it was saved to.

e Compile - Only if a process is successfully compiled will it becomaitable for use,
and an edited process must be compiled for the changes tankeeawailable. The
compile option is only available when the process has besheld from or saved to the
server. Processes loaded from local files cannot be compiigithey are saved on the
server.

¢ Delete- Brings up a requester allowing a process on the server teletadl. Processes
can be deleted by double-clicking on the name, or by sinli&ing on the name then
selecting theOK button.

¢ IPDL Helper - Starts a helper application to provide a skeleton processription.
See Section B.2.4 for more details.

¢ Close- Close the new process window, without saving the currentgss.

The IPDL Helper

The IPDL Helper is designed to ease the task of creating amspection process by creating
a skeleton process which can be fleshed out. By entering thentients for this inspection,
the participants who will take part, and the number of phasgaired for the inspection, the
helper will generate a partial process, leaving blanks ekpecific details should be filled in.
Figure B.8 shows the IPDL helper window. The window is didldeto three main sections.
From top to bottom these aBocuments Participants andProcess

www.manaraa.com

APPENDIXB: PREPARING FOR ANINSPECTION 188

Documents
Products Reports Sources Detection Alds

A A A A

=<
<
<
<

Standards Lists Plans Criteria
socament e |
Document type: # Product <» Report <> Source <» Detection Aid < Standard < List & Plan < Criteria
Participants
Name (role)
2 et e |
Role: <, Coordinator <y Moderator < Inspector < Author
Process

Meeting counts

Z Number of folds: Humber of meetings: m
£ Entry £ Planning {7 Owverview] Rework {1 Follow up £ Exit {j Metrics

Figure B.8: The IPDL helper window.

The Documentssection allows you to enter the names of all documents whithused
and created during the inspection. To add a document, dr@eame in th®ocument Name
box and select the document type from the row of types, thiek oh Add. To remove an
unwanted document, select the document from the apprepisatwith a single mouse click),
then click onRemove

TheParticipants section allows you to enter the details of the participaatsnig part in
this inspection. For each participant required, enter traa in theParticipant Name box,
select the appropriate role for that person from the fouilabke, then click onAdd. The
participant name and role will then appear in the list at #felhand side of the window. To
remove a participant, select the name in the list then clitRemove

TheProcesssection allows you to enter some details of the process yiuine A funda-
mental decision to be made is the number of independentfotdlis inspection. A straight-
forward inspection will consist of only one, while a moreargus inspection will involve
more. Enter the number of folds in the box labellddmber of folds. For each fold, you

www.manaraa.com

APPENDIXB: PREPARING FOR ANINSPECTION 189

should then enter the number of meetings. Type each numteethia box labelledNumber
of meetings then click onAdd to add it to the list of meeting counts at the left hand side.
Meeting counts can be removed from the list by selecting pipeapriate number and clicking
on Remove Finally, the optional phases of entry, planning, overvieswork, follow-up and
exit can be added by selecting the appropriate checkbutton.

When each item has been completed to your satisfactiokjrjon Generatecreates a
skeleton process which is loaded into the new process win@tiaking onClosecloses the
IPDL Helper.

B.2.5 Starting a New Inspection

Assuming you've created and compiled your required ingpeg@rocess, you can how actu-
ally instantiate and run that process:

e Select theNew option from thelnspection menu in the main ASSIST window (Fig-
ure B.2).

e Select the required process from the list presented.

e Enter a name for this inspection. Since this is the name bghvthie inspection will
be known to its participants it should therefore be fairlgg@se (and almost certainly
unique).

After a few moments, a screen will open allowing you to setbetparticipants and doc-
uments for this inspection (Figure B.9). Thespection menu in the top left hand corner has
two items: Start takes the current details and starts the new inspectioriewiort closes
the window without starting the inspection.

The window contains two scrolling lists of items which hawebe completed to start the
inspection: Documents and Participants. For each itemerdticuments section, clicking
on Selectbrings up a list of available documents which are of the saype &s the named
document (as declared in the process definition for thisdagpn). One of these may then be
selected and will be appear in the box below the document n&orereports, plans, criteria
and detection aids only one document may be chosen. For mhairisng document types,
multiple documents can be chosen. Names can be removedckingionRemove when a
list of the documents selected will appear, allowing oned¢@bosen and removed. For each
name in the participants section, a person registered WB8IST may be selected and added
in the same way as for a document. In this case, only one pessvohe selected for each part
in the inspection. The list of people available for each palitdepend on the qualifications

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 190

Inspection
D t A Participant
ocuments - Carticipants

Code Select Hemngvg | Author Select | Hgnnnve |

| [

[[
Inspectorl Select | oo |

Design Select Hemnnvg | |

|

KT T Inspector? Select | Hamnnve |
[

Follow_up_Report Select | Hapnnva |

[Inspector3 Select | oo |
[

Master_Plan 3elect | Hemnnvg |

[Moderator Select | Hgnnnve |
[

Meeting_report Select | Hapnnva |

[

Figure B.9: The new inspection window, where documents anmtigipants for the inspection
are chosen.

required for each part, in that people who have not qualiieti@derators will not be available
when the part requires implementing the role of moderateoordinator. Thé&Removebutton
simply erases the person associated with the part.

When the required details have been entered and are cousztheStart item in the
Inspection menu to start the inspection. ASSIST will check that no digik participants
have been entered, although duplicate documents are [s#tais

B.3 Executing An Inspection

When an new inspection has been started, its name will appéiae pending inspection list
of every inspectorinvolved. To join that inspection doubliek on its title. The main ASSIST

window is then replaced by thiexecutewindow shown in Figure B.10. If your participation
is not required for this phase a message will appear infagmou of this and you will not be

able to join the inspection.

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 191

Participants Status indicator Documents available

Execufe: Example

Inspection Moderator Time remaining |1:46:56 ‘
/ Participants Targets” | Read VWrite

Reader {nurray?} !&‘, Hoderator_Checklist !&! Defects3
Hoderator {fraser) [l |Series Specificationif |
Scribe { janes) C++ Reference

7\ |series.cc

Phase: [Preparatiop- {exanination? Responsibility: [Hoder. or_ResponsihilituJ

Current fold (if any) Current Phase Participant responsibility

Figure B.10: The main execute window showing the peoplentakart in this phase and the
documents available for use.

B.3.1 The Execute Window

The execute window contains two menus. Thgpection menu contains two entries. The
Finisheditem is used by each participant to indicate that they hawepteted this phase. The
Closebutton closes the execute window, saving the participatdte in the inspection. The
Moderator menu appears only for the moderator of this inspection. tht@ios five entries.
Previous Phaseeturns the inspectionto the previous phdsext Phasemoves the inspection
on to the next phase in successi&kip Phaseskips the next phase in succession, moving to
the phase after the next. This item is only available duringrmsolidation type phase
(see Section B.3.3Restart Inspectionreturns the inspection to the first phase, wiileort
Inspectionis used to completely abort the current inspection, dejetihdata. Each of these
controls brings up a confirmation dialogue box before thsmads carried out. Also at the top
of this window is an indicator showing the time remaining fiois inspection session, should
such a limit be defined for the process being used.

The execute window also contains four lists. Tarticipants list contains the names
of all participants involved in the current phase of the expn. The name of the part they
play in this inspection is followed by their user name in liegts. This is followed by a status
indicator. A “C” indicates that person is currently conreztto ASSIST and taking part in this
inspection. If an “F” is showing, it indicates that the perdws finished their work for this
stage and used tté@nished item in thelnspection menu. This information should be used
by the moderator to decide when to move on to the next phase.

The remaining three lists contain the names of all documera#able during this phase.
By double-clicking on the document name, the appropriabevber will be opened with the
document. Targets indicates documents which are the target of the ph&sad indicates

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 192

Menus Readable lists Writable lists

Read /
Defectsh !
Defects2
Defects3
Defectsl
Haster_defects

Document Position Title Votes

series,cc 34 Hrong variable in if 0 0

Current List: JDefectsd

Current list Summary of current list Number of items

Figure B.11: The main list browser window.

documents which the participant may read but not al@rite indicates documents which
this participant may alter, such as lists and plans.

Finally, there are three further items along the bottom ef élecute windowFold in-
dicates the current fold, and is only used during an N-Fofpéttion. Phaseindicates the
current inspection phase. This contains both the user defiame of the phase and its type.
Responsibility contains the name of any responsibility assigned to theggaant.

The above description applies to a traditional single-fofgbection. The execute window
which appears during an N-Fold inspection has further asitior the coordinator of that
inspection. These are described in Section B.3.3.

B.3.2 Document Browsers
The List Browser

The List Browser is the ASSIST tool for handling list-typecdinents. Each inspector may
have access to multiple lists, and the list browser may bd tesadd items to each list, re-
move them, move items between lists, and so on. The fasilitieghe browser may also be
accessed from any active browser supplied with ASSIST (asdhe text browser described
in Section B.3.2). Lists are either readable or writablelyGvritable lists may be edited. Fig-
ure B.11 shows the list browser for an inspector with sixstisive readable and one writable.
There are five main items in this window. TReadlists summary indicates all readable
lists available to the inspector. Th#rite lists summary shows those lists which the inspector

www.manaraa.com

193

APPENDIXB: EXECUTING AN INSPECTION

can browse and edit. Double clicking on a name in either ofeHests opens that list into
the list summary area on the right. Each item within the listsummarised into one line
consisting of the file where the item occurs, the positiorhefitem within that file, the title
of the item, and the number of votes for and against the itéam Item has been voted on, a
“V” will appear at the end of the item. The list currently opisrindicated in the.ist item in
the top right hand corner of the window, with the number ofrigein the list indicated by the

Items entry.

Show Item
ltem

Title: Ilvlr‘ong variable in if statement
Document: [series,cc Position: |34

The variable startstr is used in the if statenent instead
of endstr.

Type: Data Class: Wrong Severity: Major

[

—

Figure B.12: The show item window.

Three menus appear in the top left-hand corner of the windidve File menu has two
items: Close which closes the browser, afmtint which prints the currently selected list.
The print facility uses the standahgr command and prints to the line printer by default.

Section B.8.1 describes how this may be altered.
Theltem menu has entries relating to item manipulation. Almost &these commands

only work when an item has been selected (with single mousk) ¢h the summary window.
Commands such asdit andCut will only work on writable lists. Two of these commands
open a window like that shown in Figure B.12. The various §ebdl this window are as

follows:
e Title - The title of the item.
e Document- The document in which this item occurs.
¢ Position- The position within the file where the item occurs.
¢ A free-form text description of the item.

¢ Classification buttons, which are used to set up to threesifieegtion terms for this
defect. The classification scheme used depends on the prbeegsy executed. See

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 194

Section B.8.4 for details on providing your own classifioatscheme.

Theltem menu in this window has four entries:
e New- Creates a new item as an annotation on the current item.

¢ Propose/Vote- During a synchronous collection meeting, fPi®poseoption is avail-
able to allow participants to discuss items. During asyoobus collection meetings,
the Vote option is available to allow participants to vote on items.

e Show Source- Sends a message to the appropriate browser to move thegosiign
to that of the current item.

e Next - If the current item has any annotations associated witthéir titles appear in
this submenu. Selecting a title from this submenu opens dawrcontaining that item.

Considering the main List Browser window, the commandslalste from theltem menu
are:

e Show- Opens a window like that in Figure B.12 allowing the detailshe item to be
examined and edited. This can also be achieved by douldleirgljon the relevant item
in the summary window. If the item is from a writable list, iilllbe editable. Click
onOK to save any changes and close the windowGancelto ignore the changes and
close the window. Note that the document name can never bexledi

e New - Opens a window like that in Figure B.12 allowing details afiew item to be
added. Click orOK to add the item, o€ancelto forget about the new item. If a new
item is requested from a browser, the document name andgo§ilds will already
have been filled and cannot be edited.

e Cut - Removes the current item from the list and stores it intéyriar later retrieval in
aPasteoperation.

e Copy - Copies the current item from the list and stores it intdgnfalr later retrieval in
aPasteoperation.

e Paste- Provided an item has been cut or copied, this allows it to dstqul into the
current list.

e Show Source- Sends a message to the appropriate browser to move thetfmths
position of the current item, allowing the position of itemihin the appropriate file to
be easily found.

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 195

¢ Propose/Vote- During a synchronous collection meeting, fP®@poseoption is avail-
able to allow participants to discuss items. During asyoobus collection meetings,
the Vote option is available to allow participants to vote on items.

ASSIST implements a voting mechanism to allow inspectordeicide on the validity
of a item during a collection meeting. Voting can take plaitkez synchronously or asyn-

chronously.

Item proposal: fraser
e: |Hrong variable in
Document: [series,cc Position: |34

The variable startstr is used in the if statenent instead
of endstr.

Type: Saiz Cass: PFrom Severity: Gdaioy

Voting... Eﬁccept @ Rejectm Vote

Figure B.13: The item proposal window.

Synchronous voting is achieved with tReoposeitem in theltem menu. When an item is
proposed, a proposal window like that in Figure B.13 appearall inspectors screens. This
window is similar to the edit window, but has additional aotg for voting, and counts of the
number of votes cast. There are two buttons which may be aseakt votes on the item:

e Accept- indicates agreement with the item.

¢ Reject- indicates disagreement with the item.

When a vote has been cast, the vote counts are updated andtitig: buttons become
inactive for that inspector. If all votes have been cast @lecurrently connected participants
have voted), the resultis displayed in the bottom left hasrder. The proposal window may
then be closed. Where the item is accepted, the scribe will teachoose a destination list.
This list is usually some master list output from the meetiAger the list is chosen and the
item added, the meeting can move on to the next issue. Theesal$o has the option of
editing the item, and can make use of thpdate button to ensure that all participants see
any proposed changed to the item before they vote on it. Wivereais underway, the scribe
is usually not able to close the propose window until the Wisteomplete. In exceptional
circumstances, the scribe may hold dowshift > and click onCloseto force the window
to close. Note that if a vote is tied, ASSIST currently fortles item to be accepted.

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 196

Asynchronous voting is achieved with thete item in theltem menu. This brings up a
voting window similar to that in Figure B.13, and voting isrged out as above. Although
votes are propagated as above, there is no requirementdor participant to vote simultane-
ously, and the item does not require a scribe to choose andésti item list. The scribe must
manually copy items when consensus has been reached.

Contents
0.50

kel

Classification

0.25
[|
Position
0.25
[|
Acceptance Threshold
0.50

| bk

Status

ISet.ting factors,,.click 0K to proceed,

o]

Figure B.14: The Auto Collate control window.

ThelLists menu contains one itenuto Collate. This function allows several lists to be
combined into one with ASSIST removing duplicate entriebe§e duplicates need not be
exact; ASSIST scores list items on position, content ansisdfigation. If two items match
with a score above a user-defined threshold, one of the itelitsandiscarded. Auto-collation
starts by asking you to select a number of source item ligtes& are the lists which you wish
to merge together. The requester displays all lists availaliick on the name of each list you
wish to include, holding dowr shift > to select multiple lists, then click 0@K. You can
select a single destination list by clicking on its name the®K . The control window shown
in Figure B.14 then appears, allowing you to set variousoigcaffecting the auto-collation
process. The&€ontents ClassificationandPosition values indicate the relative importance
of the appropriate part of the item when calculating the kiritiy between two items. The
total of all these factors must sum to 1, hence increasingrédsing) one factor decreases
(increases) the other&cceptance Thresholdis the value of similarity that two items must
have to be declared duplicates. The higher the thresholgeydhe more similar two items
must be to be declared duplicates. However, too high a thtestill result in no matches
being made. Clicking o®K starts the auto-collation process. Status messages dppbar
control window to indicate progress. When auto-collatisrcomplete, the control window

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 197

disappears.

The Text Browser

Menus Position and coverage indicators

Text Brgwser: User Mamual

Focus Window Find Annotations References

File

Clicking the niddle menu button over the main window brings up a menu 3
containing any references that nay exist for the word under the nouse
pointer, Each entry contains the nane of the document in which it
occurs, the position within that document, and the actual word
referenced, The text browser makes use of a stemming algorithm,

For example, calculation would also reference calculates and
calculated. hence the appearance of the referenced word in the

menu entry, The word under the pointer also appears at the top of

the menu,. and its reference appears in reverse video within the menu,
Selecting a reference will have one of tuwo effects. If the reference is
within this docunent the focus will be noved to the appropriate place.
If the reference iz in another document, the appropriate browser will
be opened and brought to the front with the focus set to the reference.

3 MmeEnu

emtrg—Tomrtais—the—titte—of—the oA troemer—Seterting—ar
entry brings up a window containing the details of that annotation,
The annotation can be edited if it is contained within a list which
(:ljrr(3r1t can be edited. The annotations available depend on the annotation
level set in the Annotations menu (see later).
focus

Six menus appear in the top left-hand corner of the windouw. The File

menu has one iten {Close} which closes the browser, The Focus menu

has two itens. Junp brings up a requester allowing you to

type in a specific area of text to move to. This area of text is specified in
the form a.b-c.d, where a is the starting line nunber, b is

the character position on that line, ¢ is the ending line nunber and

d is the character position on that line, On clicking the DK

button, the focus will nove to that part of the text. Uncover

resets the document coverage to zero.

The Hindow menu allouws you to alter the view of the document between one

or two windows, The two window view allouws you to compare different parts of
Jthe docunent at the same tine, and nay either be split horizontally or
wvertically. Use the 5plit Horizontal option in the Hindow nenu to

=plit the view into two windows, one above the other. Hote that while each
mwindow can be positioned independently, only the upper window nakes use of the
ffocus and allows annotations to be created and examined, Use the Split
Yertical option to split the view into two side-by-side windows, Again, while EZ

g Hews H Dminie |g Hhaw H Wale |

Title of current annotation Annotation controls

Figure B.15: The text browser.

The text browser (Figure B.15) is a text-only document viewéh fine-grain annotation
facilities. The browser is based on the idea of a currentdpce. an area of text which is
currently under scrutiny. The focus may consist of any @prdius area of text. The current
focus can be annotated, or existing annotations can be readited. When a synchronous
group meeting is being held, the current focus is contrdiedhe reader, and as the reader
moves the focus so too does the focus of all other particgdrite current focus is indicated
by reverse video. The focus is set by holding down the lefe@tgmouse button and dragging
over the required area of text. The selected area of text\sthe focus and appears in

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 198

reverse video. Annotations referring to any part of theceldarea then become available for
manipulation, or annotations referring to the whole arealmaadded.

Annotations are indicated on the text in one of two ways. lidisplay is monochrome,
text which has been annotated appears underlined. If yoeidnawlour display, annotated text
appears as black characters on a red background. The ifytenshe background indicates
the number of annotations for the text: the brighter the tieelmore annotations there are, up
to a maximum of eight different shades.

The browser also introduces the concept of coverage, ie.athount of the document
which has been inspected. An area of text which has beenths fs considered to have been
inspected, and therefore counts towards the coverage fdta total is shown in the top left
corner of the window, along with the current line numberpested text is shown in a reduced
weight font.

Clicking the middle menu button over the main window bringsaumenu containing any
references that may exist for the word under the mouse poiséeh entry contains the name
of the document in which it occurs, the position within thatdment, and the actual word ref-
erenced. The text browser makes use of a stemming algorftbnexamplecalculation
would also referencealculates andcalculated , hence the appearance of the refer-
enced word in the menu entry. The word under the pointer gdpears at the top of the menu,
and its reference appears in reverse video within the meelectng a reference will have
one of two effects. If the reference is within this documérg focus will be moved to the
appropriate place. If the reference is in another docuntéetappropriate browser will be
opened and brought to the front with the focus set to the eefas.

Clicking the right menu button over the main window bringsaimenu of annotations
referring to the text under the mouse pointer. Each entryainathe title of the annotation and
its owner. Selecting an entry brings up a window containirgdetails of that annotation. The
annotation can be edited if it is contained within a list whaan be edited. The annotations
available depend on the annotation level set inAheotations menu (see later).

Six menus appear in the top left-hand corner of the windove Hite menu has one item
(Close which closes the browser. Tl®cusmenu has two itemslump brings up a requester
allowing you to type in a specific area of text to move to. Thieasof text is specified in the
forma.b-c.d , wherea is the starting line numbeh is the character position on that line,
c is the ending line number ardlis the character position on that line. On clicking (D&
button, the focus will move to that part of the tekincoverresets the document coverage to
zero.

The Window menu allows you to alter the view of the document between orievo

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 199

windows. The two window view allows you to compare differgmirts of the document at
the same time, and may either be split horizontally or veltyc Use theSplit Horizontal
option in theWindow menu to split the view into two windows, one above the othesteN
that while each window can be positioned independentlyy thé upper window makes use
of the focus and allows annotations to be created and examisse theSplit Vertical option
to split the view into two side-by-side windows. Again, wehégach view may be positioned
independently, only the left-hand window makes use of tite$aand allows annotation. Use
the Join option to return to a single window view. During each of theperations, the win-
dows are positioned to show the current fooOseate Separatecreates a completely separate
window containing the text.

TheFind menu provides access to a simple search mechanism.

e Find Forward - brings up a dialogue box allowing you to enter an exprestione
searched for. The search proceeds forwards from the cysosition of the cursor.

e Find Backward - brings up a dialogue box allowing you to enter an expressidre
searched for. The search proceeds backwards from the tpwsition of the cursor.

e Find Again - repeats the last find operation in the same direction aséestarting
from the position at which the the last find stopped.

The Annotations menu has an entry for each annotation which refers to thescupo-
sition of the cursor. Choosing an annotation from this mesmrsys up a window containing
the details of the annotation and allowing it to be edited @klongs to an editable list). The
menu also has another option allowing the annotation leveketset. This option has three
choices.All allows the browser to display all annotations referringhis document.Own
restricts annotations to those belonging to the useneprevents any annotations from being
displayed.

TheReferencesnenu has an entry for each reference for the current posifitire cursor.
This menu operates in the same way as that described abaveeforiddle mouse button.

The strip of controls along the bottom of the window provideo access to the annota-
tion functions available from the List Browser. See SecB08.2 for a detailed guide to using
the list browser.

e Cycle- is used to select between annotations if there is more tharfar the current
focus. TheCycle button is labelled with a circular arrow.

e New- presents a window allowing you to enter a new annotatiothiercurrent focus.

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 200

e Delete- removes the currently selected annotation.

e Show - displays the details of the current annotation, if onetexialso allowing the
annotation to be edited.

e Propose/Vote- During a synchronous collection meeting, this button appasPro-
pose allowing you to propose the current annotation to the whoéseting. During
an asynchronous collection, the button appeargods, allowing you to cast an asyn-
chronous vote on the item.

The Code Browser

Menus Position and coverage indicators

ode Bryfwser: series.cc
Focus Window Find Annotations Line: Coverage:

#include <stdlib.h>
#include <ctype.h>
#include <iostream.h>

const int IS_NOT
const int IS_INT
const int IS_REAL
const int IS_EHP
const double FZEROD

H

I
[I-R--R - L T LY

0
1
2
3
1

63— 10:

11 jint fzeroddouble x):
12 {int izinteger {char #stringl:
13 {int rumber{char =string):

15 fvoid main {int argc. char ==arge}
16 £

17 long MumItems = Of

18 double Value = 0,0
19 double Start = 0,07
20 couble End = 0,0;
21 double Step = 1,0z

22 char #startstr = argvl1]:
23 char *endstr = argvl2];
24 char #cstepstr = argul3]:
25 int MumPrgs = argo:

26
27 switch {NumArgs)
28 £
Current 29 case 3:
~J 3 if {1 number{startstr)) £
fOCUS \ZJ\ cerr <4 "Argument #1 ot a number: " << startstr << endl;
32 exitily;:
1G4
TerT t a nunber: * << endstr << endl:
. 36 exit{1};
Annotation 2 (1 rumben s
. . i ! nunber{stepstr
IndlcatOI' 39 cerr {{ "Argunent #3 not a nunber: " << stepstr << endl;
40 exit{l};

;|_¢|;;|§ < ”;HLH N ”vlrong varisble in if g New |E Delete |E Show |E Vals |

Focus controls Title of current annotation Annotation controls

Figure B.16: The code browser.

