
www.manaraa.com

COMPUTER SUPPORTED SOFTWARE INSPECTION

SUBMITTED TO THE DEPARTMENT OFCOMPUTER SCIENCE,

UNIVERSITY OF STRATHCLYDE, GLASGOW

FOR

THE DEGREE OFDOCTOR OFPHILOSOPHY.

By

Fraser Macdonald

October 1998

www.manaraa.com

The copyright of this thesis belongs to the author under the terms of the United

Kingdom Copyright Acts as qualified by University of Strathclyde Regulation3:49.

Due acknowledgement must always be made of the use of any material contained in,

or derived from, this thesis.

c
 Copyright 1998

www.manaraa.com

Abstract

For over twenty years, software inspection has been advocated as a simple, cost-effective

technique for defect detection in all types of documents. Essentially, a number of participants

review a document with the aim of discovering defects. Many positive experience reports

have been published demonstrating its benefits, and there are now a number of variations on

the basic inspection method.

In recent years, there have been a number of attempts to further increase inspection ef-

ficiency by the introduction of tool support, resulting in a number of prototype systems. In

general, however, existing systems tend to suffer from three major shortcomings. The first

concerns their inability to easily support a number of different inspection processes, as well as

the inspection of a variety of document types. Existing tools also treat the move to computer-

based inspection as a simple change of medium, when there areopportunities to greatly en-

hance the process. Finally, evaluation of the effectiveness of these tools is sparse.

This thesis describes work tackling these deficiencies. Support for multiple inspection

processes was achieved by developing a high-level process description language which can be

used as input to an inspection tool. A prototype tool was developed which implements this lan-

guage and also provides a simple mechanism for supporting inspection of multiple document

types. This tool was also used to investigate a number of methods for increasing the efficiency

of inspection, including cross-referencing within and between documents, active checklists

and automatic collation of defect lists. In addition, two controlled experiments comparing

paper-based and tool-based inspection were performed, thefirst of their kind. These experi-

ments could reveal no performance difference between methods.

www.manaraa.com

Acknowledgements

I am indebted to my supervisors Dr. James Miller, Dr. Marc Roper and Dr. Murray Wood

for their invaluable advice and criticism. Without them this thesis would genuinely not have

been completed. Thanks also to Dr. Andrew Brooks for his supervision during the early stages

of my research.

Thanks to Computer Science System Support personnel past and present – Ian Gordon,

Gerry Haran, David Lloyd, Tony Povoas and Gordon Ritchie – who helped with various tech-

nical problems.

ASSIST uses with permission a modified version of the Python RPC mechanism devel-

oped by Daniel Larsson. Python dialogue code by David Redishis also used. The code

implementing the Porter stemming algorithm was based on C and Java implementations made

freely available by IDOMENEUS. Some material used in the experiments described in this

thesis was originally written by Gary Perlman, ChristopherLott and Eric Kamsties. This

material is used with permission.

Finally, some personal acknowledgements. As ever, my parents are a constant source of

support and encouragement. Their efforts do not go unnoticed, and are greatly appreciated.

Last, but certainly not least, I am also indebted to my girlfriend Fiona for her support and

understanding.

The research contained within this thesis was supported by aGraduate Teaching Assistant

position with the Department of Computer Science, University of Strathclyde. Travel to con-

ferences was supported by the Department, the Faculty of Science, and Software Research

Institute, San Francisco, CA. Their support is gratefully acknowledged.

www.manaraa.com

Publications

The research contained within this thesis has resulted in a number of publications. These are

as follows:� [78] contains an initial review of tools available to support software inspection. This

paper was presented by the author at the Seventh International Workshop on Computer

Aided Software Engineering, July 1995.� [80] is an expanded version of the above review paper, including a framework for

research in software inspection support tools.� [73] describes the initial version of the process definitionlanguage (IPDL) described in

this thesis. This paper was presented by the author at the Tenth International Software

Quality Week, May 1997.� [74] describes the final version of IPDL and an initial version of ASSIST, the prototype

tool used to implement this research.� [72] briefly describes IPDL and some of the features of the second version of ASSIST.