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 201

The code browser (Figure B.16) is a text-only source codeeti@vith annotation facilities.
Like the text browser, this browser is also based on the idemaurrent focus. This time
the focus consists of a single line of code. The current f@ausbe annotated, or existing
annotations can be read or edited. When a synchronous greefing is being held, the
current focus is controlled by the reader, and as the readeesthe focus so too does the
focus of all other participants. The current focus is intkcgby reverse video. The focus can
be set in a number of ways. The up/down cursor keys move thesfop or down one line.
Holding down the<shift> key at the same time moves the focus ten lines in either drect
The focus can also be directly set by clicking on a line. Otostrols are available for moving
the focus backwards and forwards (see later).

This browser also has the concept of coverage. A line whistblean the focus is consid-
ered to have been inspected, and therefore counts towadetverage total. Inspected lines
are shown in italics. The browser also performs line nunmgerivhich appears to the left
hand side of the main text window. Line numbers appear inrseveideo when that line has
one or more annotations associated with it. Unlike the texivber, there is no indication of
annotations on the text itself.

Six menus appear in the top left-hand corner of the windove Hite menu has one item
(Close which closes the browser.

TheFocusmenu has controls to allowing the current focus to be moved.

e Start - moves the focus to the first line of the document.

¢ FastRewind- moves the focus ten lines backwards.

¢ Rewind - moves the focus to the previous line of the document.
e Forward - moves the focus to the next line of the document.

e FastForward - moves the focus ten lines forward.

e End - moves the focus to the last line of the document.

e Jump - brings up a requester allowing you to type in a line numben. diicking the
OK button, the focus will move to that line.

e Uncover- resets the document coverage to zero.

The Annotation menu has controls for manipulating annotations. Most o$¢éheom-
mands interact directly with the list browser. See Sectio®Bfor a detailed guide to using
the list browser.

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 202

¢ View - displays the details of the current annotation, if onetexighis can also be
achieved by double-clicking on the appropriate line.

e New- presents a window allowing you to enter a new annotatiothfercurrent line.
e Delete- removes the current annotation.
e Edit - allows you to edit the details of the current annotation.

e Propose/Vote- During a synchronous collection meeting, this option @ppasPro-
pose allowing you to propose the current annotation to the whoéseting. During
an asynchronous collection, the option appeargais, allowing you to cast an asyn-
chronous vote on the item.

e Cycle- is used to select between annotations if there is more thariay this line.

TheWindow, Find andAnnotations menus work in an almost identical manner to those
in the text browser. The only difference worth noting is thanotations can only refer to
single lines. Annotation at a lower level is not available.

In the top right hand corner you can find an indication of theent line numberl(ine)
and the amount of the document which has been covered, irs tefrtext examined as a
proportion of the total amount of text in the docume@byerage.

The strip of controls along the bottom of the window provideal access to the most
used menu functions. The focus controls duplicate the firsestries in theFocus menu
(from left to right: Start, FastRewind Rewind, Forward, FastForward andEnd).

The annotation controls duplicate tlgcle, View, New, Delete Edit andPropose/Vote
items of theAnnotation menu (note that th€ycle button is labelled with a circular arrow).
The central text gadget displays the title of the currenoaatimon, if any.

The C++ Browser

The C++ browser is identical to the text browser in all but sespect. Instead of simple
keyword cross-referencing, it provides C++ specific craferencing, such as links between
function declaration and usage. To gain the maximum bemefit {C++ cross-referencing,
the C++ checklist (document typdetection aid , content typechecklist) and C++
Reference (document typstandard , content typeHelp) supplied with ASSIST should
be made available during the inspection. The C++ browsdrtixgin make use of these to
provide context specific checklist items and help.

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 203

The Simple Browser

Simple Browser: Series Specification|

Hle Window Find References

LY

Specification for program series””

JHane

series -- generate a series of nunbers

Uzage

series start end [stepsizel

JDescription

series prints the real nunbers from start to end, one per line, series
fbegins with start to which stepszize iz repeatedly added or subtracted,
az appropriate, to approach, possibly meet, but not pass end.

If all arguments are integers, only integers are produced in the output.
The stepsize nust be nonzero: if it is not specified, it is assumed to be
1. Hegative step sizes are nade positive. In all other cases, series prints
an appropriate error nessage, If the wrong nunber of arguments are given,
series prints a usage nessage,

series accepts numbers in several fornats: integer, real {(where either the
whole or fractional part nay be onitted} and exponential {an integer or
real, suffixed with "e” or "E* followed by a {signed} integer exponent).
Any number with a fractional part consisting only of zeroes i= converted to
an integer {e.g. 1.0000 iz treated as 1). All numbers may optionally be
prefixved by a plus or ninus, Exanples of acceptable numbers include:

+23

Figure B.17: The simple browser.

The simple browser, shown in Figure B.17 allows ASCII docotado be viewed. There
are no annotation or focus controls, although find, windglittng and cross-referencing
facilities identical to those in the text browser are avalgavia the menus. The middle mouse
button can also be used to follow cross-references. @Clesein the File menu to close the
browser.

The C/C++ Library Function Browser

The library function browser is available fetandard -type documents, where the content
type isCLibraryFunctions . It assumes the document consists of a number of descrip-
tions of functions, each separated by a blank line. Eachrigi®n should consist of a single
line denoting the function header, followed by a blank line &nding with a paragraph ex-
plaining the function.

The top part of the window contains four menus, plus an irtthoaof the current function

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 204

Menus Function header Current function

\

C¢++ Library Function Browser: Seri%s Library|
Ale Function Find ﬁeferences| \ Current:

|double fabs(double x}

Conputes the absolute walue of floating point nunber =,

\
I T A

Transport controls Function description

Figure B.18: The C/C++ library function browser.

being viewed, along with the total number of functions aaalié. A single line of text is used
to display the header of the current function, while a miifie- text box is used to display the
description of the function.

The bottom of the window contains transport controls alluywou to scroll through all
the functions available. From left to right these are, starévious, next and end. These
controls are duplicated in tHeunction menu.

The Find menu allows you to search for words within a function entris dperation
is identical to that in the text browser (Section B.3.2), husuccessful find jumps to the
appropriate function. Both the header and the descriptieiged in the find.

The Referencesmenu works in a manner identical to that of the text browserc{S
tion B.3.2). References generated for library functionssist only of the function name.
The Referencemenu shows references for the name of the current functieferBnces are
also available via the middle mouse button. Finally,@eseoption in theFile menu is used
to close the browser.

The Help Browser

The help browser (Figure B.19) implements a subset of HTMjJs tallowing structured doc-
uments to be browsed. The document is organised into magbioss, each of which may
have a number of subsections, which may in turn have a nunilseibsections, and so on up
to a maximum of six levels. A subsection consists of a titie,¢ontents and a list of related
subsections (und&ee Alsg. Each (sub)section is displayed on its own, with links twdo
subsections appearing at the bottom of the page. Links (BekeAlscand further subsections
appear underlined, and the links can be followed by clickinghem. Other navigation facil-
ities are available, and are described later. When the laofivst appears, a contents page is

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 205

Help Browser: C++ Reference|

f Fle Find References History

IC++ Reference

E Bagk | E?-am‘mél ECuntentsl 3?%?58% |

Figure B.19: The help browser.

shown, containing links to every (sub)section within thewoent.

Four menus can be found in the top left corner of the windowe Fite contains one
item, Close which closes the browser. Thénd menu allows you to search for words in the
document. Its operation is similar to that in the text brow@=ction B.3.2), except that a
successful find takes you to the page in the document wherediteoccurs. Th&eferences
menu contains a list of references for the current page. sksisiidentical to that of the text
browser. The middle mouse button can also be used to acdessnees for the current page.

The History menu contains a trace of up to 25 pages of the document lastd:isThe
most recently visited page appears as the top entry, therkszent page appears as the final
entry. Selecting one of these entries takes you directiigopage. An asterisk indicates the
current page. Whenever a new page is visited, it is addedtaftecurrent page in the history
list. If the current page is somewhere in the middle of thedmislist, the most recent pages
up to the current page are deleted and the new page added.

A number of shortcut buttons can be found in the top right eftlindow.Back takes you
to the last page visited (as shown in the history li§Qrward takes you to the next page in

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 206

the history list. Contents takes you to the contents page for this documémevious takes
you to the previous logical page in the documéds.takes you one level up in the document
(e.g. from section 1.4 to 1INext takes you to the next logical page in the document. The file
format of help documents is described in Section B.6.2.

The Checklist Browser

hecklist Browser: Moderator Checklis

Hile References
C++ Code Checklist

General

Is the functionality described in the specification fully inplenented by y
the code?

Is there any excess functionality implemented by the code but not .
described in the specification?

Is the progran interface implenented as described in the specification? |

Is there any dead code which cannot be reached in the progran? |

Variable Initialisation and Declarations

Is the variable necessary for the operation of the progran?

Is the wvariable of an appropriate type? |

Is the variable correctly scoped, i.e. does it have the nininum visibility 2y

required?

Is the wvariable correctly initialised before use? |
Is the wvariable correctly reinitialised as required? |
Output Format

=

Figure B.20: The checklist browser.

If a document is of typeletection _aid and is given the content typhecklist , the
Checklist Browser will be used to view it. A typical exampg&shown in Figure B.20. The
window consists of a scrollable list of checklist items whimay be answered. Each item
may be one of five types, each of which is described in Secti6riBAnswering a checklist
item may involve supplying the correct answer for the givem, or it may simply require an
answer to be given. See Section B.6.1 for details on the foofrzhecklist documents.

One item at a time may be the focus of the browser. This itenisglayed in reverse
video. Clicking on an item forces it to become the currenufcAlternatively, the transport
controls in the top left of the window can be used to move tloe$drom one item to the next.

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 207

From left to right these are: move to first item, move back tems, move back one item,
move forward one item, move forward ten items, and move toites.

The File menu contains two entries. TI@&heck entry forces the answer to each item to
be checked against the required answer, if any. A messagappidar informing you whether
all items have been completed or not. TPnt option prints out the checklist. THelose
option in theFile menu may be used to close the browser.

TheReferencemenu contains any references for the item which is the cufosus. This
menu works in the same manner as that in the Text Browseri¢®dst3.2). References for
each item can also be found by clicking the middle mouse hutter that item.

The Criteria Browser

The criteria browser works in an identical fashion to theattlist browser described in Sec-
tion B.3.2. See Section B.6.1 for details on the format decia lists.

The Plan Browser

The plan browser works in an identical fashion to the chatldrowser described in Sec-
tion B.3.2. See Section B.6.1 for details on the format ohpla

The Report Browser

The report browser works in an identical fashion to the chisthrowser described in Sec-
tion B.3.2. See Section B.6.1 for details on the format obrep

Other Browsers

As distributed, ASSIST can also make use of Netscape andt@ewso allow HTML and
PostScript documents to be viewed. ASSIST also allows newders to be easily added.
See Section B.8 for more information.

B.3.3 Process Phases

Entry and Exit

The purpose of the entry and exit phases is to ensure thatiteria are met before the start

of the inspection and before the end of the inspection. Ouatgut documents are defined for

these phases, typically being a criteria list. Doublekifig on each output document opens
the appropriate browser to allow the document to be comgl@&text Phasan theModerator

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 208

menu can then be used to move to the next phase. In the casexit phase, the inspection
will then be complete.

Planning

Planning allows the moderator to decide on the final dethdsanspection, such as the time
for meetings to occur. This plan is then available to all ipgrants throughout the entire

inspection. The plan browser (Section B.3.2) allows the enaibr to enter the final details.

When the plan is completélext Phasen theModerator menu can then be used to move to
the next phase.

Overview

During the overview phase, a participant (usually the autifiche material under inspection)
guides the inspectors through the material they will be ésipg, giving background infor-
mation and general guidance. With ASSIST, this stage mayelih a local environment,
or may be distributed (indicated by the&cation statement in the process definition). A
distributed overview will be supported by the standard ASIStools (see Section B.3.3).

Detection

Detection is the term used for the period of inspection widefects are found and catalogued.
The detection stage in ASSIST can be arbitrarily complersigiing of a number of separate
detections (called folds), each of which can contain a nurabsequential phases. Each of
these phases may in turn be split into a number of paralletghavolving a subset of all
inspection participants.

Single Meetings A single meeting may have one of three purposes: examinatetection
or collection. Examination is concerned with becoming famiwith the target documents.
Detection phases are designed for active defect huntingled@ion meetings are designed
to merge the efforts of individual inspectors together. e may be either synchronous
or asynchronous. During a synchronous meeting, all ppditis are required to attend at
the same time. During an asynchronous meeting, particspaay “attend” (i.e., perform the
required activity) at their own discretion.

Synchronous meetings may be held locally (i.e., all pgrtinis in the one location), or
participants may be geographically distributed. ASSISdvtes several communications fa-
cilities if a synchronous meeting is being held in a disttdalfashion. There are four possible

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 209

Execute: N Fold Example

Inspection Coordinator Time remaining [} |
Folds Participants Targets Read Write

Tean A Inspection” [1
*Tean B Inspection’ [1
"Tean C Inspection” [1

\

Fold: | ‘\ Phase: | Responsibility: |

Folds

Inspector3 {andrew}
[| [Inspector2 {assist)
f [Inspectorl {andy)
[[[Inspectorb {don}
f [InspectorS {rbh}
%/ |Inspectord {efocs)

Haster_Plan

Figure B.21: The coordinator's view of an N-Fold inspection

communications channels allowing participants to shate &dio, video and diagrambis-
course provides a textual discussion medium. The window is diviged two parts. The
upper part shows text broadcast by meeting participanépnegmded by the name of the par-
ticipant who broadcast the text. The lower part allows yobrimadcast your text by simply
typing it and pressingreturn >. The toolvat is used to provide audio conferencing, while
nv provides video andvb provides a shared whiteboard. See Section B.8 for detalt®wf
their use with ASSIST can be controlled. Full details on the af these tools can be found in
their respective manual pages.

During any meeting, the execute window provides each ppaint with documents which
that participant can access. Double-clicking on the docuimame opens the appropriate
browser. See Section B.3.2 for details of the browsers alvisl

Multiple Meetings A multiple meeting is simply a phase with multiple single rmegs
which take place in parallel. Each of these phases take piabe way described above, with
the same facilities available.

Consolidation The consolidation phase allows the person in charge of thgeiction to
check the progress of the inspection and decide whethetfgefuneeting may occur. During
this phase, th&kip Phaseitem in theModerator menu becomes active. If the moderator
decides that the extra phase is not requitgklp Phasemay be used to skip the next phase
and move directly to the following phase. If the next phasediired, theNext Phasetem
can be used as normal. The other facilities available dwaorgsolidation are identical to the
basic meeting facilities, allowing the defined documentsg@iewed, reports completed, and
so on.

N-Fold Inspections During an N-Fold inspection there may be two or more independ
detection stages. Each stage is controlled by a moderakile @& coordinator is in overall

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 210

charge of the inspection. In an N-Fold inspection, the eteesvindow for the coordinator
looks like that in Figure B.21. An extra panel appears on ¢fichand side showing the status
of each fold of the inspection. The name of each fold is fotdvy a status indicator which
shows an “F” when the fold is complete.

During the organisation and completion phases of an ingpedhe coordinator has the
phase controls normally associated with the moder&®oeyjous Phaseand Next Phasg,
along with theRestart Inspection and Abort Inspection controls, all in theCoordinator
menu. When the inspection moves into the detection stag@lthse controls are disabled for
the coordinator, and thend N-Fold control (in theCoordinator menu) becomes active. This
control is used when each fold is indicated as being comflEteappears beside that phase),
allowing the inspection to move to collation. At this poitite phase controls are re-enabled,
and theEnd N-Fold control disabled.

Moderators still have thBrevious PhaseNext Phaseand Skip Phasecontrols, as in a
single fold inspection, but these are only active duringikEold part of the inspection, and
only apply to that fold.

Finally, theFold item in the execute window becomes active during the detectiage
for all participants except the coordinator. This showsrtame of the fold in which you are
involved.

An N-Fold inspection will finish with one or more collation etings, allowing the results
of individual folds to be collated. The collation phase pd®s similar controls to that of
detection meetings. A scribe must be defined in the processigéon: that person will be
able to edit output documents, such as collated defectligtseports. The coordinator is also
usually invited to these meetings, and may be given the faderibe.

Rework

This phase allows a patrticipant to modify the documents uimdgection to account for the
findings of the inspection. The phase definition allows a Isiqarticipant to be defined,
usually the author. During this phase, target documentsrbeceditable. All other facilities
work as normal. An additional facility is provided by thetlisrowser. When an item is
opened, a button allows the author to mark the item as impiézde UseNext Phasein the
Moderator menu to move on to the next phase.

www.manaraa.com

APPENDIXB: WRITING IPDL PROCESSES 211

Follow-up

During follow-up, a participant, usually the person in afgof the inspection, must examine
the edited target documents to ensure they have been pr@meended. The phase definition
allows target and input documents to be specified; thesesarally the edited products and
appropriate lists of changes to be made. The facilitiegedfeluring this phase allow the par-
ticipant to examine these documents. There may also be aenohieports to be completed.
The report browser is available for that purpose.

Inspection Finish

When the final phase of the inspection has been completezttsgjNext Phasefrom the
Moderator menu takes the inspection into the finished state, wheredpection is removed
from the pending lists of all inspectors. If a target docutrteas been edited during rework,
use the document database to retrieve the edited version.

B.4 Writing IPDL Processes

The full definition of IPDL can be found in Section B.5. Thisc8en provides a tutorial
introduction to defining a new inspection process.
B.4.1 Process Outline

An IPDL definition of an inspection is similar to a program tkei in a procedural program-
ming language. Each inspection description consists of afskeclarations (for participants
and documents), and a description of the process to be fetlowhe declarations, process
and the entire description are delimited by keywords, amdihole process may be named.
The outline is then:

inspection 'Example Inspection'
declarations

<...declarations go here...>
end

process

www.manaraa.com

APPENDIXB: WRITING IPDL PROCESSES 212

<...process description goes here...>

end
end

Note that IPDL makes no use of punctuation characters su¢ii asnd whitespace is not
significant. However, it is advisable to use whitespace tormte the readability of your
process descriptions. Note also that the name is an aspbistaing surrounded by single
quotes. This applies to any other place in IPDL where a stamgquired.

B.4.2 Declarations

Declarations are used to introduce the documents and ipantits associated with the process.
Responsibilities, consisting of sets of documents, maylasassociated with each participant.

Document declarations consist of a list of document nameésteeir types, surrounded by
the keywordslocuments andend. Documents can be one of nine types:

e product - A document undergoing inspection.

e source - A document used to produce the document undergoing inspedbr ex-
ample, the design document for a section of code.

e criteria - This document type is a list of criteria which must be safi These
documents must be in a specific format which ASSIST can interplrhe format is
described in Section B.6.

e standard - The product will usually have to conform to a set of standdut that
document type. These standards are used for complianc&iceturing the inspec-
tion.

e report - A report simply details the outcome of a phase, or of an entispection. It
is usually completed by the moderator.

e plan - The definitive description of the inspection process ardpgople who will be
involved in it.

e detection _aid - A document which assists the inspector with finding erretgh
as checkilists.

e list - Alist of comments or annotations, including defect lists.

www.manaraa.com

APPENDIXB: WRITING IPDL PROCESSES 213

A typical document declaration list would be:

documents
Code product
Design source
Individual Defects list
Moderator_Defects list
Maintenance_Defects list
Standards_Defects list
Maintenance_Checkilist detection_aid

Maintenance_Requirements source
Coding_Standard source
end

Note that names are can be of arbitrary length and can carisisy alphanumeric characters,
along with the underscore, and must not contain whitespAen the inspection is instanti-
ated and run, each of these document declarations will hasal @ocument associated with
it.

Responsibilities define a specific area of concern for aneictsp. Each responsibility
consists of a list of documents associated with that respiit\s The entire responsibility
section is surrounded by the expected keywords:

responsibilities
Maintenance requires
Maintenance_Requirements
Maintenance_Checklist
end
Standards requires
Coding_Standard
end
end

Each document within the responsibilities must have beevigusly declared.

The participants descriptionis simply a list of people iweal and the names of theirroles.
Note that the participant list isota list of the real people involved; it simply lists the names
of the “characters' in the inspection and the roles theyplély. Each definition consists of
the participant name, the keywoisl and the participants role. IPDL defines four possible
roles:

www.manaraa.com

APPENDIXB: WRITING IPDL PROCESSES 214

e coordinator - person in overall charge of an N-Fold inspection.
e moderator - person in overall charge of a single-fold inspection.
e author - the author of the document under inspection.
e inspector - has the responsibility for finding defects.

The role may be followed by list and responsibility declamas, indicating the list documents
belonging to that person and the responsibilities of thesqrg respectively. These must be
previously defined. For example:

participants
Moderator is moderator
lists Moderator_defects
end
Inspector_Maintenance is inspector
lists Maintenance_defects
responsibility Maintenance
end
Inspector_Standards is inspector
lists Standards_defects
responsibility Standards
end
end

Putting the above examples together gives a complete décias section for an IPDL
definition:

inspection 'Example Inspection'

declarations
documents

Code product
Design source
Individual Defects list
Moderator_Defects list
Maintenance_Defects list
Standards_Defects list
Maintenance_Checklist detection_aid

www.manaraa.com

APPENDIXB: WRITING IPDL PROCESSES 215

Maintenance_Requirements source
Coding_Standard source
end # Documents
responsibilities
Maintenance requires
Maintenance_Requirements
Maintenance_Checkilist
end
Standards requires
Coding_Standard
end
end # Responsibilities
participants
Moderator is moderator
lists Moderator_defects
end
Inspector_Maintenance is inspector
lists Maintenance_defects
responsibility Maintenance
end
Inspector_Standards is inspector
lists Standards_defects
responsibility Standards
end
end # Participants
end # Declarations
process

end
end # Example Inspection

This example further demonstrates how the declaratiort®segppears within the entire def-
inition. It also introduces the comment character “#”. Amiyig appearing between this char-
acter and the next newline is entirely ignored.

www.manaraa.com

APPENDIXB: WRITING IPDL PROCESSES 216

B.4.3 Process Definition

The heart of IPDL lies in defining the inspection procesdfitSéne process consists of three
main stages: organisation, detection and completion. Batttese stages is tackled in turn in
the following sections.

Organisation

The organisation stage may have up to three phases: ernyipf and overview. The phases
must be defined in that order. A typical definition of entry is:

entry 'Entry’
participant Moderator
outputs Entry_criteria
end

This names the phase “Entry” and states that the singlecpzatit ofModerator should
be present. The phase also produces a single document Ealigd _criteria . Both the
participant and document must be defined in the declarasiectson. Only a single participant
may be specified, using the keywagpdrticipant , but multiple output documents may be
specified (keyworautputs). Output documents must be either plans, reports, crilistis
detection aids or lists, and this applies in any phase wheypubdocuments are required. The
definition is delimited by the keywordmtry andend.

Planning has a similar format, but both multiple particitssend documents may be spec-
ified:

planning 'Planning’
participants Moderator
outputs Master_Plan
end

Overview is slightly more complex. Firstly, the locationtbe phase must be stated, ei-
therlocal ordistributed . Along with the participants list (keywondarticipants
- note the plural), gresentemust also be specified. This is the person who presents the
overview material. Finally, three types of documents magecified:targets (the docu-
ment(s) under inspectioripjputs (documents which are present at the phase but not edited)
andoutputs (documents produced or edited during the phase). Targehautdocuments
may be of any type, while output documents have been prelyidefined. A typical example
of an overview phase is:

www.manaraa.com

APPENDIXB: WRITING IPDL PROCESSES 217

overview 'Overview'
location local
participants
Moderator
Author
Inspectorl
Inspector2
Inspector3
presenter Author
targets Code
end

Detection

Detection is the most complex part of the process. It canisbaka single sequential stage,
or a number of parallel “folds”. The simplest case of a sirggguential detection stage is
tackled first.

A single detection stage consists of one or more meetinggsha&sach of which may be
followed by a consolidation step. A consolidation step ¢sissof a consolidation meeting
and an optional meeting; the consolidation meeting is usetetide if the extra meeting is
required. An example of this is:

meeting 'Collection’
objective collection
timing synchronous
location local
visibility public
participants
Moderator
Producer
Reviewerl
Reviewer2
roles
Reviewerl is reader
Reviewer2 is scribe
targets Code

www.manaraa.com

APPENDIXB: WRITING IPDL PROCESSES 218

inputs Design
outputs Master_Defects
end
consolidation 'Consolidation’
participant
Moderator
targets Code
inputs
Master_Defects
Design
outputs
Unresolved_Defects
Consolidation_report
end
meeting 'Group Review Meeting'
objective collection
timing synchronous
location local
visibility public
participants
Moderator
Producer
Reviewerl
Reviewer2
roles
Reviewerl is reader
Reviewer2 is scribe
targets Code
inputs
Unresolved_Defects
Design
end

The meeting definition introduces several new items. Thevieg objective deter-
mines the objective of the meeting: either examinationect&in or collection. A meeting

www.manharaa.com

APPENDIXB: WRITING IPDL PROCESSES 219

may be eithesynchronous or asynchronous , indicated by théiming clause. Dur-
ing a synchronous meeting, all participants must be pregemte time, while an asynchronous
meeting allows participants to attend at their own disoretiThelocation =~ may belocal
or distributed , as for an overview phase. Thisibility keyword indicates the visi-
bility of individual participants' data, i.e. their docunts defined under tHists subclause
in the participant definition section. If this mblic , all of these documents are available
to all participants. If the keyworgrivate is used, all such documents remain private to
their owners. Participant definitions follow those alreaen, with the further option of
defining two extra rolesteader andscribe . The reader has overall control of the focus
of an asynchronous meeting, while the scribe is tasked waithpdeting documents. Finally,
document definitions follow the same pattern as previoustys. Consolidation meetings
have a similar structure to simple meetings, with the pgudicts and documents present being
defined.

As an alternative to a single meeting, two or more meetindsetbeld in parallel may be
defined:

parallel 'Parallel

<...meeting definition 1...>

<...meeting definition 2...>

<...meeting definition n...>

end

Each meeting definition is simply a single meeting as presfipshown. A given participant
should not appear in more than one meeting definition of dlphphase. This is not enforced
by ASSIST, butis an obvious constraint that should be agplie

N Fold Detection Instead of a simple sequential detection stage, there mayrhenber
of complete stages held concurrently, known as an N-Folpidcson. Each fold is a single
detection phase surrounded by the keywdali$ andend. The concurrent stages must be
followed by at least one collation phase, where the restiliteefolds are brought together.
The entire N-Fold stage is surrounded by the keywordsld andend:

www.manaraa.com

APPENDIXB: WRITING IPDL PROCESSES 220

n_fold
fold 'Fold 1'

<...detection definition...>

end
fold 'Fold 2'

<...detection definition...>

end

collation 'Collation'
timing synchronous
location local
participants
Coordinator
Moderatorl
Moderator2
Author
roles
Moderatorl is reader
Moderator2 is scribe
targets Code
inputs
Team_A Defects
Team_B_ Defects
outputs Master_Defect_List
end
end

The example shows a typical collation phase, with timingatmn, participants, roles and
documents clauses like those of simple meetings. An N-Fagection must have a single

www.manharaa.com

APPENDIXB: WRITING IPDL PROCESSES 221

participant defined to be@oordinator , who is the person in overall charge of the inspec-
tion. Each fold must have a single moderator.

Completion

Completion consists of three possible phases: reworlovislip and exit. The phases must
be defined in that order. Rework must have a single partitidafined, along with targets,
inputs and possible outputs. For example:

rework 'Rework’
participant Author
targets Code
inputs
Defects
Design
end

Follow-up has much the same format, however targets, ilgndsoutputs must all be speci-
fied, along with a single participant.

follow_up 'Follow-up'
participant Moderator
targets Code
inputs
Defects
Design
outputs Follow_up_Report
end

Exit takes a form similar to that of entry. For example:

exit 'Exit'
participant Moderator
outputs Exit_criteria
end

B.4.4 Putting It All Together

The above demonstrate individual aspects of IPDL. To seethewleclarations and process
parts fit together, please refer to the supplied processitlefisa. Further help on writing

www.manaraa.com

APPENDIXB: IPDL REFERENCE 222

softwareinspection ::= inspection inspectionname
declarations
process
end

inspectionname = string

declarations := declarations

documenteclarations
responsibilitydeclarations,,
participantdeclarations
classificationdeclaration,,,
end

process = process
organisationprocess
detectionprocess
completionprocess

end
organisationprocess ::= entry,,; planning,,; overview,,
detectionprocess := [detectionn_fold]
completionprocess = rework,,; follow_up,,; exit,,; metrics,,
string = “ " character” “' "
character ::= Any printable character or white space.

Figure B.22: Initial process definitions.

new processes can be found by reading the language refdi@ectgon B.5) and the supplied
process definitions.

B.5 IPDL Reference

The following sections describe the grammar of the inspectiescription language. It is
described using a Backus-Naur style of notation. In thistion, a phrase in italics is non-
terminal, while words irtypewriter style indicate language keywords. The "::=' operator
is used to show expansion of non-terminal clauses. A plusabels one or more instances of
a given clause, whileptindicates that the clause is optional. Finally, squarekstsindicate
alternatives, with the alternatives separated by vertieas.

B.5.1 Structure of Process Description

The description of a software inspection consists of twagparhe first part contains decla-
rations listing the participants and their roles, alongwmiie documents which will be used
and created during the process. The second part describgsdbess itself, split into three
stages. There should also be a facility for naming the inspecThe initial definition of the
inspection is that given in Figure B.22. The keywondspection andend are used to

www.manaraa.com

APPENDIXB: IPDL REFERENCE 223

documents documeniefinitiont end
documeniname documertype

documenideclarations
documenitdefinition

documeniname = identifier
identifier := nonwhitespacecharacter
nonwhitespacecharacter ::= Any printable character which is not white space.
documentype := [product |report |source |standard |
list [criteria |[plan |detection _aid]
Figure B.23: Document definitions.
targets := targets documenmname
inputs 1= inputs documenmname
outputs = outputs documeniname

Figure B.24: Document inclusion clauses.

delimit the descriptioninspection namés simply an arbitrary string surrounded by quotes.
The declaration section consists of inspection documeesponsibilities, participants and
classification scheme. Each of these is described in thewioly sections. The inspection
process itself mirrors the process described earlier, isting of the three major phases of
organisation, detection and completion. The initial d&fmis of these are also presented and
each will be described in more detail later.

B.5.2 Inspection Document, Participant and Responsibility Declarabns

The first section within the declaration part of the desariptescribes all documents which
are available and created during the entire inspection,isugdefined in Figure B.23. This
section simply defines names for each of the documents to de wihin the inspection.
When the inspection is instantiated and run, part of therprantask is to associate the real
inspection documents with each document defined. The fasireich documents as criteria
lists and reports is therefore left to the implementation.

The definition of each phase of the inspection will require tocuments present and
created during that phase to be defined. This will be achibyetthe use of several clauses,
defined in Figure B.24. Any document name appearing in thieseses must be declared
within the document declaration section. The first of thet®ducesargetdocuments, which
may be of any type described above and are the actual docsifneimg inspected. There is
no constraint on the type since it is not unreasonable tevadtandards, checklists and other
supporting material to be inspected at the same time as ddpr. Theinputs keyword
indicates documents which are made available to this phaslenay also include documents
of any type. Theoutputs keyword indicates the documents created or edited duriag th

www.manaraa.com

APPENDIXB: IPDL REFERENCE 224

responsibilitydeclarations ::= responsibilities responsibilitydefinitior end
responsibilitydefinition = responsibilitynamerequires {documenname' },,; end
responsibilityname ©= identifier

Figure B.25: Responsibility definitions.

participants participantdefinitiont end
participantnameis

role

participantlists,,;
responsibilityassignmeny,,

participantdeclarations
participantdefinition

end
participantname = identifier
participantlists = lists documeniname
responsibilityassignment ::= responsibility responsibilityname

role [coordinator |moderator |author |inspector]

Figure B.26: Participant definitions.

phase, which may either be reports, plans, criteria listteation aids or lists. During each
phase, participants will only have access to documents etefior that phase using these
clauses.

The next part of the description is concerned with descglilve participants involved
with the process and the responsibilities which they maydségaed. A common inspection
practice is to assign reviewers responsibility for cerdeiffect types, thus hopefully improving
the coverage and effectiveness of the inspection. Thisrespility usually comes in the form
of a checklist or other defect finding aid. Figure B.25 showw la responsibility may be in
terms of documents. Each responsibility has a name and &f liigicuments associated with
it. These will usually be checklists or other detection aioist may also include standards
or any other document type. These documents should be madeld® to the appropriate
participant by the support tool.

The definitions for inspection participants are shown inuiFgyB.26. There will usually
be several constraints on the selection of participantpic@ly, there must either be one
moderatoror one coordinator and several moderators, depending on feedyinspection.
This constraint is not part of the language because it magesssarily limit its flexibility.
Instead, it is left to the implementation to enforce suclrietsons as required. Zero or more
authors may be declared, to allow maximum flexibility. Anynmer of inspectors may also
be declared. Thists subclause indicates the document which this participahuse to
record defects, change requests or other such items psiyidigcussed when considering the
list document type. Finally, the responsibility names usect be previously declared in the

www.manaraa.com

APPENDIXB: IPDL REFERENCE 225

classification classificationname
string

classificationdeclaration
classificationname

Figure B.27: Item classification clauses.

responsibility declaration section above. Note that anglsiperson may have more than one
role or responsibility. During each phase, any participaith no defined responsibility will
only be given access to documents defined in that phasehose generally available. One
such possible document is a general checklist used by everyo

The participants description is simply a list of people iweal and the names of their
roles. Note that the participant listmot a list of the real people involved; it simply lists the
names of the “characters' in the inspection and the rolgsitieplay. For example, a Fagan
inspection may have:

Moderator is moderator

indicating that the person called Moderator is executing ritoderator's duties. Contrast
this with a Gilb and Graham-type inspection, where the persrying out the task of the
moderator is known as the leader:

Leader is moderator

This convention allows the naming of roles in any way redqiiirgllowing us to use terms
which coincide with any inspection practice. This alsowBanany people to take the same
role, for example to have multiple inspectors, each with igueresponsibility:

Inspector_MF is inspector
lists MF_defects
responsibility Missing_Functionality
end
Inspector_AM is inspector
lists AM_defects
responsibility Ambiguity
end

Figure B.27 shows the item classification clauses. Thesesed to optionally specify
the classification scheme to be used for list items. The ndriealassification scheme used
must be known to ASSIST (e.g. "Fagan'). Classification naanesiot part of the language
definition. See Section B.8.4 for details on adding new diaation schemes to ASSIST.

www.manaraa.com

APPENDIXB: IPDL REFERENCE 226

participant
participants

participant participantname
participants participantname

Figure B.28: Participant inclusion clauses.

entry = entry phasename
participant
targets,,;

inputs,;

outputs

end

string

phasename

Figure B.29: Entry phase definition.

Finally, for each phase of the inspection the participaetgiired to be present must be
indicated. This is achieved with the two definitions showfigure B.28. The first definition
indicates that only one participant should be present,eithié second indicates the possibility
of more then one person taking part. The use of these defisitidll be shown along with
each phase, but any participant name used within theseeslanast have previously been
declared in the participants declaration section.

B.5.3 The Organisation Process

The organisation stage may have three phases: entry, ptaanid overview. Figure B.22
shows the order in which these phases must occur, and ieditat the entry and overview
phases are optional. Each of these phases is defined in tarting with the entry phase,
shown in Figure B.29. This defines a name for the entry phaderaticates that only a
single participant is required during this phase, usuathes the moderator or the coordinator,
depending on the type of inspection. At least one output oheeu must be defined, usually
a criteria list. A report detailing the outcome of the phasaliso usually defined. Other
documents may also be present using the targets and input®fds

The next phase defined is planning, shown in Figure B.30. Aghis phase may be

planning := planning phasename
participants
targets,;
inputs,;
outputs
end

Figure B.30: Planning phase definition.

www.manaraa.com

APPENDIXB: IPDL REFERENCE 227

overview = overview phasename
location [local |distributed]
participants
presenter participantname
targets
inputs, .
outputs,
end

Figure B.31: Overview phase definition.
detection

meetingphase
multi_meeting

[meetingphase consolidatiastep,,:]*
[multi_meeting|single _meeting]
parallel phasename
singlemeeting

singlemeeting

end

consolidation meetingphase

consolidationstep

Figure B.32: Detection stage definition

named according to the method being described. Althougimptg will generally involve a
single moderator, multiple participants must be alloweaddspecially in the case of an N-Fold
inspection, where the cooperation of several moderataisiawoordinator may be required to
form the inspection plan. In this case, the coordinator Ehbave overall control over the
planning stage, while the other participants can provigruiin With multiple participants
there must be either a single moderator or a single coomiindgain, this constraint is left to
the implementation. At least one output must be defined (lysaglan), but others outputs,
along with targets and inputs, may be defined.

The final organisation activity is overview, shown in Figid&1. This phase requires the
definition of the participants involved, the format of theetieg, either local (same place) or
distributed (different place). The presenter is the pemsbo carries out the briefing; this is
usually the author. The overview phase is optional.

B.5.4 The Detection Process

Detection activities consist of either a single detectiotivety or an N-Fold activity. This is
shown in Figure B.22. A single detection activity was defiteedonsist of at least one meeting
phase, possibly interspersed with consolidation stepghi&tpoint the possibility of having
several parallel meetings is also introduced to provideaghkexibility. This allows subsets of
the team to meet separately. Consolidation steps consastomsolidation meeting, where it
is decided if a further meeting is required, and the meetisgfi The definition ofletection

www.manaraa.com

APPENDIXB: IPDL REFERENCE 228

singlemeeting ::= meeting phasename
objective [examination |detection |collection]
timing [synchronous |asynchronous]
location [local |distributed |
visibility [public |private]
duration,,;
participants
roles,,;
targets
inputs,;
outputs,,
end

duration = duration integer

Figure B.33: Meeting phase definition.

roles = roles role_assignmertt
role_assignment ::= participantnameis meetingrole
meetingrole := [reader |scribe]

Figure B.34: Role definition.

is shown in Figure B.32.

A meeting is defined to be a phase with one or more participahts may meet syn-
chronously or asynchronously, and whose discussion mayitet or public. The meeting
may have one of three objectives: examination, defect tete®r defect collection. The as-
signment of roles during the meeting must also be allowedal, the documents produced
and used in the meeting must be defined. The definition of aingeistshown in Figure B.33.

The definition starts with the keywomtieeting , followed by the meeting name. The
objective, timing, location and visibility are then sepmd with the maximum duration of the
meeting in minutes. The implementation should use the wur&b help guide the moderator
during the meeting. This is followed by a list of all meetinarficipants, as defined earlier.
The roles of reader and scribe may be assigned. If no readpeisfied, then it is assumed
that any participant can guide the meeting (such as in a Haypglipe inspection where the
document is not paraphrased). If the scribe is not spectiied the moderator should be given
that role by default. The roles are followed by target docatsginputs from previous phases
(such as lists) and outputs generated during this meetirg @s reports). All documents are
optional except for target documents. The role assignmesiian is defined in Figure B.34.
Only the roles oReader andScribe are defined.

The consolidation phase may follow any meeting, and is usetetide on the need for
a further meeting to resolve any remaining issues. The dieimis shown in Figure B.35.

www.manaraa.com

APPENDIXB: IPDL REFERENCE

229

consolidation ::=

consolidation
participant
targets
inputs
outputs

end

phasename

Figure B.35: Consolidation phase definition.

nfold := n_fold phasename
fold
fold*
collation*
end

fold ;= fold phasename
detection
end

Figure B.36: N-Fold stage definition.

Again, the phase may be named, and this is followed by thdespagticipant who will per-

form the consolidation (usually the moderator). The tagmtuments and input documents

to this phase are then specified, which generally consisteoptoduct and one or more lists,

respectively. Finally, at least one output must be defineid:is usually a report.

The alternative to a single detection activity is to havetipld, parallel detection activities

with a collation stage, i.e. N-Fold inspection. To incre#isribility, there is the possibility

of holding more than one collation meeting. The definitiogiigen in Figure B.36. As usual,

the phase may be named. The definition will then consist ofdmmore detection activity
definitions, as described above, surrounded by the keywoldls andend, along with one
or more collation meeting definitions.

The collation meeting definition is shown in Figure B.37. Each collation, a number

of participants can be listed, usually several moderattmsgawith the coordinator, one of

whom must be nominated scribe with a role definition, anotfierhom may be nominated

collation ::=

collation phasename

timing [synchronous |asynchronous]
location [local |distributed |
participants

roles

targets

inputs

outputs

end

Figure B.37: Collation meeting definition.

www.manaraa.com

APPENDIXB: IPDL REFERENCE 230

rework rework phasename

participant
targets
inputs
outputs,
end

Figure B.38: Rework phase definition.

followup := follow _up phasename
participant
targets
inputs
outputs
end

Figure B.39: Follow-up phase definition.

reader. Inputs will generally consist of a collected lisdefects from each inspection. The
output will usually be a single master list of defects for #mtire inspection, but reports may
also form outputs from this phase. Several collation mgstmay take place, to allow for the
possibility of the coordinator meeting with a subgroup ofdemtors. In this case, an input to
subsequent meetings should be the collated lists of ddfectsprevious meetings.

B.5.5 The Completion Process

The completion process consists of four activities, as shiowrigure B.22: rework, follow-
up, exit and metrics, all of which are optional.

The rework phase is defined in Figure B.38. Although reworegerally carried out by
the author, the possibility of another participant perforgrework is catered for. This may
occur if the author is not part of the inspection team, or Iseowise unavailable. Various
documents may be made available during this phase. Targathtnts are always required,
with the implementation having to provide some means ofiglithese documents. Input
documents will typically consist of one or more lists. Thepu of the phase may consist of
one or more reports, or other documents as required.

The next phase is follow-up, involving checking the workfpened in rework, and is
defined in Figure B.39. Only one person should perform follgw this is usually the moder-
ator (or coordinator), but there is the possibility of aretparticipant performing this task. A
target document is always required, and other input doctsr{esually a list of defects) must
also be present. Finally, the defined output is one or morertep

Next is the optional exit phase, defined in Figure B.40. Téisimilar to the entry phase

www.manaraa.com

APPENDIXB: IPDL REFERENCE 231

exit = exit phasename
participant
targets,
inputs,
outputs
end

Figure B.40: Exit phase definition.

metrics 1= metrics phasename

participant

data

targets,;

inputs,,;

outputs

end

data measuré

identifier participaniname,, phasename,,;

data
measure

Figure B.41: Metrics collection phase definition.

in that it defines one or more output documents, usually éistgiteria which must be met.
A report detailing the outcome of the phase may also be apjatep Input and target docu-
ments may also be defined. One single participant is invaiveldis phase: this is either the
moderator or the coordinator, depending on the inspecyipe.t

Finally, the metrics collection and analysis phase is shiov#iigure B.41. This follows the
format of other phases. The main difference isdlaga subclause. This is used to indicate
the measures which must be supplied by the tool for this phBseh measure consists of
its name, an optional participant name for whom this meaappies, and an optional phase
name which states which phase that particular measure is taken from. For example, to
collect the number of list items produced by the particigdglioderator during the phase
'Preparation’ , the following might be used:

data
list_items Moderator 'Preparation’

Other metrics, such as the length of the product, are noifipera single phase or a single
participant and do not require these to be specified. No megsswe defined in IPDL. Details
of measures available in ASSIST can be found in Section B.7.

ASSIST is supplied with eight standard process definitidvisen defining a new process,
it is usually easier to edit an existing process which is kimb that required. The example
processes provide demonstrations of the main IPDL cortstruc

www.manaraa.com

APPENDIXB: FORMATS 232

criteria list = criteria_sectiornt
criteria_section ::= heading criteriort
criterion = [subheadingmultioperinumerid¢datgcheck

Figure B.42: The format of a criteria list.

report = reportsection
reportsection ::= heading reportitent
reportitem = [subheadingnultijoperinumerid¢datgcheck

Figure B.43: The format of a report.

B.6 Formats

B.6.1 Checklists, Criteria, Reports and Plans

The criteria, report, plan and checklist browsers supphigd ASSIST require documents
to be in a specific format. This format allows different typégems within the document to be
easily specified. Figure B.42 shows the format of a critevieusnent. Each document consists
of a number of sections, each of which consists of a heading phe or more individual
criteria items. In the same manner, reports consist of a murabsections each of which
contains a heading plus one or more items (Figure B.43). Tifexeht item type are identical
to those of criteria documents. As can be seen from Figurd,ipkans have a similar format.
The format for checklist is also similar, as shown in Figutd® The different item type are
identical for criteria documents, reports, plans and clistsk They are shown in Figure B.46,
along with the definition of a heading.

A heading is simply the wortieading followed by a string. The four item types are
multi , open, numeric anddate . A multi is a multiple choice question, consisting of
the question itself plus two or more responses. An open gureatlows a freeform textual
answer to be given. This requires a definition of the quesdioth the maximum length of
the answer “box” required. A numeric question is used whenahswer is expected to be

plan = plansectiont
planssection ::= heading planitem"
plan.item = [subheadingmultioperinumerid¢datgcheck

Figure B.44: The format of a plan.

www.manaraa.com

APPENDIXB: FORMATS 233

checklistsectiornt
heading checklisttent™
[subheadingmultijopennumeri¢datgcheck

checklist
checklistsection
checklistitem

Figure B.45: The format of a checklist.

heading = heading string keyword,,

subheading = subheading string keyword,,

multi = multi question response resporisextanswey,; keyword,,
open = open question length texanswey,; keyword,,;

numeric = numeric question length unit; numericansweg,; keyword,,;
check == check question checlanswer,; keyword,;

date .= date question dateanswey,; keyword,,;

length = length integer

unit = unit string

textanswer = answer string

numericanswer := answer integer

dateanswer = answer DD"/"MM"/"YYYY

checkanswer = answer [yes |no]

guestion = string

response = string

string = “"” character” “' "

character == Any printable character or white space.

integer = Any standard integer.

Figure B.46: ltems common to criteria lists, reports, pland checklists.

www.manaraa.com

APPENDIXB: FORMATS 234

Hile References

Entry Criteria Example

Code passed static analysis?
* Yes
< Ho

Authors nane

Estinmated defects remaining

[::3 defects per KLOC

Scheduled inspection completion date

Figure B.47: An example of a criteria list.

an integer. Again, the question must be specified along wighntaximum answer length.
Furthermore, the units following the answer may be specifiéaddate question requires a
date in DD/MM/YYYY format as answer. This simply requiregtuestion to be specified.
Similarly, a check item, which requires a binary answer,yaiquires the question to be
specified.

Each item may have a “correct” answer associated with it.s EBmswer may be used
for checking that the document has been completed correctie answer is indicated by
the keywordanswer followed by the answer itself, in the appropriate formamdfly, each
item may have a keyword associated with it. This keyword isdusy the automatic cross-
referencer within ASSIST, and allows document featurestagsociated with specific items.
For example, alfor loops in a C++ file may be linked to a checklist item which deals
specifically withfor loops.

An example of a criteria list is:

heading 'Criteria Example'
check 'Code passed static analysis?' answer '‘yes'
open ‘'Authors name' length 30

www.manaraa.com

APPENDIXB: FORMATS 235

numeric 'Estimated defects remaining'
length 3 unit 'defects/KLOC'
date 'Scheduled inspection completion date'

The document produced by the above file is shown in Figure.Br&ports, plans and check-
lists have similar layouts.

B.6.2 Help Documents

The help browser supplied with ASSIST requires documentgetin a specific format. This
format uses a subset of HTML tags. Tags are used to dividedgbendent into pages, add
formatting, and allow internal and external cross-refemeg. A document begins with its title
followed by one or more pages. Each page consists of a he@aithighe header tag indicating
the section level of this page), the text of the page, a ligtteinal cross-references, and a list
of keywords which the page may be cross-referenced on.

The following tags are used:

o title >..</title > are used to surround the title of the document. This tag must
be the first item in the document.

e <hn >..</h n > (where n = 1...6) denote sections and subsectibhss a top-level
section, whileh2 to h6 are progressively lower subsections.

e <pre >..</pre > are used to surround text which is already formatted andIldhou
not be formatted by the browser.

e <p> takes a new paragraph in the document.

e <see_also >...</see _also > indicate internal cross-references. To add a reference
to another page, place (one of) its keywords here.

e <keywords >...</keywords > gives a list of keywords for this document. Key-
words can be referenced manually using theee also > tag. ASSIST will also
automatically use these keywords when building crosseefees to other documents.

To demonstrate the help format, here is a sample of the C-ererete supplied with
ASSIST.