This paper was presented by one of my supervisors, Dr. James Miller, at the First

International Software Quality Week Europe, November 1997.� [77] reports on the first experiment comparing tool-based and paper-based software

inspection.� [79] explores the application of inspection to object-oriented code, suggesting possible

areas of exploration with regard to tool support.� [88] discusses the use of metrics to manage the inspection process, and how they are

implemented in ASSIST

A number of papers are currently under review:� [76] is a review of all inspection support tools available atthe time of completion of

this research.� [75] is an extended overview of the second version of ASSIST.� [89] describes both experiments comparing tool-based and paper-based inspection,

comparing the results.

www.manaraa.com

vi

A number of technical reports were also produced:� [71] describes the initial version of IPDL and the inspection processes on which it is

based.� [69] is the manual for the first version of ASSIST.� [70] is the manual for the second version of ASSIST.

www.manaraa.com

vii

Contents

1 Introduction 1

1.1 Background : 1

1.2 Contributions of Thesis : 4

1.3 Thesis Outline: 4

2 A Review of Major Inspection Processes 6

2.1 Fagan Inspection: 6

2.2 Structured Walkthroughs: 8

2.3 Humphrey's Inspection Process: 10

2.4 Gilb and Graham Inspection: 11

2.5 Asynchronous Inspection: 14

2.6 Active Design Reviews: 17

2.7 Phased Inspection: 18

2.8 N-Fold Inspection : 19

2.9 Conclusions : 21

3 Existing Tool Support for Software Inspection 22

3.1 Tool Support for Paper-based Inspection: : : : : : : : : : : : : : : : : : : 22

3.1.1 COMPAS : 22

3.1.2 Quality Group 4000: 23

3.1.3 Inspection Process Assistant: 24

3.1.4 Comparison of Tools to Support Paper-based Inspection : : : : : : : 25

3.2 On-line Inspection Tools: 25

3.2.1 ICICLE : 27

3.2.2 InspeQ: 30

3.2.3 Scrutiny : 31

3.2.4 CSI : 34

www.manaraa.com

viii

3.2.5 CAIS: 35

3.2.6 AISA : 36

3.2.7 Notes Inspector: 37

3.2.8 CSRS : 37

3.2.9 TAMMi : 40

3.2.10 InspectA: 41

3.2.11 hyperCode: 42

3.2.12 WiP : 42

3.2.13 Distributed Code Inspection: 43

3.2.14 Comparison of On-line Tools: 44

3.3 Research Framework: 47

4 Supporting a Generic Software Inspection Process 49

4.1 Inspection Process Definition Language: : : : : : : : : : : : : : : : : : : 50

4.1.1 Implementation Technologies Considered: : : : : : : : : : : : : : 50

4.1.2 Derivation of Generic Process: 57

4.1.3 IPDL Definition : 63

4.1.4 IPDL Example - Fagan Inspection: : : : : : : : : : : : : : : : : : 73

4.1.5 Conclusions: 75

4.2 Introduction to ASSIST : 75

4.2.1 Using ASSIST to Execute the Process: : : : : : : : : : : : : : : : 76

4.2.2 Inspection Facilities: 77

5 Evaluation of Basic Tool Support 80

5.1 IPDL Evaluation: 80

5.1.1 Scrutiny : 80

5.1.2 CSRS : 82

5.1.3 Conclusions: 84

5.2 Comparing Basic Tool-based and Paper-based Software Inspection : : : : : 85

5.2.1 Evaluations of Existing Inspection Support Tools: : : : : : : : : : 86

5.2.2 Experiment Design: 87

5.2.3 Results and Analysis: 92

5.2.4 Conclusions: 105

6 Enhancing the Software Inspection Process 107

6.1 Automatic Cross-referencing: 108

www.manaraa.com

ix

6.2 Active Checklists: 110

6.3 A C++ Inspection Environment: 113

6.4 Automatic Defect List Collation: 117

6.5 Conclusions : 120

7 Evaluation of Enhanced Tool Support 122

7.1 Comparing Enhanced Tool-based and Paper-based Software Inspection : : : 122

7.1.1 Introduction : 122

7.1.2 Experiment Design: 123

7.1.3 Results and Analysis: 124

7.1.4 Conclusions: 137

7.2 Automatic Defect List Collation: 138

7.2.1 Introduction : 138

7.2.2 Method: 138

7.2.3 Results: 139

7.2.4 Conclusions: 146

8 Conclusions 148

8.1 Summary: 148

8.2 Contributions and Results: 149

8.3 Further Work: 151

8.4 Concluding Remarks: 152

Bibliography 154

A Future Directions in Computer Supported Software Inspection 165

A.1 Applying Inspection to Object-Oriented Code: : : : : : : : : : : : : : : : 165