<title> C++ Reference </title>

<h1>Constructs</h1>

www.manaraa.com

APPENDIXB: FORMATS 236

<h2>The for loop</h2>

The for loop has the general form

<p>
<pre>
for (expressionl; expression2; expression3)
statement
</pre>
<p>

First, expressionl is evaluated, and typically contains an

initialisation expression. Then expression2 is evaluated

If it is non-zero, statement is executed, expression3 is

evaluated and control passes back to the beginning of the for

loop, except that expressionl is not evaluated again. This

cycle continues until expression2 is zero, when control pas ses
to the following statement.

<see_also>cpp_keyword_break cpp_keyword_continue</se e_also>
<keywords>cpp_keyword_for</keywords>

<h2>The while loop</h2>

The while statement has the form
<p>
<p|’e>

while(expression)

statement

</pre>
<p>
First, expression is evaluated. If it is non-zero, statemen t
is executed and control returns to the start of the while
loop. Therefore, the body of the while loop is executed until
expression becomes zero. The body can be executed zero or

www.manaraa.com

APPENDIXB: METRICSAVAILABLE IN ASSIST 237

more times.

<see_also>cpp_keyword_break cpp_keyword_continue</se e_also>
<keywords>cpp_keyword_while</keywords>

The C++ reference is shown in Figure B.19.

B.7 Metrics Available in ASSIST

No metrics are currently available.

B.8 Customising and Extending ASSIST

B.8.1 Altering the Printer Setup

As standard, ASSIST uses tipg command for printing. You can alter this in the setup file
$ASSIST_HOME/client/assist_defs.py

The line

PRINT = 'lpr'

indicates the print command to be used. Simply substitulie geguired print command here.
For example, to print on a specific printer, use

PRINT = 'lpr -P<printer-name>'

B.8.2 The.assistrc file

The .assistrc file allows the user to customise certain aspects of ASSISis file is
automatically created the first time you run ASSIST, and isscidted each time thereafter.
Distributed Support

The tools used to provide distributed support are by detdwlays on. They can be turned off
by altering the relevant lines in thassistrc file. Replacing the '1" with a'0" in each of
the following lines turns the relevant tool off:

www.manaraa.com

APPENDIXB: CUSTOMISING AND EXTENDING ASSIST 238

whiteboard 1
video

audio

text 1

B.8.3 Adding New Browsers

ASSIST can be extended by adding new document browsers.c@higither be written di-
rectly in Python, or browsers in other languages can be abgedoviding a Python interface.
This section describes the browser interface specificatmamhhow to add a new browser to
ASSIST. It assumes a detailed knowledge of the Python lagegua

Browser Interface Definition
The browser must be written in the following basic form:

from assist_defs import *
from Tkinter import *

class Browser(Toplevel):

def __init_ (self, DocumentName, Filename, Listltems,
Finished, NewAnnotation, ShowAnnotation,
DeleteAnnotation, ProposeAnnotation,
GetReferences, JumpToReference,
DocumentChecked, Coverage, SecondaryData,
Reader, BroadcastJump, Save, Objective,
Timing, WriteDocument):

The parameters passed to theit __ function are:
e DocumentName - the name of the document which the browser has to displagdg$t
e Filename - the filename under which the document can be found for |@p@itring).

e Listitems - contains details of the annotations for this documents # dictionary
using the positions of the annotations as keys. Each entrgisis of a list of one or
more objects, each of which is an entinstitem . These items have the following
attributes:

www.manaraa.com

APPENDIXB: CUSTOMISING AND EXTENDING ASSIST 239

— Filename - the name of the document which this item refers to (string)

— Position - the position of the item within the document (document gedut
always a string)

— Title - title of item (string)

— Text - textual description (string)

— Type - first classification (string)

— Class - second classification (string)

— Severity - third classification (string)

— ID - ID of item, unique within the list to which the item belongstéger)
— Time - time of creation of item (string)

— Owner - username of the person who created this item (string)

— Implemented - has value 0 if item has been declared implemented, otherwis
has the value O

— Accept - list of users who have voted to accept this item
— Reject - list of users who have voted to reject this item

e Finished - the function to be called when the browser is closed, alhgwthe system
to update its status. See tBéose function, described later.

e NewAnnotation - afunction passed to the browser to allow annotation of deus
via the list browser. The call has the following form:

NewAnnotation(Title, Position, File, Text, Type, Class,
Severity)

Title s the title of the annotationPosition is the position within the document
which this annotation refers t&ile is the name of the document which the annotation
refers to.Text isthe actual text of the annotation. The remaining threameters are
three strings used as to classify the item. Any parameteragutired must be replaced
by an empty string.

e ShowAnnotation - a function passed to the browser to allow annotations to be
viewed and updated via the list browser. The call has thevietig form:

ShowAnnotation(List, ListltemID)

www.manaraa.com

APPENDIXB: CUSTOMISING AND EXTENDING ASSIST 240

List is the name of the list in which the annotation occurstltemID is the ID
of the annotation which is being shown. Both parameters imeigtresent.

¢ DeleteAnnotation - a function passed to the browser to allow annotations to be
deleted via the list browser. The call has the following form

DeleteAnnotation(List, ListltemID)

List is the name of the list in which the annotation occurstltemID is the ID
of the annotation which is being updated. Both parameters beipresent.

e ProposeAnnotation - a function passed to the browser to allow annotations to be
proposed via the list browser. The call has the followingrfor

ProposeAnnotation(List, ListitemID)

List is the name of the list in which the annotation occurstltemID is the ID
of the annotation which is being updated. Both parameters beipresent.

e GetReferences - allows the browser to make queries concerning crossestss.
Its form is:

GetReferences(Keyword)

Keyword is the reference term to be looked up. The function returristaft refer-
ences. Each reference is itself a list, the first item of wisdhe name of the document
in which the reference may be found, the second is the posifithe reference within
that document, and the third contains the word being reteen

e JumpToReference - allows this browser to cross-reference with other browser
Calling this function make ASSIST jump to the indicated refece. If the required
browser is not open, ASSIST will open it.

JumpToReferences(Reference, Keyword)

Keyword is the index term, whil®eference is a list containing the document name
and the position which should be highlighted.

e DocumentChecked - used to inform the system that the document has been gatisfa
torily completed, if such completion is required.

www.manaraa.com

APPENDIXB: CUSTOMISING AND EXTENDING ASSIST 241

DocumentChecked(DocumentName)

DocumentName is the name of the document which has been checked.

e Coverage - coverage of the document achieved so far. This may take @mny rfe-
quired. For example, the text browser uses a list of line rensito indicate which lines
have been inspected.

e SecondaryData - document and browser specific data generated at the sttre of
inspection. See th&enerateSecondaryData function described later for more
details.

e Reader - has the value 1 if this participant has the role of readeinduthis phase,
otherwise has the value 0.

e BroadcastJump - a function which is passed to allow the propagation of arre
focus if the browser is being used by the reader during a spmcius phase.

BroadcastJump(Position, Document)

Position s the position which is to be moved t@®ocument is the name of the
document.

e Save - a function used to save the document if it has been edited call has the
following form:

Save(DocumentName, Contents)

DocumentName is the name of the document, as passed to the browisertents
is the contents of the document.

e Objective - the objective of the meeting, one of three constaBSAMINATION
DETECTIONor COLLECTION

e Timing - the timing of the meeting, eith&YNCHRONOUWS ASYNCHRONOUS

o WriteDocument - has the value 1 if this document can be edited, otherwis¢h®as
value 0.

The class must provide a number of functions. If the the fionds not implemented, its
header must still be present and the body should consispaéa statement. The functions
are:

www.manaraa.com

APPENDIXB: CUSTOMISING AND EXTENDING ASSIST 242

Close(self) - the function called when the browser is closed. This mudtera
call to theFinished function passed to the browser. This call is usually

self.Finished(self.DocumentName, self.Covered)

It passes the document name and the updated coverage (if any)

e JumpTo(self, Position, Keyword = None) - Used to move the focus of
the browser to a certain position. The position is given l®/Rbsition parameter,
while theKeyword parameter can be used to indicate a specific reference oégtte

¢ RepositionBrowser(self, List, Listltem) Repositions the browser at
the item indicated. The contentsldstitem must be examined to find the appropri-
ate position.

e BrowserAddAnnotation(self, List, Listltem) - informs the browser

of any new items (annotations) added to this document. Thenpeters are the list
to which the item belongs (a string), and the item itself.

e BrowserDeleteAnnotation(self, List, Listltem) - tells the browser
when an item (annotation) is deleted. The list to which tamibelongs (a string), and
the item itself are passed as parameters.

e ItemVotedOn(self, List, Listitem, User, Vote) - tells the browser
when an item has been voted drist is the name of the list which the item belongs
to. Listitem is the item which has been voted odser is a string containing the
name of the person casting the vo#ate is the vote itself.

o deiconify(self) This function must be defined if the browser is not Tk based.
This function should open the browser from its iconified estdtit has one. Alterna-
tively, the body can simply consist ofpass statement. If the browser is Tk based, this
function is automatically defined - do not override it.

o tkraise(self) This function must be defined if the browser is not Tk baseds Th
function should move the browser above any other windowskimiay be on the
screen. Alternatively, the body can simply consist geas statement. If the browser
is Tk based, this function is automatically defined - do nardde it.

In addition, two other functions must be defined at the modietel. These are called
when an inspection is started, for each document which make®f the browser. The first

www.manaraa.com

APPENDIXB: CUSTOMISING AND EXTENDING ASSIST 243

generates cross-references for the document, while tlrmdégs a non-specific function which
can be used to generate other data about that document.

e GenerateXRefs(Filename, DocumentName) generates cross-references for
the document calleBocumentName which has been stored undéiename . This
function may return two items, held in a list. The first itemtire list is a set of ref-
erences, stored as a Python dictionary. The keys of thigodety are the reference
terms. Each item in this dictionary must consist of a listasérence items. A reference
item is a list containing the name of the document, the pwsii the reference and a
title for the reference. If no references are generated,napiye dictionary should be
returned as the first element of the list. The second item earsbd to return any other
document specific data, such as the output of a static araby@i This avoids running
such tools multiple times for the same document during alsimgpection. No format
is defined for this data. If no data is to be generaidahe should be returned as the
second element of the list.

A template which you can use as a starting point for writingiyown browser can
be found in$ASSIST _HOME/client/browser _template.py . See also the supplied
browsers.

Adding New Content Types

When a new browser is added to ASSIST, it must have an entnyarobthe content-type files
to allow it to be used. The directoASSIST _HOME/server _data/content-types
contains a number of file specifying content types for a subkthe document types. Each
file contains entries of the form

<content-type> <browser-name>
For example, the content-types file for products has thevetig by default:

ASCIl tbrowser
code codebrowser
C++ cppbrowser

When a document is added to the document database (Sec@@),Bhis list of content types
is displayed under th8elect Content Typemenu. During an inspection, the content type
of the document is used to determine the actual browser aseédplay that document. The
browser name must match the name of the Python file contathengode for that browser
(minus thepy extension).

www.manaraa.com

APPENDIXB: CUSTOMISING AND EXTENDING ASSIST 244

B.8.4 Adding New Classification Schemes

New item classification schemes can be easily added to ASEEEh scheme may have up to
three classification levels. These are referred to withi®&T as type, class and severity, but
may be given any name desirelASSIST _HOME/server _data/classifications

contains all the data on classification schemes. Withindhectory there is a directory for
each level of classificationtypes , classes andseverities . To add a new classifica-
tion scheme you must create a file in one or more of these driest This file should have
the same name as that of your classification scheme. Theiffiesdi the file should contain
the name of this classification level. This should be folldvay the names of the different
categories, one per line. For example, the Fagan-typeititas®n scheme which comes with
ASSIST has afile callethgan in each subdirectorypes , classes andseverities

The file inclasses is

Class
Missing
Wrong
Extra

Class is the name of this classification level, and it has threegmates. To use this classifi-
cation scheme in ASSIST, the IPDL line

classification ‘fagan'

is used. If less than three classification levels are use8)3Bwill automatically disable the
others.

www.manaraa.com

Appendix C

IPDL Processes

C.1 Fagan Inspection

inspection 'Fagan Code Inspection'

declarations
documents

Code product
Design source
Defects1 list
Defects2 list
Defects3 list
Defects4 list
Defectsb list
Master_defects list

Meeting_report report
Follow_up_Report report
Master_Plan plan
end
participants
Inspectorl is inspector
lists Defectsl end
Inspector2 is inspector
lists Defects2 end
Inspector3 is inspector
lists Defects3 end
Moderator is moderator
lists Defects4 end
Author is author
lists Defects5 end
end
classification ‘fagan’

end
process

www.manharaa.com

APPENDIXC: FAGAN INSPECTION 246

planning ‘Planning’
participants Moderator
outputs Master_Plan
end
overview 'Overview'
location local
participants
Moderator
Author
Inspectorl
Inspector2
Inspector3
presenter Author
targets Code
end
meeting 'Preparation’
objective examination
timing asynchronous
location local
visibility private
participants
Moderator
Author
Inspectorl
Inspector2
Inspector3
targets Code
inputs Design
end
meeting ‘Inspection’
objective collection
timing synchronous
location local
visibility public
participants
Moderator
Author
Inspectorl
Inspector2
Inspector3
roles
Inspectorl is reader
Inspector2 is scribe
targets Code
inputs Design
outputs
Master_defects
Meeting_report

end
rework 'Rework’

www.manharaa.com

APPENDIXC: STRUCTUREDWALKTHROUGH 247

participant Author
targets Code
inputs
Master_defects
Design
end
follow_up 'Follow-up'
participant Moderator
targets Code
inputs
Master_defects
Design
outputs Follow_up_Report
end
end
end

C.2 Structured Walkthrough

inspection 'Structured Walkthrough'

declarations
documents

Code source
Design source
Error_Listl list
Error_List2 list
Error_List3 list
Error_List4 list
Error_List5 list

Master_Error_List list
Maintenance_Requirements source
Coding_Standard standard
User_Requirements source

Summary report
Follow_up_Report report
Master_Plan plan

end
responsibilities
Maintenance requires
Maintenance_Requirements
end
Standards requires
Coding_Standard
end
User requires
User_Requirements

end
end
participants

www.manharaa.com

APPENDIXC: STRUCTUREDWALKTHROUGH 248

Coordinator is moderator
lists Error_Listl
end
Producer is author
lists Error_List2
end
Maintenance_Oracle is inspector
lists Error_List3
responsibility Maintenance
end
Standards_Bearer is inspector
lists Error_List4
responsibility Standards
end
User_Representative is inspector
lists Error_List5
responsibility User
end
Reviewer is inspector
lists Error_List5
end
end
end
process
planning ‘Planning'
participants Coordinator
outputs Master_Plan
end
meeting 'Preparation’
objective examination
timing asynchronous
location local
visibility private
participants
Coordinator
Producer
Maintenance_Oracle
Standards_Bearer
User_Representative
Reviewer
targets Code
inputs Design
end
meeting 'Walkthrough'
objective collection
timing synchronous
location local
visibility public
duration 60
participants

www.manharaa.com

APPENDIXC: HUMPHREY INSPECTIONPROCESS 249

Coordinator
Producer
Maintenance_Oracle
Standards_Bearer
User_Representative
Reviewer
roles
Producer is reader
Reviewer is scribe
targets Code
inputs Design
outputs
Master_Error_List
Summary
end
rework 'Rework'
participant Producer
targets Code
inputs
Master_Error_List
Design
end
follow_up 'Follow-up'
participant Coordinator
targets Code
inputs
Master_Error_List
Design
outputs Follow_up_Report
end
end
end

C.3 Humphrey Inspection Process

inspection 'Humphrey Inspection Process'

declarations
documents

Code product
Design source
Error_Logl list
Error_Log2 list
Error_Log3 list
Error_Log4 list
Error_Log5 list
Consolidated_Error_Log list
Master_Error_Log list
Meeting_report report
Follow_up_Report report

www.manharaa.com

APPENDIXC: HUMPHREY INSPECTIONPROCESS 250

Master_Plan plan
Entry_criteria criteria
Exit_criteria criteria
end
participants
Reviewerl is inspector
lists Error_Logl end
Reviewer2 is inspector
lists Error_Log2 end
Reviewer3 is inspector
lists Error_Log3 end
Moderator is moderator
lists Error_Log4 end
Producer is author
lists Error_Log5 end
end
end
process
planning ‘Planning’
participants Moderator
outputs Master_Plan
end
overview 'Overview'
location local
participants
Moderator
Producer
Reviewerl
Reviewer2
Reviewer3
presenter Producer
targets Code
end
meeting 'Preparation’
objective detection
timing asynchronous
location local
visibility private
participants
Moderator
Producer
Reviewerl
Reviewer2
Reviewer3
targets Code
inputs Design
end
meeting 'Analysis’
objective collection
timing asynchronous

www.manharaa.com

APPENDIXC: HUMPHREY INSPECTIONPROCESS

251

end

end

end

location local
visibility private
participants
Producer
targets Code
outputs Consolidated_Error_Log

meeting ‘Inspection’

end

objective collection
timing synchronous
location local
visibility public
participants
Moderator
Producer
Reviewerl
Reviewer2
Reviewer3
roles
Reviewerl is reader
Reviewer2 is scribe
targets Code
inputs
Consolidated_Error_Log
Design
outputs
Master_Error_Log
Meeting_report

rework 'Rework’

end

participant Producer

targets Code

inputs
Master_Error_Log
Design

follow_up 'Follow-up'

end

participant Moderator
targets Code
inputs
Master_Error_Log
Design
outputs Follow_up_Report

www.manharaa.com

APPENDIXC: GILB AND GRAHAM 252

C.4 Gilband Graham

inspection 'Gilb and Graham Inspection’
declarations

documents
Code product
Design source
Issue_Listl list
Issue_List2 list
Issue_List3 list
Issue_List4 list
Issue_List5 list
Issue_Log list
Process_Improvement_Log list
Meeting_report report
Follow_up_Report report
Master_Plan plan
Entry_criteria criteria
Exit_criteria criteria

end

participants

Checkerl is inspector
lists Issue_Listl end
Checker2 is inspector
lists Issue_List2 end
Checker3 is inspector
lists Issue_List3 end
Leader is moderator
lists Issue_List4 end
Author is author
lists Issue_List5 end
end
end
process
entry 'Entry’
participant Leader
outputs Entry_criteria
end
planning 'Planning’
participants Leader
outputs Master_Plan
end
overview 'Kickoff'
location local
participants
Leader
Author
Checkerl
Checker2
Checker3

www.manharaa.com

APPENDIXC: GILB AND GRAHAM 253

presenter Author
targets Code
end
meeting 'Checking'
objective detection
timing asynchronous
location local
visibility private
participants
Leader
Author
Checkerl
Checker2
Checker3
targets Code
inputs Design
end
meeting 'Logging’
objective collection
timing synchronous
location local
visibility public
participants
Leader
Author
Checkerl
Checker2
Checker3
roles
Checkerl is reader
Checker2 is scribe
targets Code
inputs Design
outputs
Issue_Log
Meeting_report
end
meeting 'Process Brainstorming'
objective collection
timing synchronous
location local
visibility public
participants
Leader
Author
Checkerl
Checker2
Checker3
roles
Checker2 is scribe

www.manharaa.com

APPENDIXC: ASYNCHRONOUSINSPECTION 254

targets
Code
Design
inputs Design
outputs
Issue_Log
Meeting_report
end
rework 'Edit'
participant Author
targets Code
inputs
Issue_Log
Design
end
follow_up 'Follow-up'
participant Leader
targets Code
inputs
Issue_Log
Design
outputs Follow_up_Report
end
exit 'Exit'
participant Leader
outputs Exit_criteria
end
end
end

C.5 Asynchronous Inspection

inspection 'Asynchronous Inspection’

declarations
documents

Code product
Design source
Issuesl list
Commentsl list
Actions1 list
Issues2 list
Comments2 list
Actions2 list
Issues3 list
Comments3 list
Actions3 list
Issues4 list
Comments4 list
Actions4 list

www.manharaa.com

APPENDIXC: ASYNCHRONOUSINSPECTION

255

Consolidated_Issues list
Consolidated_Comments list
Consolidated_Actions list
Unresolved_Issues list
Further_lssues list
Consolidation_report report
Follow_up_Report report
Master_Plan plan
end
participants
Moderator is moderator
lists
Issuesl
Commentsl
Actions1
end
Producer is author
lists
Issues2
Comments2
Actions2
end
Reviewerl is inspector
lists
Issues3
Comments3
Actions3
end
Reviewer2 is inspector
lists
Issues4
Comments4
Actions4
end
end
end
process
planning 'Setup'
participants Moderator
outputs Master_Plan
end
overview 'Orientation’
location local
participants
Moderator
Producer
Reviewerl
Reviewer2
presenter Producer
targets Code

www.manharaa.com

APPENDIXC: ASYNCHRONOUSINSPECTION 256

end
meeting 'Private Review'
objective detection
timing asynchronous
location local
visibility private
participants
Moderator
Producer
Reviewerl
Reviewer2
targets Code
inputs Design
end
meeting 'Public Review'
objective collection
timing asynchronous
location local
visibility public
participants
Moderator
Producer
Reviewerl
Reviewer2
roles
Reviewerl is reader
Reviewer2 is scribe
targets Code
inputs Design
end
consolidation 'Consolidation’
participant
Moderator
targets Code
inputs
Issuesl
Commentsl
Actions1
Issues2
Comments2
Actions2
Issues3
Comments3
Actions3
Issues4
Comments4
Actions4
Design
outputs
Consolidated_lssues

www.manharaa.com

APPENDIXC: ASYNCHRONOUSINSPECTION 257

Consolidated_Comments
Consolidated_Actions
Unresolved_Issues
Consolidation_report
end
meeting 'Group Review Meeting'
objective collection
timing synchronous
location local
visibility public
participants
Moderator
Producer
Reviewerl
Reviewer2
roles
Reviewerl is reader
Reviewer2 is scribe
targets Code
inputs
Unresolved_Issues
Design
outputs
Further_lssues
end
rework 'Rework'
participant Producer
targets Code
inputs
Consolidated_lssues
Consolidated_Comments
Consolidated_Actions
Further_lssues
Design
end
follow_up 'Conclusion’
participant Moderator
targets Code
inputs
Consolidated_lssues
Consolidated_Comments
Consolidated_Actions
Further_lssues
Design
outputs Follow_up_Report
end
end

end

www.manharaa.com

APPENDIXC: ACTIVE DESIGNREVIEWS 258

C.6 Active Design Reviews

inspection 'Active Design Review'
declarations
documents
Design product
AV_Questionnaire detection_aid
AS_Questionnaire detection_aid
C_Questionnaire detection_aid

Defectsl list
Defects2 list
Defects3 list
Follow_up_Report report
Master_Plan plan

end
responsibilities
Assumption_Validity requires
AV_Questionnaire
end
Assumption_Sufficiency requires
AS_Questionnaire
end
Consistency requires
C_Questionnaire
end
end
participants
Reviewerl is inspector
lists Defectsl
responsibility Assumption_Validity
end
Reviewer2 is inspector
lists Defects2
responsibility Assumption_Sufficiency
end
Reviewer3 is inspector
lists Defects3
responsibility Consistency
end
Designerl is moderator
end
Designer2 is author
end
end

end
process
planning 'Planning’
participants Designerl
outputs Master_Plan
end

www.manharaa.com

APPENDIXC: ACTIVE DESIGNREVIEWS 259

overview 'Overview'
location local
participants
Designerl
Designer2
Reviewerl
Reviewer2
Reviewer3
presenter Designer2
targets Design
end
meeting 'Review'
objective detection
timing asynchronous
location local
visibility private
participants
Reviewerl
Reviewer2
Reviewer3
targets Design
end
meeting 'Discussion 1'
objective collection
timing synchronous
location local
visibility public
participants
Reviewerl
Designerl
roles
Designerl is scribe
targets Design
inputs AV_Questionnaire
outputs Defectsl
end
meeting 'Discussion 2'
objective collection
timing synchronous
location local
visibility public
participants
Reviewer2
Designer2
roles
Designer2 is scribe
targets Design
inputs AS_Questionnaire
outputs Defects2
end

www.manharaa.com

APPENDIXC: PHASED INSPECTION 260

meeting 'Discussion 3'
objective collection
timing synchronous
location local
visibility public
participants

Reviewer3
Designerl
roles
Designerl is scribe
targets Design
inputs C_Questionnaire
outputs Defects3

end

rework 'Rework'
participant Designer2
targets Design
inputs

Defectsl
Defects2
Defects3

end

follow_up 'Follow-up'
participant Designerl
targets Design
inputs Defectsl Defects2 Defects3
outputs Follow_up_Report

end

end
end

C.7 Phased Inspection

inspection 'Phased Inspection’

declarations
documents

Code product
Design source
Defect_Listl list
Defect_List2 list
Defect_List3 list
Defect_List4 list
Question_Listl list
Question_List2 list
Question_List3 list
Collected_Defect_List list
Coding_Standard standard
Coding_Standard_Checklist detection_aid
Reusability_Checklist detection_aid

www.manharaa.com

APPENDIXC: PHASED INSPECTION 261

Master_Plan plan
Follow_up_Report report
end
responsibilities
Standards_Compliance requires
Coding_Standard Coding_Standard_Checklist
end
Reusability requires
Reusability_Checklist
end
end
participants
Moderator is moderator end
Author is inspector end
Inspectorl is inspector
lists Defect_Listl
responsibility Standards_Compliance
end
Inspector2 is inspector
lists Defect_List2 Question_Listl
responsibility Reusability
end
Inspector3 is inspector
lists Defect_List3 Question_List2
responsibility Reusability
end
Inspector4 is inspector
lists Defect_List4 Question_List3
responsibility Reusability
end
end
end
process
planning ‘Planning'
participants Moderator
outputs Master_Plan
end
meeting 'Phase 1'
objective detection
timing asynchronous
location local
visibility private
participants
Inspectorl
targets Code
inputs Design
end
meeting 'Phase 2 Examination’
objective examination
timing asynchronous

www.manharaa.com

APPENDIXC: PHASED INSPECTION 262

location local
visibility private
participants
Inspector2
Inspector3
Inspector4
targets Code
inputs Design
end
meeting 'Phase 2 Inspection'
objective detection
timing asynchronous
location local
visibility private
participants
Inspector2
Inspector3
Inspector4
targets Code
inputs Design
end
meeting 'Phase 2 Reconciliation’
objective collection
timing synchronous
location local
visibility public
participants
Inspector2
Inspector3
Inspector4
targets Code
inputs
Defect_List2
Defect_List3
Defect_List4
Design
outputs
Collected_Defect_List
end
rework 'Rework'
participant Author
targets Code
inputs
Collected_Defect_List
Defect_Listl
Design
end

follow_up 'Follow-up’
participant Moderator
targets Code

www.manharaa.com

APPENDIXC: N-FOLD INSPECTION 263

inputs
Collected_Defect_List
Defect_Listl
Design
outputs Follow_up_Report
end
end

C.8 N-Fold Inspection

inspection '3-Fold Code Inspection'

declarations
documents

Code product
Design source
Defects1 list
Defects2 list
Defects3 list
Defects4 list
Defects5 list
Defects6 list
Defects7 list
Defects8 list
Defects9 list
Team_A_Defects list
Team_B_Defects list
Team_C_Defects list

Master_Defect_List list
Team_A_Meeting_Rep report
Team_B_Meeting_Rep report
Team_C_Meeting_Rep report
Follow_Up_Report report

Master_Plan plan
end
participants
Coordinator is coordinator
end

Moderatorl is moderator
lists Defectsl

end

Moderator2 is moderator
lists Defects2

end

Moderator3 is moderator
lists Defects3

end

Inspectorl is inspector
lists Defects4

end

www.manharaa.com

APPENDIXC: N-FOLD INSPECTION

264

Inspector2 is inspector
lists Defects5

end

Inspector3 is inspector
lists Defects6

end

Inspector4 is inspector
lists Defects7

end

Inspector5 is inspector
lists Defects8

end

Inspector6 is inspector
lists Defects9

end
Author is author
end
end
end
process

planning ‘Planning’
participants Coordinator
outputs Master_Plan
end
overview 'Overview'
location local
participants
Coordinator
Moderatorl
Moderator2
Moderator3
Inspectorl
Inspector2
Inspector3
Inspector4
Inspector5
Inspector6
Author
presenter Author
targets Code
end
n_fold '3 Fold Inspection’
fold 'Team A Inspection’
meeting 'Team A Preparation'
objective examination
timing asynchronous
location local
visibility private
participants
Moderatorl

www.manharaa.com

APPENDIXC: N-FOLD INSPECTION

265

Inspectorl
Inspector2
targets Code
inputs Design
end
meeting 'Team A Inspection'
objective collection
timing synchronous
location local
visibility public
participants
Moderatorl
Inspectorl
Inspector2
roles
Inspectorl is reader
Inspector2 is scribe
targets Code
inputs Design
outputs
Team_A_Defects
Team_A_Meeting_Rep
end
end # Team A inspection
fold 'Team B Inspection’
meeting 'Team B Preparation'
objective examination
timing asynchronous
location local
visibility private
participants
Moderator2
Inspector3
Inspector4
targets Code
inputs Design
end
meeting 'Team B Inspection'
objective collection
timing synchronous
location local
visibility public
participants
Moderator2
Inspector3
Inspector4
roles
Inspector3 is reader
Inspector4 is scribe
targets Code

www.manharaa.com

APPENDIXC: N-FOLD INSPECTION

266

inputs Design
outputs
Team_B_Defects
Team_B_Meeting_Rep
end # Team B Inspection
end
fold 'Team C Inspection’
meeting 'Team C Preparation’
objective examination
timing asynchronous
location local
visibility private
participants
Moderator3
Inspector5
Inspector6
targets Code
inputs Design
end
meeting 'Team C Inspection’
objective collection
timing synchronous
location local
visibility public
participants
Moderator3
Inspector5
Inspector6
roles
Inspector5 is reader
Inspector6 is scribe
targets Code
inputs Design
outputs
Team_C_Defects
Team_C_Meeting_Rep
end
end # Team C Inspection
collation 'Collation’
timing synchronous
location local
participants
Coordinator
Moderatorl
Moderator2
Moderator3
Author
roles
Moderatorl is reader
Moderator2 is scribe

www.manharaa.com

APPENDIXC: N-FOLD INSPECTION 267

targets Code
inputs
Team_A_Defects
Team_B_Defects
Team_C_Defects
outputs Master_Defect_List
end
end # 3-Fold
rework 'Rework'
participant Author
targets Code
inputs
Master_Defect_List
Design
end
follow_up 'Follow-up’
participant Coordinator
targets Code
inputs
Master_Defect_List
Design
outputs Follow_Up_Report
end
end

end

www.manharaa.com

Appendix D

Experiment Materials

D.1 Timetable

Each experiment was run over a period of ten weeks. Six weeks used to train students in
software inspection and the use of ASSIST, and to refresh@ye- knowledge. Four weeks
were used to run the actual experiment. The following tifletavas used:

e Week 1Individual inspection otount.cc
e Week 2Individual inspection ofokens.cc , introducing checklist.
e Week 3Group meeting to collect the results of Week 2 individuapiection.

e Week 4 Tutorial introduction to both individual inspection andogp meeting using
ASSIST withsimple _sort.cc

e Week 5Individual inspection okeries.cc using ASSIST.

e Week 6 Group meeting using ASSIST to collect the results of Weekdividual in-
spection.

e Week 7Individual inspection oinalyse.cc . Section 1 made use of ASSIST, while
Section 2 performed the inspection on paper.

e Week 8 Group meeting to collect the results of Week 7 individuapistion, using
ASSIST or paper as appropriate.

www.manaraa.com

APPENDIXD: C++ CHECKLIST 269

e Week 9Individual inspection ofgraph.cc . Section 1 performed the inspection on
paper, while Section 2 made use of ASSIST.

e Week 10Group meeting to collect the results of Week 9 individuapiestion, using
ASSIST or paper as appropriate.

D.2 C++ Checklist

1. General

e Is the functionality described in the specification fullyglemented by the code?

¢ Is there any excess functionality implemented by the codedidescribed in the
specification?

e Is the program interface implemented as described in theifagaion?

¢ Is there any dead code which cannot be reached in the program?

2. Variable Initialisation and Declarations

Is the variable necessary for the operation of the program?

Is the variable of an appropriate type?

Is the variable correctly scoped, i.e. does it have the miniwisibility required?

Is the variable correctly initialised before use?

Is the variable correctly reinitialised as required?
3. Output Format

¢ Are there any spelling or grammatical errors in displayetpatf?
¢ Is the output complete?

¢ Is the output formatted correctly in terms of line stepping apacing?
4. Files

¢ Are all files properly declared, opened and closed?

Is a file not closed in the case of an error?

e Are EOF conditions detected and handled correctly?

Is the file pointer reused without closing the file?

www.manaraa.com

APPENDIXD: C++ CHECKLIST 270

5. Dynamic Storage Allocation

e Is too much/too little space allocated?
¢ Are all fields of a dynamically allocated structure initsdd?

¢ Is thelinkin the last node of a dynamic structure alwaysc&WwLL?
6. Arrays and Strings

e Check that all strings are identified by pointers and are Nuiminated at all
points in the program

¢ Is the index expression correct? Are there any off-by-oners?

e Can array indexes ever go out-of-bounds?
7. Pointers

e Check that the pointer is initialised to NULL

e Check that the pointer is never unexpectedly NULL

Can an uninitialised pointer ever be dereferenced?

Is the pointer correctly dereferenced when required?

Is pointer arithmetic ever used on non-array pointers?
8. If/Else
e Has a semicolon mistakenly been placed at the immediateafghe condition?

e Is the condition correct?

e Are both branches correctly enclosed in braces, as reduired
9. Switch

e Is any case not terminated by break or return?
e Does every legal value have a corresponding case?

e Does the statement have a default branch?
10. For

e Has a semicolon mistakenly been placed at the immediateafghe header?
e Has the body been correctly enclosed in braces?

¢ Has the proper initialisation expression been supplied?

www.manaraa.com

APPENDIXD: C++ CHECKLIST 271

¢ Has the proper increment expression been supplied?

¢ Does the loop terminate? Check that the final value can béeeac

e Does the loop perform the correct number of iterations ircales? Check for
off-by-one errors.

11. Do/While

e Has a semicolon mistakenly been placed at the immediateafghe header?
¢ Is the condition correct?

¢ Is there an expression within the body which eventually eagermination of the
loop? Is any counter incremented?

e Has the body been correctly enclosed in braces?
12. Function Calls

e Are parameters presented in the correct order?
e Are pointers and & used correctly?

e Is the correct function being called, or should it be a défarfunction with a
similar name?

e Is the correct value returned from the function?
13. Expressions

e Does operator precedence affect the correct evaluatioheoéxpression, i.e., is
there sufficient use of parenthesising to ensure correduatian of the expres-
sion?

e Can the denominator of a division ever be zero?

¢ Is integer arithmetic, especially division, ever used praypriately, causing unex-
pected truncation/rounding?

¢ Is the comparison operator correct? Does the expressita exactly what is
required?

¢ Is the boolean operator correct? Does the expression statglyewhat is re-
quired?

e Do operands of the boolean operation have the value 0 or 1?

¢ Is an exact equality test used between two floating point reugtb

www.manaraa.com

APPENDIXD: INDIVIDUAL DEFECTREPORTFORM

272

D.3 Individual Defect Report Form

Is the comparison between operands of incompatible types?

If the test is an error-check, can the error condition atyuze legitimate in some

cases?

Does the code rely on any implicit type conversions?

Do any explicit type conversions lose required data?

Complete this form in BLOCK CAPITALS in blue or black ink. Eac h defect description
must be complete and accurate. Any description not satisfyg the above criteria will be

IGNORED.

Name: Group:
Start time: End time:
Defect No. 1 Time: Location:
Defect No. 2 Time: Location:
Defect No. 3 Time: Location:
Defect No. 4 Time: Location:

www.manaraa.com

APPENDIXD: INDIVIDUAL DEFECTREPORTFORM

273

Defect No. 5 Time: Location:
Defect No. 6 Time: Location:
Defect No. 7 Time: Location:
Defect No. 8 Time: Location:
Defect No. 9 Time: Location:

www.manaraa.com

APPENDIXD: INDIVIDUAL DEFECTREPORTFORM 274
Defect No. 10 Time: Location:
Defect No. 11 Time: Location:
Defect No. 12 Time: Location:
Defect No. 13 Time: Location:
Defect No. 14 Time: Location:
Defect No. 15 Time: Location:

www.manaraa.com

APPENDIXD: INDIVIDUAL DEFECTREPORTFORM 275
Defect No. 16 Time: Location:
Defect No. 17 Time: Location:
Defect No. 18 Time: Location:
Defect No. 19 Time: Location:
Defect No. 20 Time: Location:

www.manaraa.com

APPENDIXD: MASTERDEFECTREPORTFORM

276

D.4 Master Defect Report Form

Complete this form in BLOCK CAPITALS in blue or black ink. Eac h defect description
must be complete and accurate. Any description not satisfyg the above criteria will be

IGNORED.

Group:

Moderator: Scribe:

Reader: Inspector (if present):
Start time: End time:

Defect No. 1 Time: Location:

Defect No. 2 Time: Location:

Defect No. 3 Time: Location:

Defect No. 4 Time: Location:

www.manaraa.com

APPENDIXD:

MASTERDEFECTREPORTFORM

277

Defect No. 5 Time: Location:
Defect No. 6 Time: Location:
Defect No. 7 Time: Location:
Defect No. 8 Time: Location:
Defect No. 9 Time: Location:
Defect No. 10 Time: Location:

www.manaraa.com

APPENDIXD:

MASTERDEFECTREPORTFORM

278

Defect No. 11 Time: Location:
Defect No. 12 Time: Location:
Defect No. 13 Time: Location:
Defect No. 14 Time: Location:
Defect No. 15 Time: Location:
Defect No. 16 Time: Location:

www.manaraa.com

APPENDIXD: TRAINING PROGRAMcount.cc

279

Defect No. 17 Time: Location:
Defect No. 18 Time: Location:
Defect No. 19 Time: Location:
Defect No. 20 Time: Location:

D.5 Training Program count.cc

D.5.1 Specification for programcount.cc
Name

count — count lines, words, and characters

Usage

count filename [filename ...]

www.manaraa.com

APPENDIXD: TRAINING PROGRAMcoOuNt.cc 280

Description

count counts the number of lines, words, and characters in the dditles. \Words are se-
guences of characters that are separated by one or moresspu® or line breaks (carriage
return).

If a file supplied as an argument does not exist, a correspgretiror message is printed
and processing of any other files continues. If no file is sigp@s an argumentpunt reads
from the standard input.

The computed values are given for each file (including theenahthe file) as well as the
sum of all values. If only a single file or if the standard iniprocessed, then no sum is
printed. The output is printed in the order lines, words,rabters, and either the file name
or the word “total” for the sum. If the standard input is re#tak fourth value (name) is not
printed.

Options

None.

Examples

On a single file:

% count data
84 462 3621 data

On multiple files:

% ./count filel file2 file3

3 24 120 filel
5 49 196 file2
17 175 787 file3
25 248 1103 total

Author

Original by Erik Kamsties and Christopher Lott. C++ convensand update by Fraser Mac-
donald.

www.manaraa.com

APPENDIXD: TRAINING PROGRAM count.cc 281

D.5.2 Library functions used in count.cc

e open()

Opens the corresponding I/O stream.

e char get(void)
get inputs one character from the designated stream and retiuissharacter as the
result of the function call. If end-of-file on the stream isennteredget returns EOF.
e good()

Returns true if the corresponding I/O stream is availabteige.

o width()

Sets the field width and returns the previous width for thiean. The width setting
applies only to the next stream insertion or extraction.

D.5.3 count.cc
1 #include <iostream.h>
2 #include <fstream.h>
3 #include <stdlib.h>
4
5 wvoid main (int argc, char* argv[])
6 {
7 int ¢, i, inword;
8 ifstream InputFile;
9 long linect, wordct, charct;
10 long tlinect = 1, twordct = 1, tcharct = 1;
11
12 i =1
13 do {
14 if (argc > 1) {
15 InputFile.open(argvli]);
16 if (InputFile.good()) {
17 cout << "can't open " << argv[i] << endl;
18 exit(1);
19 }
20 }
21 linect = wordct = charct = 0;
22 inword = 1,
23 while ((c = InputFile.get()) '= EOF) {
24 ++charct;
25 if (c =="n"
26 ++linect;
27 if(c=""1] c="]| c=="1)

www.manaraa.com

APPENDIXD: TRAINING PROGRAM count.cc 282

28 inword = O;

29 else if (inword == 0) {
30 inword = 1;

31 ++wordct;

32 }

33 }

34 cout.width(7);

35 cout << linect;

36 cout.width(7);

37 cout << wordct;

38 cout.width(7);

39 cout << charct;

40 if (argc > 1)

41 cout << " " << *argv << endl;
42 else

43 cout << endl;

44 InputFile.close();

45 tlinect += linect;

46 twordct += wordct;

a7 tcharct += charct;

48 } while (++i < argc);
49 if (argc > 1) {

50 cout.width(7);

51 cout << linect;

52 cout.width(7);

53 cout << twordct;

54 cout.width(7);

55 cout << tcharct << " total" << endl;
56 }

57 exit(0);

58 }

D.5.4 Defects incount.cc
1. Defectin line 10: The variables are initialised with 10ahd be with O.

Causes failure: The sums are incorrect (off by one).

2. Defect in line 14: The variable “InputFile” is not initiakd in the case that the input
should be taken from “stdin”.

Causes failure: The program cannot read from stdin.

3. Defectin line 17: The error message is sent to “stdout&iad of “stderr”.

Causes failure: Error messages appear on the standardt ¢siipout) instead of the
standard-error output (stderr).

www.manaraa.com

APPENDIXD: TRAINING PROGRAMtokens.cc 283

4. Defect in line 18: Component is terminated with “exit (1yhere “continue” should
have been used.

Causes failure: If a file is not found, the program stops tirestead of continuing on to
other files; also, no sum is printed.

5. Defectin line 22: The variable “inword” is initialised thi 1 instead of 0.
Causes failure: Depending on whether the first symbol in adilehitespace, the pro-
gram reports that files with n words have either n or n - 1 words.

6. Defectin line 41: *argv is used instead of argv[i].
Causes failure: The program prints its own name insteadsdfldnname when reporting
the counts.

7. Defectin line 49: Argc is compared with 1, but should be pared with 2.

Causes failure: The program prints out sums even when orihgéedile was processed.

8. Defectin line 51: Instead of “tlinect” the variable “lioe is used.

Causes failure: The sums are not computed correctly. Fonpba

% ./count file2 file2 file2

1 2 14 /count
1 2 14 /count
1 2 14 /count
1 7 43 total

D.6 Training Program tokens.cc

D.6.1 Specification for programtokens.cc
Name

tokens — sort and count alphanumeric tokens

Usage

tokens [—ai] [-c chars] [-m count]

www.manaraa.com

APPENDIXD: TRAINING PROGRAMtoOkens.cc

284

Description

tokensreads its input from the standard input and counts all alphrearic tokens. The tokens
are then printed in alphabetic order, along with their cau@iptions may be specified to tailor

the output. If incorrect options are givelkenswill print a usage message.

Options

e “—a": Allow only alphabetic characters in tokens (no dights9).

e “—c chars”: Allow chars to be part of tokens.

e “—i": The —i flag causes the program to ignore the difference betweerr @pypkower

case by mapping all input to lower case.

e “—m count”: The-m flag indicates the minimum count needed for the entry to be

printed.

Examples
In its simplest form with no options:

% tokens

this is a_test
1la
1lis
1 test
1 this

Allowing alphabetic characters only:

% tokens -a
test number 2
1 number
1 test

Using the “—c” option to allow “+” in tokens:

% tokens -c+
one on+ + +
2 +

www.manaraa.com

APPENDIXD: TRAINING PROGRAMtokens.cc 285

1 on+
1 one

Using “—i" to ignore the difference between lower and uppesecharacters, and using “—m”
to set a minimum count of two:

% tokens -i -m2

Orange apple orange orange apple banana
2 apple
3 orange

Author

Original by Gary Perlman. C++ conversion and update by Frislsedonald.

D.6.2 Library functions used in tokens.cc

e void assert(int expression)
Tests the value of the supplied expression. If the valueds$ert prints an error message
and terminates program execution.

e int atoi(const char* s)

Converts the string given as argument tdiis representation.

e char get(void)

get inputs one character from the designated stream and retlusisharacter as the
result of the function call. If end-of-file on the stream isennteredget returns EOF.

e getopt(int argc, char **argv, char *optstring)
extern char *optarg
extern int optind

getopt() returns the next option letter in argv that matches a lettepistring
optstring contains the option letters the command ugiatppt() will recognise;
if a letter is followed by a colon, the option is expected tedhan argument, or group
of arguments, which must be separated from it by white space.

optarg is set to point to the start of the option argument on retusmfgetopt()
When all options have been processgeippt() returns -1.

For example,

www.manaraa.com

APPENDIXD: TRAINING PROGRAMtokens.cc 286

c = getopt(argc, argv, "b:fp:")

indicates that three options may be given to the program fiftes “—b”, which should
have an argument, followed by “—f”, then “—p”, which should@have an argument
(e.g. “—f20"). Each successive call getopt() will return one of these letters, if
they are present, and will septarg to point to any argument that may be present for
this option. When all options present have been pagetpt() will return -1.

See the entry fogetopt in Section 3 of the man pages for more details.

e int strcmp(const char *sl1, const char *s2)
Compares the two strings passed as arguments, returningeger greater than, less
than, or equal to zero when s1 is respectively greater tleas,than or equal to s2.

e char *strdup(char *s)

Returns a pointer to a new string which is a duplicate of tHagpointed to by s.

e int width(const int newwidth)

Sets the field width and returns the previous width for thiean. The width setting
applies only to the next stream insertion or extraction.

O
o
w

tokens.cc

#include <iostream.h>
#include <string.h>
#include <assert.h>

int Ignore = O;

int Mincount = 0;
int Alphabetic = 0;
char MapAllowed[256];

© 00 N O 0o b~ WN PP

=
o

typedef struct tnode
{

char *contents;

I el
w N

int count;

struct tnode *left;

struct tnode *right;
} TNODE;

e e
o N o o b

void treeprint(TNODE *);

TNODE *install(char *, TNODE *);
char *getword(void);

void tokens(void);

N N
= O ©

www.manaraa.com

APPENDIXD: TRAINING PROGRAMtokens.cc 287

22

23 int main(int argc, char **argv)

24 {

25 int c, errcnt = 0;

26 extern char *optarg;

27

28 while ((c = getopt(argc, argv, "ac:im:")) != EOF)
29 switch(c)

30 {

31 case 'a"; Alphabetic = 0; break;

32 case 'c"

33 while (*optarg)

34 {

35 MapAllowed[*optarg] = *optarg;
36 optarg++;

37 }

38 break;

39 case 'i" Ignore = 1; break;

40 case 'm" Mincount = atoi(optarg); break;
41 }

42 if (errcnt)

43 {

44 cerr << "Usage: " << *argv << " [-i]] [-c chars] [-m count]" << endl;
45 exit(1);

46 }

47 for (c = 'a’; ¢ <= 'Z'; c++)

48 MapAllowed[c] = c;

49 for (c = 'A'; ¢ <= 'Z'; c++)

50 MapAllowed[c] = Ignore ? ¢ : ¢ - 'A" + 'a}
51 if ({Alphabetic)

52 for (c = '0; ¢ <= '9" c++)

53 MapAllowed[c] = c;

54 tokens();

55 exit(0);

56 }

57

58 void treeprint(TNODE *tree)

59 {

60 if (tree !'= NULL)

61 {

62 treeprint(tree->left);

63 if (tree->count > Mincount) {

64 cout.width(7);

65 cout << tree->count;

66 cout << "\n" << tree->contents << endl;
67 }

68 treeprint(tree->right);

69 }

70 }

71

www.manharaa.com

APPENDIXD: TRAINING PROGRAMtokens.cc 288

72 TNODE *install(char *string, TNODE *tree)
73 {

74 int cond;

75 assert(string !'= NULL);

76 if (tree == NULL)

77 {

78 if (tree = new TNODE)

79 {

80 tree->contents = strdup(string);
81 tree->count = 1;

82 }

83 }

84 else

85 {

86 cond = strcmp(string, tree->contents);
87 if (cond < 0)

88 tree->left = install(string, tree->left);
89 else if (cond == 0)

90 tree->count++;

91 else

92 tree->right = install(string, tree->left);
93 }

94 return(tree);

95 1}

96

97 char *getword(void)

98 {

99 static char string[1024];
100 char *ptr = string;
101 int ¢, count = 0;

102 for (;;)

103 {

104 ¢ = cin.get();

105 if (c == EOF)

106 if (ptr == string)

107 return(NULL);

108 else

109 break;

110 if (IMapAllowed[c])

111 if (ptr == string)

112 continue;

113 else

114 break; // end of word
115 *ptr++ = MapAllowed[c];
116 }

117 *ptr = NULL;

118 return(string);

119 }

120

121 void tokens(void)

www.manharaa.com

APPENDIXD: TRAINING PROGRAMtokens.cc 289

122 {

123 TNODE *root = NULL;
124 char *s;

125 while (s = getword())

126 root = install(s, root);
127 treeprint(root);
128 }

D.6.4 Defects inokens.cc

1. Defectin function “main”, line 27 (circa): The array “Maflowed” is never initialised.
Failure: Non-alphanumeric symbols could be mistakenlyepted, depending on the
contents of MapAllowed.