A.2 Data Collection and Analysis: 169

A.2.1 Process Measurement: 169

A.2.2 General Process Feedback: 171

A.2.3 Checklist Formation and Improvement: : : : : : : : : : : : : : : : 173

A.2.4 Estimating Defects Remaining: 174

A.2.5 Inspector Experience and Behaviour: : : : : : : : : : : : : : : : : 175

A.3 Conclusions : 175

www.manaraa.com

x

B ASSIST V2.1 User Manual 177

B.1 Introduction : 177

B.1.1 Requirements : 177

B.1.2 Installation: 177

B.1.3 Starting the Server: 179

B.1.4 Starting the Client: 179

B.2 Preparing for an Inspection: 181

B.2.1 Introduction : 181

B.2.2 The Document Database: 182

B.2.3 The Personnel Database: 184

B.2.4 The Process Database: 186

B.2.5 Starting a New Inspection: 189

B.3 Executing An Inspection: 190

B.3.1 The Execute Window: 191

B.3.2 Document Browsers: 192

B.3.3 Process Phases: 207

B.4 Writing IPDL Processes: 211

B.4.1 Process Outline: 211

B.4.2 Declarations: 212

B.4.3 Process Definition: 216

B.4.4 Putting It All Together: 221

B.5 IPDL Reference : 222

B.5.1 Structure of Process Description: : : : : : : : : : : : : : : : : : : 222

B.5.2 Inspection Document, Participant and Responsibility Declarations: : 223

B.5.3 The Organisation Process: 226

B.5.4 The Detection Process: 227

B.5.5 The Completion Process: 230

B.6 Formats : 232

B.6.1 Checklists, Criteria, Reports and Plans: : : : : : : : : : : : : : : : 232

B.6.2 Help Documents: 235

B.7 Metrics Available in ASSIST: 237

B.8 Customising and Extending ASSIST: 237

B.8.1 Altering the Printer Setup: 237

B.8.2 The.assistrc file : 237

B.8.3 Adding New Browsers: 238

www.manaraa.com

xi

B.8.4 Adding New Classification Schemes: : : : : : : : : : : : : : : : : 244

C IPDL Processes 245

C.1 Fagan Inspection: 245

C.2 Structured Walkthrough: 247

C.3 Humphrey Inspection Process: 249

C.4 Gilb and Graham: 252

C.5 Asynchronous Inspection: 254

C.6 Active Design Reviews: 258

C.7 Phased Inspection: 260

C.8 N-Fold Inspection : 263

D Experiment Materials 268

D.1 Timetable : 268

D.2 C++ Checklist : 269

D.3 Individual Defect Report Form: 272

D.4 Master Defect Report Form: 276

D.5 Training Programcount.cc : 279

D.5.1 Specification for programcount.cc : : : : : : : : : : : : : : : : 279

D.5.2 Library functions used incount.cc : : : : : : : : : : : : : : : : 281

D.5.3 count.cc : 281

D.5.4 Defects incount.cc : 282

D.6 Training Programtokens.cc : 283

D.6.1 Specification for programtokens.cc : : : : : : : : : : : : : : : 283

D.6.2 Library functions used intokens.cc : : : : : : : : : : : : : : : 285

D.6.3 tokens.cc : 286

D.6.4 Defects intokens.cc : 289

D.7 Training Programsimple sort.cc : 290

D.7.1 Specification for programsimple sort.cc : : : : : : : : : : : 290

D.7.2 simple sort.cc : 292

D.7.3 Defects insimple sort.cc : : : : : : : : : : : : : : : : : : : 292

D.8 Training Programseries.cc : 293

D.8.1 Specification for programseries.cc : : : : : : : : : : : : : : : 293

D.8.2 Library functions used inseries.cc : : : : : : : : : : : : : : : 295

D.8.3 series.cc : 295

D.8.4 Defects in programseries.cc : : : : : : : : : : : : : : : : : : 298

www.manaraa.com

xii

D.9 Experiment Programanalyse.cc : 300

D.9.1 Specification for programanalyse.cc : : : : : : : : : : : : : : 300

D.9.2 Library functions used inanalyse.cc : : : : : : : : : : : : : : : 303

D.9.3 analyse.cc : 303

D.9.4 Defects in programanalyse.cc : : : : : : : : : : : : : : : : : : 307

D.10 Experiment Programgraph.cc : 308