2. Defect in function “main”, line 31: The variable “Alphatie is given the value 0
instead of 1.

Failure: The argument “-a” has no effect.

3. Defect in function “main”, line 41 (circa): No default breh for the case statement.
Failure: Arguments other than those defined in the spedificato not cause a usage
message to be printed.

4. Defect in function “main”, line 44: The argument “-a” istdocumented in the usage
message.

Failure: The usage message says nothing about the “-a” @mgum

5. Defect in function “main”, line 50: “-i” option not impleented correctly, the branches
of the “?” operator are transposed.

Failure: Upper case and lower case characters are alwaysgiished, irrespective of
the use of the “-i” option.

6. Defectin function “treeprint”, line 63: The symbo#* should be >=".

Failure: If a boundary value is given with the “-m” argument, the value+ 1 is used

instead ofn.

7. Defect in function “treeprint”, line 66: The escape setree“\n” is used instead of
“\t”.
Failure: The output is not formatted correctly. Each toklkawdd appear on a line with
its count. As written, the program outputs the token, thendbunt on a new line.

www.manaraa.com

APPENDIXD: TRAINING PROGRAMSImple _sort.cc 290

8. Defectin function “install”, line 82 (circa): The left dmight branches of the tree should
be initialised to NULL.

Failure: No failure apparent, but this may be implementatiependent, i.e. depending
on the definition of NULL. Also checklist violation.

9. Defect in function “install”, line 92: The function indt& called with incorrect param-
eters. tree >left should be tree >right.

Failure: New tokens are inserted into the tree incorredilye output is therefore gen-
erally unreliable.

10. Defect in function “getword”, line 101: The variable etus declared but never used.

Failure: None apparent, but checklist violation.

11. Defect in function “getword”, line 103/117: The lengthtioe input is not checked.

Failure: The program dumps core if a very long word is read.

D.7 Training Program simple _sort.cc

D.7.1 Specification for programsimple _sort.cc
Name

simplesort — sort a list of numbers entered by the user

Usage

simple_sort

Description

simple_sort starts by prompting for the number of items to be sorted. Tiogam then reads
reads in the list of numbers from the user, sorts them interadiog numerical order, then
prints the sorted list.

Options

None.

www.manaraa.com

APPENDIXD: TRAINING PROGRAMSImple _sort.cc

201

Example

Sorting a list of ten numbers:

% simple_sort

Enter the number of data values: 10
Data item O:
Data item
Data item
Data item
Data item
Data item
Data item
Data item

A P O WO N 00 N O O

Data item

© ©® N o gk wdR

=
o

Data item

Sorted list:
Data item
Data item
Data item
Data item
Data item
Data item
Data item
Data item

© 00 N o o~ WwN B

Data item

© ©® N o gk w DR o

=
o

Data item

Restrictions

The number of elements which can be sorted is currentlydidiio 100.

Author

Fraser Macdonald.

www.manharaa.com

APPENDIXD: TRAINING PROGRAMSImple _sort.cc

292

D.7.2 simple _sort.cc
1 #include <iostream.h>
2 #include <stdlib.h>
3
4 const int TABLESIZE = 100;
5
6 void swap(int x, int y)
7 {
8 int temp = X;
9 x=y
10 vy = temp;
1 }
12
13 int max(int x, int y)
14 {if (x > y) return x; else return y;}
15
16 int main()
17 {
18 int size;
19 int table[TABLESIZE];
20
21 cout << "Enter the number of data values: ";
22 cin >> size;
23
24 if(size >= TABLESIZE) {
25 cout << "Too many elements, maximum is " << TABLESIZE << endl;
26 exit(1);
27 }
28 else {
29 for(int i = 0; i < size; i++){
30 cout << "Data item " << j << " "
31 cin >> table[i];
32 }
33 for(i = size - 1; i > 0; i--)
34 for(int j = 0; j <=i - 1; j++)
35 if(table[j] > table[j+1])
36 swap(tablel[j], table[j+1]);
37
38 cout << endl << "Sorted lits:" << endl;
39 for(i = 0; i < size; i++)
40 cout << "Data item " << i << " " << table[i] << endl;
41 }
42 exit(0);
43 }

D.7.3 Defects insimple _sort.cc

1. Defectinfunction “swap”, line 6 : The parameters are pdss/ value, not by reference.

www.manharaa.com

APPENDIXD: TRAINING PROGRAMSEries.cc 293

Failure: “swap” doesn't correctly swap the numbers, tleeesthe sort is not carried out
correctly.
2. Defect in function “max”, line 13 : The function “max” is tieed but never used.

Failure: None apparent, but checklist violation.

3. Defect in function “main”, line 24 >= should be>.

Failure: The program only accepts one less than the truermawrinumber of elements.

4. Defect in function “main”, line 38 : “list” is spelled inceectly in the message.

Failure: The program displays incorrect output.

D.8 Training Program series.cc

D.8.1 Specification for programseries.cc
Name

series — generate a series of numbers

Usage

seriesstart end [stepsize]

Description

seriesprints the real numbers from start to end, one per Isgiesbegins with start to which
stepsize is repeatedly added or subtracted, as appropriate, to apprpossibly meet, but
not pasend.

If all arguments are integers, only integers are produceteroutput. The stepsize must
be nonzero; if it is not specified, itis assumed to be 1. Negatiep sizes are made positive. In
all other cases, series prints an appropriate error mes#fatpe wrong number of arguments
are given, series prints a usage message.

series accepts numbers in several formats: integer, réaremveither the whole or frac-
tional part may be omitted) and exponential (an integer al, rguffixed with 'e' or 'E' fol-
lowed by a (signed) integer exponent). Any number with atfomal part consisting only of
zeroes is converted to an integer (e.g. 1.0000 is treateyl &dlhumbers may optionally be
prefixed by a plus or minus. Examples of acceptable numbehsda:

www.manaraa.com

APPENDIXD: TRAINING PROGRAMSEries.cc 294

+23
-2.4
26.0
92.
.348
1.0E3
34e-2

Example

To count from 1 to 100:;

% series 1 100
1

2

3

98

99

100

To do the same, but backwards:

% series 100 1
100
99
98

To count from 1.5 to 4.5 in steps of 0.5

% series 1.5 45 05
15

2

25

www.manharaa.com

APPENDIXD: TRAINING PROGRAMSEries.cc 295

3
3.5
4
4.5

Limitations

The reported number of significant digits is limited. If theio of the series range to the
stepsize is too large, several numbers in a row will be equal.

The maximum length of a series is limited to the size of theimar integer that can be
represented on the machine in use. Exceeding this valuenusined results.

Author

Original by Gary Perlman. C++ conversion and update by Frislsedonald.

D.8.2 Library functions used in series.cc

e double atof(char *nptr)
Converts the initial portion of the string pointed to bgtr to double representation.
The function returns the converted value.

e double fabs(double x)

Computes the absolute value of number x

e int isdigit(char c)

Returns non-zero integer if the charaateis a decimal digit.

e int isspace(char c)

Returns non-zero integer if the characteis a standard whitespace character. The
standard whitespace characters are: space(" '), form fgill aewline (\n"), carriage
return (\r'), horizontal tab (\t') and vertical tab {v').

D.8.3 series.cc

#include <stdlib.h>
#include <ctype.h>
#include <iostream.h>

a b~ W N -

const int IS_NOT = 0;

www.manaraa.com

APPENDIXD: TRAINING PROGRAMSeries.cc

296

© 0 N O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

const int IS_INT = 1,
const int IS_REAL = 2;
const int IS_ EXP = 3;
const double FZERO = 10e-10;

int fzero(double x);
int isinteger (char *string);
int number(char *string);

void main (int argc, char **argv)

{
long Numltems = 0;
double Value = 0.0;
double Start = 0.0;
double End = 0.0;
double Step = 1.0;
char *startstr = argv[1];
char *endstr = argv[2];
char *stepstr = argv([3];
int NumArgs = argc;

switch (NumArgs)
{
case 3:
if (! number(startstr)) {
cerr << "Argument #1
exit(1);
}
if (! number(startstr)) {
cerr << "Argument #2
exit(1);
}
if (! number(stepstr)) {
cerr << "Argument #3
exit(1);
}
break;
case 2:
if (! number(startstr)) {
cerr << "Argument #1
exit(1);
}
if (! number(endstr)) {
cerr << "Argument #2
exit(1);

}
break;
default:
cerr << "Usage: " << argv
exit(1);

not a number:

not a number:

not a number:

not a number:

not a number:

<< " start end

" << startstr << endl;

" << endstr << endl;

" << stepstr << endl;

" << endstr << endl;

" << endstr << endl;

[stepsize]" << end];

www.manharaa.com

APPENDIXD: TRAINING PROGRAMSEries.cc 297

56 }

57

58 Start = atof(startstr);

59 End = atof(endstr);

60 if (NumArgs == 3) {

61 Step = fabs(atof(stepstr));

62 if (! fzero(End - Start) && fzero(Step))
63 cerr << "stepsize must be non-zero" << endl;
64 exit(1);

65 }

66

67 if (fzero(End - Start))

68 Numltems = 2;

69 else

70 Numitems = (long) (End - Start / Step + 1.0 + FZERO);
71

72 for (int Item = 0; Item < Numltems; ltem++) {
73 Value = Start + Step * (double) Item;
74 if (fzero(Value))

75 cout << 0.0 << endl;

76 else

77 cout << Value << endl;

78 }

79

80 exit(0);

81 }

82

83 int fzero (double x)

84 {

85 return (fabs (x) < FZERO);

86 }

87

88 int isinteger (char *string)

89 {

90 return (number(string) == IS_INT);

91 }

92

93 int number (char *string)

94 {

95 int answer = IS_REAL,

96 before = 0,

97 after = 0O;

98 char *ptr = NULL;

99

100 while (isspace(*string))

101 string++;

102 if (*string == NULL)

103 return (IS_NOT);

104 if (*string == '+ || *string == ") {

105 string++;

www.manharaa.com

APPENDIXD: TRAINING PROGRAMSEries.cc 298

106 if (isdigit(*string) && *string != ")
107 return (IS_NOT);
108 }

109 if (isdigit(*string)) {

110 before = 1;

111 while (isdigit(*string))

112 string++;

113 }

114 if (*string == "") {

115 string++;

116 ptr = string;

117 while (*ptr == '0")

118 ptr++;

119 while (isspace(*ptr))

120 ptr++;

121 if (*ptr == NULL)

122 return (IS_INT);

123 answer = IS_REAL,;

124 if (isdigit(*string)) {

125 after = 1;

126 while (isdigit (*string))
127 string++;

128 }

129 }

130 if (before && !after)

131 return (IS_NOT);

132 if (*string == 'E' || *string == 'e') {
133 answer = IS_EXP;

134 string++;

135 if (*string == '+ || *string == ")
136 string++;

137 if (lisdigit(*string))

138 return (IS_NOT);

139 while (isdigit(*string))

140 string++;

141 }

142 while (isspace(*string))

143 string++;

144 return(answer);

145 }

D.8.4 Defects in programseries.cc

1. Defectin line 25NumArgs is initialised toargc instead ofargc - 1

Failure: With one or two arguments, a segmentation Defectigc Any other number
of arguments always produces a usage message.

www.manharaa.com

APPENDIXD: TRAINING PROGRAMSEries.cc 299

2. Defectinfunctiommain() , line 34: The variablstartstr is used in the if-condition
instead ofendstr

Failure: The program does not recognise a hon-numeric semgument as an error.
3. Defectin functiormain() , line 45: The variablendstr is used in the output instead
of startstr
Failure: Although a non-numeric first argument is recogaias an error, the corre-
sponding error message shows the second argument.
4. Defectin functiormain() , line 54:argv should befargv

Failure: Instead of the program name, the program printsitttgess of its name.

5. Defect in functiormain() , line 62: Mismatch with specification.

Failure: The specification states tls¢psize should always be non-zero. In fact,
the programs accepts zero fatepsize if the difference between the start and end
values is also zero.

6. Defect in functiommain() , line 62—64: Missing brackets for the branch of the if state-
ment.

Failure: If three arguments are given, the program alwaysiteates without any input,
sinceexit(0) is always executed.

7. Defect in functiormain() , line 68: The variabl®umltems is set to 2 instead of 1.
Failure: If the distance between the first and second paratisetvaluated to zero, then
two lines are produced as output although only one was eggect

8. Defect in functiormain() , line 70: The calculatiofend - Start should be en-
closed in parentheses.

Failure: The value assignedifumitems is incorrect in all cases except where the step
size is 1, since the calculation is performed in the wrongo(division is performed
first).

9. Defect in functiormain() , line 72—78: Treatment of the case “exdstart” was for-
gotten.

Failure: No output is produced in the case that the startaigevis greater then the
ending value.

www.manaraa.com

APPENDIXD: EXPERIMENT PROGRAManalyse.cc 300

10. Defect in functiormain() , line 88-91: Functiorisinteger is defined but never
used.

Failure: No failure, but checklist violation.

11. Defect in functiomumber() , line 95:answer is initialised tolS _-REAL should be
IS _INT.

Failure: number() will only return IS _INT if the number given is of the form 1.0,
51.000, etc. Normal integers will be mistakenly classifisdesals.

12. Defect in functiomumber() , line 106: The call tasdigit(*string) should be
lisdigit(*string)

Failure:number() will not recognise numbers starting with signs, such as +23,
etc. The exceptions are anything of the form +.2, -.982, et. any number with a
point straight after the sign.

13. Defect in functiomumber() , line 144: The string should be checked for any remain-
ing characters after a number has been parsed.

Failure: If a number is terminated by non-numeric characteumber() does not
returnlS _NOT

D.9 Experiment Programanalyse.cc

D.9.1 Specification for programanalyse.cc
Name

analyse — perform simple analysis on survey data

Usage

analysefile

Description

analyseperforms simple statistical analysis on a file containingyey responses. Each re-
sponse is an integer from 0 to 9 (inclusive). The programutates four statistics: mean,
median, mode and standard deviation.

www.manaraa.com

APPENDIXD: EXPERIMENTPROGRAManalyse.cc 301

For the mean, the calculation is presented, along with tissvan For the median, both
the unsorted and sorted arrays of responses are printeddftad in rows of up to twenty
numbers), followed by the value of the median. The medianesentral value of the ordered
data set. If the number of elements in the data set is evenmduian is the average of
the two most central values. For the mode, a histogram oligaqgies of each response is
drawn, followed by the value of the mode and its frequencye iffode is the most frequently
occurring response. If more than one response shares thegtifgequency, the lowest valued
response is chosen. For the standard deviation, the answsienply presented. It is calculated
according to the formulr\n/z, whereSis the sum of the squares of the differences between
each data element and the mean, Brig the number of elements in the data set.

The input file consists of a list of integer responses in timgea0 to 9, one to each line.
The first line of the file contains an integer indicating thener of responses in the file. This
value must be greater than zero, otherwise an error messageted. If no filename is given,
the program prints a usage error. If the file cannot be acdesseappropriate error message
is printed.

Example

A typical data file might be:

= 01 00 U1 © 0 U1 O

The first line indicates that eight responses are includelerfile. This is then followed
by each of the eight responses. The output for this file is:

% analyse data
Processing data

End of file data

www.manaraa.com

APPENDIXD: EXPERIMENTPROGRAManNalyse.cc

302

Mean = 47/8 = 5.875

The unsorted array is

65895851

The sorted array is

15556889

Median is 5.5
Response Frequency Histogram
5
0 0
1 1 *
2 0
3 0
4 0
5 3 *kk
6 1 *
7 0
8 2 *%
9 1 *

Mode is 5, occurring 3 times.

Standard deviation is 2.36841

www.manharaa.com

APPENDIXD: EXPERIMENT PROGRAManalyse.cc 303

Restrictions

The histogram output will only properly display a maximuraduency of 25 responses.

Author

Written by Fraser Macdonald, based on an example f@rilow to Progranmby Deitel and
Deitel.

D.9.2 Library functions used in analyse.cc

e int eof(void)
Returns 1 if end-of-file has been encountered in the correfipg stream, otherwise
returns O.

e double fabs(double x)

Computes the absolute value of floating point number

e int good(void)

Returns 1 if the corresponding I/O stream is available fe; atherwise returns O.

e int open(char* s)

Opens the corresponding I/O stream.

e int setw(int x)

Sets the field width and returns the previous width for thiean.

e double sqgrt(double x)

Computes the non-negative square root.oAn error occurs if the argument is negative.

D.9.3 analyse.cc

#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>
#include <math.h>

void Mean (int Array[], int Size);
void Median (int Array[], int Size);
void Mode(int Array[], int Size);

0 N o oA~ WN P

www.manaraa.com

APPENDIXD: EXPERIMENT PROGRAManalyse.cc 304

9 void StandardDeviation(int Array[], int Size);
10 void BubbleSort(int Array[], int Size);
11 void PrintArray(int Array[], int Size);

12

13 int main(int argc, char **argv)

14 {

15 int ltem = 0,

16 Size = 0,

17 Count = 0;

18 int *Responses = NULL;

19 ifstream InputFile;

20 char *Filename = NULL;

21

22 if (argc 1= 2) {

23 cerr << "Usage: " << argv[l] << " file" << endl
24 exit(1);

25 }

26 Filename = argv[1];

27 InputFile.open(Filename);

28 if (!InputFile.good()) {

29 cerr << "File error." << endl;

30 InputFile.close();

31 exit(1);

32 }

33 cout << "Processing " << Filename << endl;
34 InputFile >> Size;

35 if (Size > 0) {

36 cerr << "One or more responses required." << endl;
37 InputFile.close();

38 exit(1);

39 }

40 else

41 if (/(Responses = new int [Size])) {

42 cerr << "Memory allocation failure." << endl;
43 exit(1);

44 }

45 while (!InputFile.eof()) {

46 InputFile >> Item;

a7 Responses[Count++] = Item;

48 }

49 InputFile.close();

50 Mean(Responses, Size);

51 Median(Responses, Size);

www.manharaa.com

APPENDIXD: EXPERIMENT PROGRAManalyse.cc 305

52 Mode(Responses, Size);

53 StandardDeviation(Responses, Size);

54 cout << endl << "End of file " << Filename << endl << endl;
55 exit(0);

56 }

57

58 void Mean(int Array[], int Size)

59 {

60 int Total = O;

61

62 for (int j = 0; j < Size; j++)

63 Total += Array[j];

64 cout << "Mean = " << Total << "" << Size << " = "
65 << Total / Size << endl << endl;

66 }

67

68 void Median(int Array[], int Size)

69 {

70 int Median;

71

72 BubbleSort(Array, Size);

73 cout << "The sorted array is" << endl;

74 PrintArray(Array, Size);

75 Median = Array[Size / 2];

76 cout << "Median is " << Median << endl << endl;
77 '}

78

79 void Mode(int Array[], int Size)

80 {

81 int Rating, j, h,

82 Largest = O,

83 ModeValue = 0;

84 int Frequency[10];

85

86 for = 0; j < Size; j++)

87 Frequency[Array[j]]++;

88

89 cout << "Responce";

90 cout << setw(1ll) << "Frequency";

91 cout << setw(19) << "Histogram" << endl << endl;
92 cout << setw(54) << "1 1 2 2" << end;
93 cout << setw(54) << "5 0 5 0 5" << endl << end;
94

www.manharaa.com

APPENDIXD: EXPERIMENT PROGRAManalyse.cc 306

95 for (Rating = 0; Rating <= 9; Rating++) {

96 cout << setw(8) << Rating;

97 cout << setw(1ll) << Frequency[Rating] << " "
98 if (Frequency[Rating] > Largest)

99 Largest = Frequency[Rating];

100 ModeValue = Rating;

101 for (h = 1; h < Frequency[Rating]; h++)

102 cout << "™

103 cout << endl;

104 }

105

106 cout << endl << "Mode is " << ModeValue << ", occurring "
107 << Largest << " times." << endl << endl;
108 }

109

110 void StandardDeviation(int Array[], int Size)

111 {

112 double Total = 0.0,

113 Mean = 0.0,

114 StdDev = 0.0;

115

116 for (int j = 0; j < Size; j++)

117 Total += (double) Array(j];

118 Mean = Total / (double) Size;

119

120 for § = 0; j < Size; j++)

121 Total = Total + fabs((double) Array[j] - Mean)
122 * fabs((double) Array[j] - Mean);
123 StdDev = sqgrt(Total / (double) Size);

124 cout << "Standard deviation is " << StdDev << endl << endl;
125 }

126

127 void BubbleSort(int Array[], int Size)

128 {

129 int Pass, Hold, j;

130

131 for (Pass = 1; Pass < Size; Pass++)

132 for § = 0; j < Size - 1; j++)

133 if (Array[j] > Array[j+1]) {

134 Hold = Array[j];

135 Array[j] = Array[j+1];

136 Array[j+1] = Hold;

137 }

www.manharaa.com

APPENDIXD: EXPERIMENTPROGRAManalyse.cc 307

138 }

139

140 void PrintArray(int Array[], int Size)

141 {

142 for (int j = 0; j < Size; j++) {

143 if § % 20 == 0) cout << endl
144 cout << setw(2) << Array[j;
145 }

146 cout << endl << endl;

147 '}

D.9.4 Defects in programanalyse.cc

1. Defectin functiomain() , line 23:argv[1] should be replaced targv[0]

Failure: Program does not print out its own name as part olida@e message. The
name printed is undefined.

2. Defect in functiomain() , line 35: The test for an illegal value &ize isincorrect.
Failure: Program will not detect illegal values 8ize , and correct values will cause
the program to fail with an error message.

3. Defect in functiormain() , line 4548 : If the file contains more data elements than
the number declared at the start, the elements are writteruitallocated memory.

Failure: None apparent, but unallocated memory is oveivrit

4. Defect in functiormain() , line 54: End of file message occurs in incorrect position.
Failure: The end of file message is printed after all caléoitet have been printed,
instead of the correct time.

5. Defect in functiorMean() , line 65: The calculation of the mean requires an explicit
cast tofloat of both operands.

Failure: The calculation of the mean is always truncated.

6. Defect in functiorMedian() , line 71: The specification states that the unsorted array

should be printed out when calculating the median. This isinae.
Failure: Outputincomplete
7. Defect in functiorMedian() , line 75: The specification states that if there is an even

number of responses then the median should be the average okd most central
values, but the program always uses a single central value.

www.manaraa.com

APPENDIXD: EXPERIMENT PROGRAMgraph.cc 308

Failure: Incorrect median for data sets with an even numbelements.

8. Defect in functiorMode() , line 84: The arrayFrequency is not initialised before
use.

Failure: Checklist violation, behaviour undefined.

9. Defectin functiorMode() , line 89: "Response' spelled incorrectly.

Failure: Incorrect label printed.

10. Defect in functiorMode() , line 98-100: Brackets missing around the contents of the
if statement.

Failure: The mode is always set to 9.

11. Defect in functiorMode() , line 101: The terminating condition of tifer loop is
incorrect, printing out one less then the required numbestérisks.

Failure: Incorrect histogram display.

12. Defect in functiorStandardDeviation() , line 119: Total is not re-initialised
before being used in calculating the standard deviation.

Failure: Calculation of standard deviation is incorrect.

D.10 Experiment Programgraph.cc

D.10.1 Specification for programgraph.cc
Name

graph — draw a graph

Usage

graph file

Description

Given an input file of ordered pairs (x, y) of either positivenegative integers as input, the
program displays the list of points read in and plots them gmiciwith a horizontal x-axis
and a vertical y-axis which are appropriately labeled, aameehtick’ marks every five units.

www.manaraa.com

APPENDIXD: EXPERIMENT PROGRAMgraph.cc 309

A plotted point on the grid appears as an asterisk (*), andyttteis scaled to fit into an area
with a maximum width of 40 characters and a maximum heighGoétzaracters.

Vertical scaling is handled as follows. The total heightlué graph is calculated as the
difference between the largest y value (or zero if the largesegative) and the smallest y
value (or zero if the smallest value is positive). If thisdidiis less than the maximum height
of the graph, no scaling is carried out and the graph is platii¢gh vertical spacing of one line
per integral unit (e.g., the point (3, 6) should be plottedimnsixth line above the origin; two
lines above the point (3, 4)). Note that the origin (point@),corresponds to the intersection
of the axes (the x-axis is referred to as the line). The origin is represented by a +' and
the graph is drawn to ensure that the origin and axes alwgysaap

If the heightis greater than the maximum height of the gréphscale for vertical spacing
is set to the maximum possible height divided by the totajligiequired. This scaling factor
is then applied to every point on the graph and the resultdedrappropriately to ensure the
point lies within the correct interval. For example, if thetgraph was required to display the
points (1, 1) and (1, 99) the total height is 100 (since thgionmust also be displayed). The
scaling factor is then 20/100 = 0.2. (1, 1) is displayed orOthdine (which covers the interval
0 to 4) and (1, 99) is displayed on the 19th line (which covérsd®). Negative coordinate
values are treated in a similar way. Horizontal scaling isdded similarly.

If two or more of the points to be plotted would show up as theesasterisk in the grid,
the number of points occurring on that grid position appé@astead of the asterisk. Points
whose asterisks will lie on an axis or other marker show upacgof that item.

The input file consists of list of integer coordinates, wittle x-coordinate followed by
the corresponding y-coordinate. If no filename is given, ghegram prints a usage error.
If the file cannot be accessed, an appropriate error messggeted. If an odd number of
coordinates are present in the file, an appropriate errosagesis printed.

Example

A typical data file might be:

-100
-100
0

0

4

19

www.manaraa.com

APPENDIXD: EXPERIMENT PROGRAMgraph.cc

310

20
99
99
49
49
48
48

The printed output from this file is:

% graph data
(48, 48)

(49, 49)

(99, 99)

(5, 20)

4, 19)

(0, 0)

(-100, -100)

www.manharaa.com

APPENDIXD: EXPERIMENTPROGRAMgraph.cc 311

Restrictions

The program will only correctly deal with up to nine overlapg points, since numbers be-
yond this occupy more than a single grid position.

Author

Written by Fraser Macdonald, based on a specification frosilBand Selby'<Comparing
the effectiveness of software testing techniglEElSE Transactions on Software Engineering,
13(12), December 1987.

D.10.2 Library functions used ingraph.cc

e int abs(int x)

Computes the absolute value of integer

e int good(void)

Returns 1 if the corresponding I/O stream is available fe; atherwise returns 0.

e int open(char* s)

Opens the corresponding I/O stream.

D.10.3 graph.cc

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>

const int GWIDTH = 40;
const int GHEIGHT = 40;

typedef struct pointnode {
int X;
int Y;
struct pointnode *Next;
} PointNode;

© 00N O O b WON PP

e e =
w N B O

www.manaraa.com

APPENDIXD: EXPERIMENT PROGRAMgraph.cc 312

14 typedef PointNode *PointNodePtr;

15

16 void InsertPoint(int XValue, int YValue, PointNodePtr PointList);
17 void PrintPointList(PointNodePtr PointList);

18 void PlotGraph(PointNodePtr PointList, float XShift, float YShift,

19 float XScale, float YScale, char Output{GWIDTH][GHEIGHT]);
20 void DrawGraph(PointNodePtr PointList);

21

22 int main(int argc, char **argv)

23 {

24 PointNodePtr PointList = NULL;

25 ifstream InputFile;

26 char *Filename = NULL;

27 int X =0,Y =0;

28

29 if (argc = 2) {

30 cerr << "Usage: " << argv[0] << " file" << endl;
31 exit(1);

32 }

33 Filename = argv[1];

34 InputFile.open(Filename);

35 if (InputFile.good()) {

36 cerr << "File error on " << Filename << endl;
37 InputFile.close();

38 exit(1);

39 }

40 while (InputFile >> X)

41 if (InputFile >>Y)

42 InsertPoint(X, Y, PointList);

43 else {

44 cerr << "Error: no Y value for X = " << X << end|
45 InputFile.close();

46 exit(1);

a7 }

48 InputFile.close();

49 DrawGraph(PointList);

50 exit(0);

51 }

52

53 void InsertPoint(int XValue, int YValue, PointNodePtr PointList)
54 {

55 PointNodePtr NewNode = NULL;

56

57 if (NewNode = new PointNode) {

58 NewNode->X = XValue;

59 NewNode->Y = YValue;

60 NewNode->Next = PointList;

61 PointList = NewNode;

62 }

63 else

www.manharaa.com

APPENDIXD: EXPERIMENT PROGRAMgraph.cc 313

64 cerr << "Error allocating memory." << endl;

65 }

66

67 void PrintPointList(PointNodePtr PointList)

68 {

69 PointNodePtr Current = PointList;

70

71 while(Current != NULL) {

72 cout << "(" << Current->Y << ", " << Current->X << ")" << endl;
73 Current = Current->Next;

74 }

75 cout << endl

76 '}

77

78 void PlotGraph(PointNodePtr PointList, float XShift, float YShift,

79 float XScale, float YScale, char Output{GWIDTH][GHEIGHT])
80 {

81 int x =0,y =0;
82 PointNodePtr Current = PointList;

83
84 for (y = 0; y < GHEIGHT; y++)
85 Output[(int)XShift]ly] = '|';

86 Output[(in)XShif[GHEIGHT - 1] = "
87 Output[(int)XShift + 1J[GHEIGHT - 1] = 'Y"

88
89 for (x = 0; x < GWIDTH; x++)
90 Output[X][(int)YShift] = '-;

91 Output{GWIDTH - 1][(int)YShif] = >
92 Output{GWIDTH - 1][(int)YShift - 1] = 'X;
93 Output[(int)XShift][(int)YShift] = “+

94

95 while (Current != NULL) {

96 x = (int)((float) Current->X * XScale + XShift);
97 y = (int)((float) Current->Y * YScale + YShift);
98 switch(Output[X][y]) {

99 case ' : case '|' :

100 case '+' : case ' ' : Output[x][y] = *'; break;
101 case "™ : Output[x]ly] = '2'; break;

102 default : Output[x]ly] = Output[x][y] + 1; break;
103 }

104 Current = Current->Next;

105 }

106 }

107

108 void DrawGraph(PointNodePtr PointList)

109 {

110 int SmallestX = 0, LargestX = PointList->X,

111 SmallestyY = 0, LargestY = PointList->Y,

112 Width = 0, Height = 0,

113 X =0,y =0;

www.manharaa.com

APPENDIXD: EXPERIMENTPROGRAMgraph.cc 314

114 float XScale = 1.0, YScale = 1.0,
115 XShift = 0.0, YShift = 0.0;
116 PointNodePtr Current = PointList;
117 char Output[GWIDTH][GHEIGHT];

118

119 while (Current !'= NULL) {

120 if (Current->X < SmallestX) SmallestX = Current->X;
121 if (Current->X > LargestX) LargestX = Current->X;
122 if (Current->Y < SmallestY) SmallestY = Current->Y;
123 if (Current->Y > LargestY) LargestY = Current->Y;
124 Current = Current->Next;

125 }

126

127 Width = LargestX - SmallestX + 1;

128 Height = LargestY - SmallestyY + 1;

129 if (Width > GWIDTH) XScale = (float) Width / (float) GWIDTH,;
130 if (Height > GHEIGHT) YScale = (float) Height/ (float) GHEIGHT;
131 if (SmallestX < 0) XShift = (float) abs(SmallestX) * XScale;
132 if (SmallestY < 0) YShift = (float) abs(SmallestY) * YScale;
133

134 PlotGraph(PointList, XShift, YShift, XScale, YScale, Output);
135

136 for (y = 0; y < GHEIGHT; y++) {

137 for (x = 0; x < GWIDTH; x++)

138 cout << Output[x][y];

139 cout << endl;

140 }

141 }

D.10.4 Defects in programgraph.cc
1. Defect in functiommain() , line 6: Wrong value given tGHEIGHT
Failure: The program prints a graph 40 by 40, instead of 40(y 2

2. Defect in functiormain() , line 35: The test for a correctly opened file should have a
'I' in front of it.

Failure: The program always fails if the file is correctly opd.

3. Defect in functiormain() , line 48: Call toPrintPointList missing.
Failure: The list of points is not displayed before the gréptrawn, as is required by
the specification.

4. Defect in functiorinsertPoint() , line 16, 53: PointList passed by value in-
stead of by reference.

Failure: PointList is never updated with the inserted pointed.

www.manaraa.com

APPENDIXD: EXPERIMENTPROGRAMgraph.cc 315

5. Defect in functiorPrintPointList() , line 72: XandY values ofCurrent trans-
posed.

Failure: The printed points appear with the Y coordinatéofeed by the X coordinate.

6. Defect in functiorPlotGraph() , line 83: The arrayDutput is notinitialised.
Failure: The output from the program is unpredictable, sithe point drawing routine
depends on the array being initialised with spaces.

7. Defect in functiorPlotGraph() , line 84, 89: The code does not deal with inserting
tick marks in the graph.

Failure: The printed graph does not have the tick marks requy the specification.

8. Defect in functiorPlotGraph() , line 92: One is subtracted from the Y coordinate
of the position for the X axis label.

Failure: The array index may go out of bound¥Bhift is zero.

9. Defect in functiorPlotGraph() , line 98: Conditions foswitch ~statement incom-
plete.

Failure: If a point occurs on the graph over the axis labelarosws, the point is not
drawn correctly, since these cases are not explicitly t=fstein theswitch

10. Defect in functiorDrawGraph() , line 110, 111:LargestX andLargestY are
given the wrong initial values.
Failure: If all coordinates are negative, and the graph bdetscaled, the axes are not
drawn. These should be set to 0 initially.

11. Defect in functiobrawGraph() , line 129, 130: Incorrect calculation of scaling fac-
tors.
Failure: If scaling is required the program usually terni@saabnormally as the output
array is indexed out of bounds.

12. Defect in functiobrawGraph() , line 136: The loop control for printing the vertical
axis proceeds from bottom to top instead of top to bottom.

Failure: The graph is printed out upside down.

www.manaraa.com

APPENDIXD: QUESTIONNAIRES 316

D.11 Questionnaires

D.11.1 Questionnaire 1

Section 1: C++ Browser

1. Indicate how much you used each of the following features of the C++ browser
during individual preparation by marking the appropriate box.

Feature Frequency of use

Window split Never[] Once[] Twice[] Many times[]

Inspected code indication (reduced font) Never[] Once[] Twice[] Many times[]
Line/column number indicator Never[] Once[] Twice[] Many times[]

Coverage indication (percentage) Never[] Once[] Twice[] Many times][]

New annotation button

Delete annotation button

Show annotation button

Cycle annotation button

Never[] Once[] Twice[] Many times][]

Never[] Once[] Twice[] Many times][]

Never[] Once[] Twice[] Many times][]

Never[] Once[] Twice[] Many times][]

Find facility Never[] Once[] Twice[] Many times[]

Cross-referencing facility Never[] Once[] Twice[] Many times[]

2. Overall, how did you find navigating around the document you were
inspecting?
(1 = very difficult, 2 = difficult, 3 = average, 4 = easy, 5 = very easy)

1[0 21 30 40 50

3. Was the size of the text font used...

Too small[] Just right[] Too large[]

4. Was the default window size used...

Too small[] Just right[] Too large[]

www.manharaa.com

APPENDIXD: QUESTIONNAIRES 317

5. Did the use of a reduced font to indicate coverage of the code affect your
ability to read the code?

Still readable[] Unreadable[]

Section 2: List Browser

6. Indicate how much you used each of the following features of the list
browser in ASSIST during individual preparation by marking the appropriate box.

Feature Frequency of use

Show item Never[] Once[] Twice[] Many times][]
New item Never[] Once[] Twice[] Many times[]
Cut item Never[] Once[] Twice[] Many times[]
Copy item Never[] Once[] Twice[] Many times[]
Paste item Never[] Once[] Twice[] Many times][]
JumpTo item Never[] Once[] Twice[] Many times[]

7. How did you find creating comments?
(1 = very difficult, 2 = difficult, 3 = average, 4 = easy, 5 = very easy)

1[0 201 30 40 50

8. Was the default window size used...

Too small[] Just right[] Too large[]

Section 3: General

9. Indicate how much you used each of the following features of ASSIST during
individual preparation by marking the appropriate box.

www.manharaa.com

APPENDIXD: QUESTIONNAIRES 318

Feature Frequency of use
Checklist Never[] Once[] Twice[] Many times][]
C++ reference Never[] Once[] Twice[] Many times[]

10. Describe the strategy you used for inspecting the code. For example,
sequential, bottom up, top down, etc.

11. Overall, how easy to use was the list browser/C++ browser combination?
(1 = very difficult, 2 = difficult, 3 = average, 4 = easy, 5 = very easy)

1[0 201 30 40 50

12. Did you prefer creating comments from within the C++ browser or the list

browser, or did you have no preference?

C++ browser[] List browser[] No preference[]

13. Overall, did you find that the number of windows used by ASSIST reduced

your inspection efficiency, had no effect on your inspection efficiency, or

improved your inspection efficiency?

Improved[] No effect]] Reduced[]

14. Compared with paper-based inspection, do you feel that computer-based

inspection is more efficient, less efficient, or about equally efficient?

Computer-based is less efficient]] Equal[] Computer-based is more efficient]]

15. Are there any facilities which you feel ASSIST could provide to enhance the
individual preparation phase?

16. Please use this space to detail any problems you had when using ASSIST for

www.manharaa.com

APPENDIXD: QUESTIONNAIRES

319

individual inspection, or any other comments you may have.

[End of questionnaire]

D.11.2 Questionnaire 2

Section 1: C++ Browser

1. Please indicate how much you used each of the following features of the
ASSIST C++ browser during the group meeting by marking the appropriate box.

Feature Frequency of use

Window split Never[] Once[] Twice[] Many times[]

Inspected code indication (reduced font) Never[] Once[] Twice[] Many times[]

Line/column number indicator Never[] Once[] Twice[] Many times[]
Coverage indication (percentage) Never[] Once[] Twice[] Many times][]

New annotation button Never[] Once[] Twice[] Many times][]
Delete annotation button Never[] Once[] Twice[] Many times][]
Show annotation button Never[] Once[] Twice[] Many times][]
Cycle annotation button Never[] Once[] Twice[] Many times][]

Find facility Never[] Once[] Twice[] Many times[]
Cross-referencing facility Never[] Once[] Twice[] Many times[]

2. ANSWER ONE QUESTION ONLY

If you WERE THE READER, please indicate how you found using the focus system to
guide your team through the document.
(1 = very difficult, 2 = difficult, 3 = average, 4 = easy, 5 = very easy)

1[0 201 30 40 50

www.manharaa.com

APPENDIXD: QUESTIONNAIRES 320

If you WERE NOT THE READER, please indicate how happy you were with the
reader's control of the focus?

(1 = unhappy, 2= slightly unhappy, 3 = neither happy or unhappy,

4 = fairly happy, 5 = very happy)

1[0 201 30 40 50

Section 2: List Browser

3. Please indicate how much you used each of the following features of the list
browser in ASSIST during the group meeting by marking the appropriate box.

Feature Frequency of use

Show item Never[] Once[] Twice[] Many times[]
New item Never[] Once[] Twice[] Many times[]
Cut item Never[] Once[] Twice[] Many times[]
Copy item Never[] Once[] Twice[] Many times][]
Paste item Never[] Once[] Twice[] Many times][]
JumpTo item Never[] Once[] Twice[] Many times][]
Propose item Never[] Once[] Twice[] Many times][]
Update item (scribe only) Never[] Once[] Twice[] Many times][]

4. How easy/difficult to use did you find the defect proposal system?
(1 = very difficult, 2 = difficult, 3 = average, 4 = easy, 5 = very easy)

10 21 30 40 50

5. How much did the voting mechanism help resolve issues?
(1 = hindered, 2 = no effect, 3 = helped)

10 20 3[

Section 3: General

www.manharaa.com

APPENDIXD: QUESTIONNAIRES 321

6. Indicate how much you used each of the following features of ASSIST during
the group meeting by marking the appropriate box.

Feature Frequency of use
Checklist Never[] Once[] Twice[] Many times][]
C++ reference Never[] Once[] Twice[] Many times[]

7. Did you feel that using ASSIST had any effect on your group discussion? E.g.
you may have been able to discuss issues more quickly (a positive effect) or
you may have found it more difficult to discuss issues (a negative effect).

(1 = large negative effect, 2 = small negative effect, 3 = no effect,

4 = small positive effect, 5 = large positive effect)

1[0 201 30 40 50

8. Describe in detail the effect ASSIST had on your group meeting (if any).

9. Compared with a paper-based group meeting, do you feel that a computer-based
group meeting is more efficient, less efficient, or about equally efficient?

Computer-based is less efficient[]

Computer-based is equallly efficient[]
Computer-based is more efficient[]

10. Are there any facilities which you feel ASSIST could provide to enhance the
group meeting phase?

11. Please use this space to detail any problems you had when using ASSIST for
the group meeting, or any other comments you may have.

www.manharaa.com

APPENDIXD: QUESTIONNAIRES 322

[End of questionnaire]

D.11.3 Questionnaire 3

Section 1 - Individual Inspection

1. With regard to length, do you think that the analyse.cc code was...

Too long[] Just right[] Too short[]

2. Do you think that the analyse.cc code was...

Too complex[] Just right[] Too simple[]

3. Approximately how much of analyse.cc did you understand?

0-20% [] 21-40% [] 41-60% [] 61-80% [81-100%]

4. Do think that two hours was sufficient time to find defects in analyse.cc?

Not enough time [] Just right [] Too much time []

Section 2 - Group Meeting

5. Was your understanding of analyse.cc changed at the group meeting?
Understanding confounded []

No change in understanding
[l Understanding increased []

6. How many defects were discovered during the meeting that were not identified
during individual inspection?

oQ 120 35[0 >51

7. How many defects do you think that your meeting lost, i.e. defects which
were identified during individual inspections but not recorded during the
group meeting?

www.manharaa.com

APPENDIXD: QUESTIONNAIRES 323

oQ 120 35[0 >51

8. What percentage of all the defects in the document do you estimate your
group found?

0-20% [] 21-40% [] 41-60% [] 61-80% [81-100%]

9. How many of the group's reported defects did you _not_ agree with?

0[12035[>1

10. Which of the following best describes the relative contribution of the
individuals in your group?

All contributed approximately the same []

One person contributed noticeably more than the rest []
One person contributed noticeably less than the rest []
One person contributed noticeably more, and one person
contributed noticeably less []

11. Which of the following objectives were achieved by your group meeting?
(you may mark more than one)

Merging defect lists []

Additional defect detection []

Group bonding/improving team spirit []
Education of weak group members []
Ensuring adequate individual inspection]

Section 3 - ASSIST-based Inspection (ASSIST users ONLY)

12. Did you feel ASSIST was an impediment to any aspects of your performance?
If so, please state which aspects and why.

13. Did you feel ASSIST improved any aspects of your performance? If so, please
state which aspects and why.

www.manharaa.com

APPENDIXD: QUESTIONNAIRES 324

14. Overall, how would you rate the usability of ASSIST for inspection?
(1 = extremely usable, 2 = fairly usable, 3 = average, 4 = fairly unusable,
5 = totally unusable)

1[0 201 30 40 50

[End of questionnaire]

D.11.4 Questionnaire 4

Section 1 - Individual Inspection

1. Approximately how much of graph.cc did you understand?

0-20% [] 21-40% [] 41-60% [] 61-80% [] 81-100% []

2. Do think that two hours was sufficient time to find defects in graph.cc?
Not enough time [] Just right [] Too much time[]

3. In terms of complexity, how did graph.cc compare with analyse.cc?
Much more complex []

Slightly more complex []

Of similar complexity []

Slightly less complex []
Much less complex [

Section 2 - Group Meeting

4. Was your understanding of graph.cc changed at the group meeting?
Understanding confounded []

No change in understanding []
Understanding increased []

5. How many defects were discovered during the meeting that were not identified

during individual inspection?

o0 120 350 >51

6. How many defects do you think that your meeting lost, i.e. defects which
were identified during individual inspections but were accidentally not

www.manharaa.com

APPENDIXD: QUESTIONNAIRES

325

recorded during the group meeting?

o0 120 35[0 >51

7. How many of the group's reported defects did you _not_ agree with?

0[12035[>1

8. Which of the following best describes the relative contribution of the
individuals in your group?

All contributed approximately the same []

One person contributed noticeably more than the rest []
One person contributed noticeably less than the rest []
One person contributed noticeably more, and one person
contributed noticeably less []

9. Which of the following objectives were achieved by your group meeting?
(you may mark more than one)

Merging defect lists []

Additional defect detection []

Group bonding/improving team spirit []
Education of weak group members []
Ensuring adequate individual inspection]

10. In comparison with your previous group meeting (involving analyse.cc),
which of the following do you think are true:

The group performed better []
The group performed about the same []

The group performed worse []

Please give reasons:

Section 3 - ASSIST-based Inspection (ASSIST users ONLY)

11. Did you feel ASSIST was an impediment to any aspects of your performance?
If so, please state which aspects and why.

www.manharaa.com

APPENDIXD: QUESTIONNAIRES 326

12. Did you feel ASSIST improved any aspects of your performance? If so,
please state which aspects and why.

13. Overall, how would you rate the usability of ASSIST for inspection?
(1 = extremely usable, 2 = fairly usable, 3 = average, 4 = fairly unusable,
5 = totally unusable)

1[0 201 30 40 50

Section 4 - General

14. How well do you think you understand software inspections?

Completely [] Well [] Reasonably Well [] Not too sure [] Not at all []

15. Overall, do you think your knowledge of C/C++ was adequate for the tasks

set?

Inadequate [] Adequate []

If you feel your knowledge was inadequate, please explain further:

16. Overall, did you feel you performed better during individual inspection
paper-based inspection or ASSIST, or were you equally effective with both
methods?

Performed better with paper-based []
Performed equally well with both methods []

Performed better with ASSIST []

If you felt you performed better with a particular method, please explain:

17. Did you feel you made more, less or about the same amount of use of your
checklist during an ASSIST inspection as compared to a paper-based inspection?

www.manharaa.com

APPENDIXD: QUESTIONNAIRES 327

Used checklist more with paper-based []
About the same for both paper-based and ASSIST []
Used checklist more with ASSIST []

18. Overall, did you feel your group performed better during the meeting using
paper-based inspection or ASSIST, or were you equally effective with both
methods?

Performed better with paper-based []
Performed equally well with both methods []

Performed better with ASSIST []

If you felt you performed better with a particular method, please explain:

19. Some people believe it is easier to work with paper-based documents than
screen-based documents, while others believe it is easier to work with
screen-based documents than paper-based documents. From your experience of
paper-based and tool-assisted inspection, which do you prefer?

Prefer screen-based [] No preference [] Prefer paper-based []

Please give reasons:

20. Overall, what did you find to be the most difficult aspect of this part of
the course?

21. Any other comments about this part of the course?

[End of questionnaire]

www.manharaa.com

Appendix E

Raw Data

E.1 Comparing Paper-based and Tool-based Software Inspection

E.1.1 Experimentl

Group no.| Subjects
1,2,3
4,5,6
7,8,9

10, 11,12
13, 14,15
16, 17,18
19, 20, 21, 22
23,24,25
26, 27,28
29, 30, 31
32,33,34
35, 36, 37
38, 39,40
41,42,43

S N
EREBowo~v~oorwNr

H
N

Table E.1: Allocation of subjects to groups.

This section presents the raw defect detection data cetletom the first experiment.
Table E.1 shows the allocation of subjects to groups. TalepEesents the defect detection
data for the individual inspection @nalyse.cc in Experiment 1 Each row contains the
data for one subject and shows the technique used by thatctuyd which defects that
subject detected. A summary score, indicating the numbeowotct defects and the total

www.manaraa.com

APPENDIXE: COMPARING PAPER-BASED AND TOOL-BASED SOFTWAREINSPECTION 329

Defect Number

Subject| Method | 1 | 2 | 3| 4| 5| 6| 7|8 | 9|10 11| 12| Total
1 T X | X XX | X | X|X]|X X | X | 10/11
2 T X X X | X X X | X 7/10
3 T X | X X X | X | X X | X | X 9/10
4 T X | X | X X | X | X X X | X 9/12
5 T X X | X | X |X X | X | X | X 9/14
6 T X X | X X | X X 6/10
7 T X X | X | X |X X | X | X | X 9/14
8 T X | X X X | X X | X | X | X 9/13
9 T X X | X X | X 5/9
10 T X X | X | X X | X | X 7/10
11 T X | X X X X X | X 717
12 T X X X | X X X 6/13
13 T X X X | X X | X | X 7/13
14 T X | X X X | X X | X | X | X 9/9
15 T X | X X X[X | X | X | X | X 9/11
16 T X | X X | X X | X 6/10
17 T X | X X | X X X 6/10
18 T X | X | X | X[X]|X]|X X | X | X 10/14
19 T X | X X | X | X |X X X 8/11
20 T X | X X X | X | X|X X 8/15
21 T X | X X X | X X | X | X 8/13
22 T X X X | X X 5/9
23 P X | X X | X | X[X[X]| X | X | X |10/14
24 P X X X | X 4/11
25 P X | X | X X | X X X | X 8/13
26 P X | X X | X X X | X 7/13
27 P X | X X | X | X |X X | X 8/10
28 P X | X X X X | X X 7/9
29 P X | X | X | X[|X]|X X | X | X | X 10/14
30 P X | X X | X X | X | X 7/14
31 P X | X X | X | X |X X X 8/14
32 P X | X X X | X | X X | X 8/11
33 P X | X X X | X X | X 7/12
34 P X | X X X | X | X | X 7/12
35 P X | X X | X | X[X | X|X]| X | X | X |1117
36 P X | X X | X X | X 6/8
37 P X X | X X | X | X | X 7/11
38 P X | X X X | X X X 7/12
39 P X | X | X | X[X|X[|X|X|X]| X | X]| X |12/14
40 P X X X | X X | X 6/11
41 P X | X X X | X X | X | X | X 9/15
42 P X X | X X X 5/5
43 P X | X X | X | X X | X | X | X 9/11

Table E.2: Raw data for individual phase afalyse.cc
(P)aper or (T)ool. An'X' indicates a defect reported by tidividual. The total is given as
the total number of correct defects out of the total numbbnstied.

inspection. Method is either

www.manaraa.com

Defect Number

Method

®
Sk
o
c
©

Total

Gains

Losses

X X X X X X XM

X X X X|om
X X]| oo

11/12
12/14
10/14
11/15
10/13
11/16
11/17

o

o

O OONOOOT A~ WDNBEF

el v e v B o B o i o] e B B B B B
XXX XX XXX XXXXXX|/k
XXX XX XXX XXXXXX/N

X X X X X X

X XX X X XX X
XXX XX XXX XXXXXX o
XXX XX XXX XXXXXX|N
XX X X X X[X[X X X
XXX XX X XX XX XXX X|o

XX X X X X X X5

11/15
10/12
11/15
11/16
11/13
12/16
9/10

X XX X X X X X X &

XXX XXX XIXXXXXXXHBH

X X X X X
X X X X

OCO0OO0OPFPOOOOFr OO0OOPR

P OOO0OO0OOO0OOkFr OO0OO0OOo

Table E.3: Raw data for group meeting wihalyse.cc

out of the total number submitted.

. Method is either (P)aper or (T)ool. An'X' indicates a défeported by the
group. A'-' represents a meeting loss. An underlined ' Xtaggnts a meeting gain. The total is given as the total nuoftemrrect defects

www.manaraa.com

NOILOIdSN|IHVYMLI0S d3aSVE-T00 | ANV AISVI-d3dVd ONIIVdNOD ‘I XIANIddY

0€e

APPENDIXE: COMPARING PAPER-BASED AND TOOL-BASED SOFTWAREINSPECTION 331

number of defects submitted, is also given. Table E.3 gieésai detection data for the group
phase. It has the same format as the table for individuatsalba contains data on meeting
gains and losses.

Defect detection data for the individual and group phaseb@@raph.cc inspection
are given in Table E.4 and Table E.5 respectively. Their fdrimidentical to that of the tables
showing the data for thanalyse.cc inspection.

www.manharaa.com

APPENDIXE: COMPARING PAPER-BASED AND TOOL-BASED SOFTWAREINSPECTION

332

Defect Number
Subject| Method | 1 | 2 | 3 51678 10 | 11| 12 | Total
1 P X [X X X [XX X | X | X | 910
2 P X | X X | X | X 5/8
3 P X | X | X X | X X 718
4 P X | X X | X | X X 8/12
5 P X | X | X X | X | X X 7/11
6 P X | X | X X X X | X 719
7 P X | X | X X X | X X | X | X | 10/13
8 P X | X | X X X X 6/9
9 P X | X | X X X 6/13
10 P X | X | X X 4/9
11 P X | X | X X | X | X 6/8
12 P X | X | X X X X | 7/8
13 P X | X | X X X 6/7
14 P X | X | X X X | X 6/9
15 P X X X | X | X|X X | 88
16 P X | X | X X | X X 6/11
17 P X | X X X 4/11
18 P X | X X | X | X X | X 8/12
19 P X | X | X X X 6/10
20 P X | X | X X | X | X X 7/12
21 P X | X | X X X X 6/8
22 P X | X | X X X X 7/11
23 T X | X X X X | X | X | 812
24 T X | X X X 5/8
25 T X | X X X X 5/12
26 T X | X | X X | X | X X 717
27 T X | X | X X X X 719
28 T X | X X X 4/10
29 T X | X | X X | X | X X | X | X | 10/10
30 T X | X | X 3/9
31 T X | X X X X 5/9
32 T X | X | X X X 5/11
33 T X | X X X 4/9
34 T X | X | X X | X | X X | X 9/10
35 T X | X | X X X X 719
36 T X | X | X X X | X 6/7
37 T X | X | X X 4/9
38 T X | X | X X | X | X X 7/11
39 T X | X X | X | X X | X | X | 9/10
40 T X X | X X 4/8
41 T X | X | X X X | X 6/7
42 T X X X 37
43 T X | X | X X X X | X 8/10
Table E.4: Raw data for individual phasegviph.cc inspection.

www.manaraa.com

APPENDIXE: COMPARING PAPER-BASED AND TOOL-BASED SOFTWAREINSPECTION

333

[7)]

(]
m01111100212000
|

2
TSoNoO-doO0OO|lddOO dAO -
0]
E90d993Y9f0d8Nda
PSd96d8x3 9N 05699
Nix Xl x X X X X| X x
TIx X X X 1 X X[X X X X X X X
Glx ' x X |[x X X X
e xx xxx|x XX <
(]

El°| XIxxx _

>

ZIN[X X X X X X X[X X X X X X X
°

DlOx X X XX X FX X XX X
(]

Dlo|x X X X X X X|X X X X X X X
< X X X X X
M X X X X X X X[XIX X X X X X
NIX X X X X X X[X X X X X X X
X X X X X X X[X X X X X X X
©

(@)

AL - N N N e e e e
=

o

>

(@]

= O a1 N M<
OldNMmMT OO~ A A A A

Table E.5: Raw data for group meeting witaph.cc

www.manaraa.com

APPENDIXE: COMPARING PAPER-BASED AND TOOL-BASED SOFTWAREINSPECTION 334

E.1.2 Experiment 2

Group no.| Subjects
1 1,2,3
4,5,6
7,8,9
10, 11,12
13, 14,15
16, 17,18
19, 20,21
22,23,24
9 25, 26, 27
10 28, 29, 30
11 31,32,33
12 34, 35,36
13 37, 38,39
14 40,41, 42
15 43,44, 45
16 46,47, 48, 49

O~NO O WN

Table E.6: Allocation of subjects to groups.

The raw data collected from the second experiment is predentthe section. Table E.6
shows the allocation of subjects to groups. Table E.7 suimsssmthe defect detection data
for the individual inspection ofnalyse.cc . Its form is identical to that of Table E.2.
Table E.8 shows the raw defect detection data for the groagehlts format is identical to
that of Table E.3

Defect detection data for the individual and group phasesexraph.cc inspectionis
shown in Table E.9 and Table E.10 respectively.

www.manaraa.com

APPENDIXE: COMPARING PAPER-BASED AND TOOL-BASED SOFTWAREINSPECTION 335

Defect Number

Subject| Method | 1 | 2 | 3| 4| 5| 6| 7|8 | 9|10 11| 12| Total
1 T X | X | X | X[X]|X]|X|X X | X 10/13
2 T X X X | X X X 6/13
3 T X X X | X 4/8
4 T X | X X X | X X | X | X | X 9/11
5 T X | X X X | X X | X | X | X 9/10
6 T X X X X | X 5/9
7 T X X | X | X X | X | X | X 8/9
8 T X X X | X X | X 6/11
9 T X | X X | X | X X | X | X 8/10
10 T X | X | X | X X X | X 7/10
11 T X | X X X | X 5/8
12 T X X | X X | X 5/19
13 T X X X 3/8
14 T X X X X | X X 6/10
15 T X X X | X X 5/12
16 T X | X X | X | X | X X | X 8/10
17 T X X | X | X |X X | X X 8/12
18 T 0/0
19 T X | X X | X X | X 6/7
20 T X | X X | X X | X 5/11
21 T X X X | X X 6/10
22 T X | X | X | X X | X X X | X 9/14
23 T X X X X X 5/12
24 T X | X X X X | X X 7/8
25 P X | X X X | X X | X | X | X 9/12
26 P X X | X X X 5/12
27 P X X X | X X X 6/14
28 P X | X | X X | X X | X 7/11
29 P X | X X | X X | X | X 7/13
30 P X | X X X | X X | X X 8/11
31 P X | X | X | X X | X | X X 8/15
32 P X X 2/4
33 P X | X X X X | X | X 7117
34 P X | X X | X X | X | X 7/12
35 P X | X X X | X X | X | X | X 9/9
36 P X X X X 4/12
37 P X | X | X | X X X | X | X | X 9/16
38 P X | X X | X | X | X X 7117
39 P X | X X X | X X | X X 8/13
40 P X X | X X | X | X 6/15
41 P X | X X X | X | X | X X | X 9/14
42 P X | X X X X 5/14
43 P X | X X X X X | X 7/13
44 P X X X | X X 5/12
45 P X X X | X X | X X 7/14
46 P X X X | X | X X 6/12
47 P X X | X X 4/12
48 P X | X X X X | X | X | X 8/10
49 P X | X X X | X X | X 7/18

Table E.7: Raw data for individual phaseanfalyse.cc
did not take part in this phase, and is discounted from thé/aisa

inspection. Note that subject 18

www.manaraa.com

APPENDIXE: COMPARING PAPER-BASED AND TOOL-BASED SOFTWAREINSPECTION

336

[2]

3]
mOOOllOOOOlOOOOlO
3
2
TSloocoocoodoodlnNdoOoO0O O dH O
O
— |0 o < [© N O o N~
S FNOOATITI Jad A NAaaNS o
SRS SSaS5ddOdoa5aa50
Flad @O0~ O (ldd AP a4 49D H
nU__XXX XX XX X X X X X X X
H__XXXX XX XXX X X X X X X
mXXXXXXXXXXXXXXXX

r9XXXXXXXXXXXXXXXX

)

.mOoX X X X X X

S

ZHEIX XX XX XX XXX XXX XXX

o

DQIOIX XX XX XX XXX XXXXXX

)

Ol x X XX X x| x|
TIX XXX XXX XXX XXXXXX
™ X ! XX v X X
ANIX XXX XXX XIXXXXXXXX
HIX X X XXX XXX XX XXX X
o)

o
EF-FFFFFFHQOoOQQQOQ
=

o

3

= OdNM< L ©
Ot OM~NOOOAAAAAAA

Table E.8: Raw data for group meeting wahalyse.cc

www.manaraa.com

APPENDIXE: COMPARING PAPER-BASED AND TOOL-BASED SOFTWAREINSPECTION

337

Defect Number
Subject| Method | 1 | 2 | 3 5167 |8|9]|10]| 11| 12 | Total
1 P XXX X X X | X[X811
2 P X | X | X X X 517
3 P X | X X | X X | X 6/10
4 P X | X | X X 4/6
5 P X | X | X X | X 517
6 P X | X | X X X 5/11
7 P X | X | X X X X X 719
8 P X | X | X X X 5/9
9 P X | X | X X X | X X 8/10
10 P X | X X X X X 6/7
11 P X | X | X 37
12 P X | X | X X | X | X 6/9
13 P X | X | X X X X 6/9
14 P X | X | X X | X X 6/6
15 P X | X | X X X | X 6/11
16 P X | X X | X | X X X 718
17 P X | X | X X X X 6/9
18 P X | X X X 4/9
19 P X | X | X X X X | X 7/10
20 P X | X | X X X | X 6/10
21 P X X X 3/6
22 P X | X | X X X X X | X | 8/10
23 P X | X | X X X X X | X | 9/10
24 P X | X | X X X X 6/8
25 T X | X X X X | X] X] X1 810
26 T X | X | X X 4/9
27 T X | X | X X X X | X 7/13
28 T X | X | X X X | X | X 719
29 T X | X X X X 5/8
30 T X | X | X X X X 6/9
31 T X X X X | X 5/6
32 T X | X | X X X X | X 719
33 T X X 2/4
34 T X | X | X X X X | 67
35 T X | X | X X X | X 6/7
36 T X | X X X 5/11
37 T X | X | X X X X X 8/12
38 T X | X | X X X | X 6/12
39 T X | X | X X | X X | X | 711
40 T X | X | X X 4/10
41 T X | X | X X X | X 6/7
42 T X | X X X X 5/11
43 T X | X | X X X X | X 717
44 T X | X | X X X X | X 7/8
45 T X | X | X X X | X 6/12
46 T X | X | X X X | X | 6/10
47 T X | X | X X X | X 6/9
48 T X | X | X X X X 6/10
49 T X | X X X X 5/10
Table E.9: Raw data for individual phasegviph.cc inspection.

www.manaraa.com

APPENDIXE: COMPARING PAPER-BASED AND TOOL-BASED SOFTWAREINSPECTION 338

1
3
1
0
0
1
1
3
0
1
1
0
0
0
1
0

10/11
9/11
9/11
8/12

7/9
9/11
8/11

11/14
9/12
9/14
9/12

8/9

10/12
8/10
8/10
8/13

x| <

X | X

X| X | X[X

X X

X

X X

X | X | X
X
X
X
X

X| X | X | X

x| X

X X X

Defect Number
Group| Method| 1 |2 3|4 |5|6|7|8|9]|10| 11| 12| Result| Gains| Losses
X
X
X

X
X
X
X | XX
X

XXX X X X X X[X X X

X_ 1 1 1

XXX X XXX

XXX X XXX

Table E.10: Raw data for group meeting witaph.cc

X | XX
X
X
X
X

X | XX
X
X
X

XXX X XXX

10
11
12
13
14
15
16

www.manaraa.com

APPENDIXE: AUTOMATED DEFECTLIST COLLATION 339

E.2 Automated Defect List Collation

E.2.1 Experiment1

Table E.11 shows the average percentage of correct defedeféct lists generated with
various content and threshold settings. Table E.12 shosvawbrage percentage of duplicates
in defect lists generated with various content and threskettings. The defect lists used
are those from the tool users from the first experiment coinggraper-based and tool-based
inspection.

www.manharaa.com

Threshold
Contents| 0.05 0.10 0.15 020 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 5 0.60.70 0.75 0.80 0.85 0.90 0.9%
0.05 893 893 893 893 893 893 1053 1436 2240 23.80 32.51.584894.68 100.0 100.0 100.0 100.0 100.0 100.0
0.10 893 893 893 893 893 893 1053 1495 2175 2530 33.16.3658100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.15 893 893 893 893 893 893 1053 1495 2240 27.80 41.05.5665100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.20 893 893 893 893 893 893 1053 1495 2160 29.31 44.16.8578100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.25 893 893 893 893 893 893 1053 1495 2160 30.43 46.60.4290100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.30 893 893 893 893 893 893 1036 1720 2160 31.73 51.70.1095100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.35 893 893 893 893 893 893 1036 16.49 20.89 34.39 61.45.8497100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.40 893 893 893 893 893 893 1125 1649 21.78 3528 70.360.010100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.45 893 893 893 893 893 893 1125 1792 21.78 44.68 79.560.010100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.50 893 893 893 893 893 893 1053 1863 24.38 49.72 85.200.010100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.55 893 893 893 893 893 893 1053 17.19 2735 56.56 87.860.010100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.60 893 893 893 893 893 893 9.64 16.29 30.90 63.04 90.52 .010Q00.0 100.0 100.0 100.0 100.0 100.0 100.0
0.65 893 893 893 893 893 893 1036 1695 3459 67.97 94.680.010100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.70 893 893 893 893 893 893 1036 17.35 3870 73.02 96.160.010100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.75 893 893 893 893 893 893 1036 18.24 4409 76.71 98.640.010100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.80 893 893 893 893 893 893 11.00 19.14 4553 77.31 100.00.010100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.85 893 893 893 893 893 893 11.00 2157 5147 81.27 100.00.010100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.90 893 893 893 893 893 893 11.00 2157 56.63 84.76 100.00.010100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.95 893 893 893 893 893 893 1255 2584 6231 86.43 100.00.010100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table E.11: Average percentage of correct defects in aoifated lists for varying threshold and contents factosng Experiment 1 defect
lists.

www.manaraa.com

NOILVYIT0D 1S1771L0343Q dILVINOLNY IXIANIddY

ove

Threshold
Contents| 0.05] 0.10| 0.15[0.20] 0.25] 0.30] 0.35| 040] 0.45] 0.50 | 0.55 0.60 | 0.65 0.70 0.75 | 0.80 0.85 | 0.90 0.95
0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.61 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51.75| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.59 | 80.81 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.44 | 89.50 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.17 | 91.81| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.98 | 92.76 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.79 | 32.76 | 94.92 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.12 | 47.70| 96.51 | 100.0| 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.45 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4,07 | 54.70| 97.30 | 100.0| 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.79 | 65.74| 97.30 | 100.0| 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.55 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.44 | 1466 | 72.27 | 97.30 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.30 | 26.07 | 78.69 | 97.30 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.65 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.15 | 34.75| 82.77 | 97.70 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.70 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 444 | 41.64 | 85.93| 97.70 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.79| 755 | 47.70| 87.99| 97.70 | 100.0| 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.80 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.48 | 13.77 | 51.43| 89.11| 97.70 | 100.0| 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.95| 20.38| 56.25| 89.83 | 97.70 | 100.0| 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 254 | 24.84| 61.12| 90.30| 97.70 | 100.0| 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.95 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 3.91 | 27.52| 65.57 | 90.30| 97.70 | 100.0| 100.0 | 100.0 | 100.0 | 100.0 | 100.0

Table E.12: Average percentage of duplicates in auto4eullists for varying threshold and contents factors, ugirgeriment 1 defect lists.

www.manaraa.com

NOILVYIT0D 1S1771L0343Q dILVINOLNY IXIANIddY

ve

APPENDIXE: AUTOMATED DEFECTLIST COLLATION 342

E.2.2 Experiment 2

Table E.13 shows the average percentage of correct defedeféct lists generated with
various content and threshold settings. Table E.14 shosvawbrage percentage of duplicates
in defect lists generated with various content and thresbkettings. The defect lists used are
those from the tool users from the second experiment comgpa@per-based and tool-based
inspection.

www.manharaa.com

Threshold
Contents| 0.05] 0.10] 0.15| 0.20 | 0.25| 0.30 | 0.35 0.40 | 0.45 0.50 | 0.55 0.60 | 0.65 0.70 | 0.75 0.80 | 0.85 0.90 0.95
0.05 835| 835| 835|835 835 835| 9.13 | 11.45| 17.19| 31.13| 46.15| 70.03 | 98.61 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.10 835| 835| 835| 835|835 835| 9.13 | 11.50| 17.19| 32.02 | 46.94 | 74.36 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.15 835| 835| 835|835 835 835| 9.13 | 11.50 | 18.45| 32.72| 51.79 | 84.04 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.20 835| 835| 835|835 835 835| 9.13 | 12.20 | 21.16 | 34.73| 54.30 | 87.19 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.25 835| 835| 835|835 835 835| 9.13 | 12.76 | 21.81 | 34.58 | 59.36 | 95.62 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.30 835| 835| 835|835 835 835| 9.13 | 12.76 | 23.59 | 38.99 | 64.78 | 97.54 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.35 835| 835| 835| 835| 835 835| 9.13 | 12.76 | 23.03 | 42.42| 72.17 | 98.81 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.40 835| 835| 835| 835|835 835| 9.13 | 12.76 | 24.92 | 43.59 | 81.81 | 99.38 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.45 835| 835| 835|835 835 835| 9.13 | 11.87 | 28.92| 50.35| 86.21 | 99.38 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.50 835| 835| 835|835 835 835| 9.13 | 12.96 | 32.79 | 55.64 | 92,52 | 99.38 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.55 835| 835| 835|835 835 835| 9.13 | 16.14 | 34.36 | 59.28 | 94.00 | 99.38 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.60 835| 835| 835|835 835 835| 9.13 | 1594 | 38.86 | 66.91 | 94.57 | 99.38 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.65 835| 835| 835|835 835 835| 9.13 | 16.63 | 41.69| 72.78| 95.89 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.70 835| 835| 835|835 835 835| 9.13 | 18.00| 42.21 | 75.75| 95.19 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.75 835| 835| 835| 835| 835 835| 9.13 | 20.36 | 45.24 | 80.48 | 95.71 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.80 835| 835| 835| 835| 835 835 | 10.70| 19.58 | 46.83 | 83.00 | 96.28 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.85 835| 835| 835| 835| 835 835 | 12.16 | 24.89 | 49.73 | 85.77 | 96.85 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.90 835| 835| 835| 835| 835 835 | 12.16 | 27.06 | 53.92 | 86.47 | 96.33 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.95 835| 835| 835| 835| 835 835 | 1461 | 31.45| 56.66 | 86.47 | 96.33 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0

Table E.13: Average percentage of correct defects in aoifated lists for varying threshold and contents factosng Experiment 2 defect

lists.

www.manaraa.com

NOILVYIT0D 1S1771L0343Q dILVINOLNY IXIANIddY

Eve

Threshold
Contents| 0.05] 0.10| 0.15[0.20] 0.25] 0.30] 0.35| 040] 0.45] 0.50 | 0.55 0.60 | 0.65 0.70 0.75 | 0.80 0.85 | 0.90 0.95
0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.62 1.85 | 10.97 | 41.55| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.62 1.59 | 13.41| 71.45| 100.0| 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.62 3.57 | 15.68 | 92.28 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.52 552 | 20.34| 96.31| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.52 552 | 28.85| 98.25| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.63 | 863 | 41.78| 98.25| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.45 | 52.46 | 98.25| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.25 | 13.15| 63.49| 98.25| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.45 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.07 | 1752 | 70.75| 98.25| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.70 | 21.93| 77.26| 98.25| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.55 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 414 | 32.20 | 83.28 | 98.25| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.04 | 37.70 | 86.17 | 98.25| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.65 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 592 | 43.30| 87.84| 98.25| 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.70 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 1.25| 9.23 | 52.80| 91.12| 98.25| 100.0| 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 1.67 | 13.52| 57.08 | 91.23| 98.25| 100.0| 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.80 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 3.04 | 23.64 | 61.55| 90.60| 98.25 | 100.0| 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 256 | 26.11 | 65.34 | 91.64| 97.80 | 100.0| 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 3.34 | 25.94| 70.25| 93.10| 97.80 | 100.0| 100.0 | 100.0 | 100.0 | 100.0 | 100.0
0.95 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 7.30 | 27.62| 72.56 | 93.10| 97.80 | 100.0| 100.0 | 100.0 | 100.0 | 100.0 | 100.0

Table E.14: Average percentage of duplicates in autoeullists for varying threshold and contents factors, ugirgeriment 2 defect lists.

www.manaraa.com

NOILVYIT0D 1S1771L0343Q dILVINOLNY IXIANIddY

1443