D.10.1 Specification for programgraph.cc : : : : : : : : : : : : : : : : 308

D.10.2 Library functions used ingraph.cc : : : : : : : : : : : : : : : : 311

D.10.3 graph.cc : 311

D.10.4 Defects in programgraph.cc : : : : : : : : : : : : : : : : : : : 314

D.11 Questionnaires: 316

D.11.1 Questionnaire 1: 316

D.11.2 Questionnaire 2: 319

D.11.3 Questionnaire 3: 322

D.11.4 Questionnaire 4: 324

E Raw Data 328

E.1 Comparing Paper-based and Tool-based Software Inspection : : : : : : : : 328

E.1.1 Experiment 1: 328

E.1.2 Experiment 2: 334

E.2 Automated Defect List Collation: 339

E.2.1 Experiment 1: 339

E.2.2 Experiment 2: 342

www.manaraa.com

Chapter 1

Introduction

1.1 Background

T
he chequered history of software engineering is well-documented. Spectacular failures,

such as the Ariane 5 launch [107] still occur. Systems which are late and over-budget,

such as the UK's new air traffic control system [45], are commonplace. Unfortunately, even

the most carefully written software contains defects. Finding these defects is difficult, time-

consuming and therefore expensive.

Despite over 30 years of research, software engineering techniques which receive univer-

sal acclaim and acceptance are the exception rather than therule. Software inspection is such

a technique. Originally described by Michael Fagan over twenty years ago [37], it has become

well-known as an effective defect finding method. The basic technique is simple: a number of

participants review a document with the aim of discovering defects. The approach is effective

because of the involvement of people other than the author ofthe document. These partic-

ipants are not intimately familiar with the document, hencethey tend to find more defects.

Inspection can be used on any type of document, including specifications, designs, code and

test plans.

The original inspection process defined by Fagan employs four to six people, each with

specific roles. Themoderatoris the person in overall charge of the inspection. During the

inspection meeting, areaderis required to paraphrase the document and arecordernotes all

defects found along with their classification and severity.Theauthorof the document under

inspection is another team member. Any remaining participants are cast as inspectors, whose

only duty is to look for defects in the document. The process used consists of five phases.

During overviewthe author presents the document undergoing inspection to the rest of the

www.manaraa.com

SECTION 1.1: BACKGROUND 2

team. Each team member then carries outindividual preparation, consisting of studying the

document to gain an understanding of it. Checklists of common defect types can be used to

aid inspectors. Aninspection meetingis then held. The reader paraphrases the document,

while inspectors raise any issues they have discovered. Theteam then discuss the issue until

a consensus is reached. If an issue is agreed to be a defect, itis classified and noted by the

recorder. No attempt is made to find a solution to the defect; this is carried out later. After the

meeting, the moderator writes a report detailing the inspection and all defects found, which

is passed to the author. Duringrework, the author carries out modifications to correct defects

detailed in the moderator's report. The moderator then performs afollow-upphase, ensuring

that all required alterations have been made.

There are now many variations of the basic inspection method. For example, Active De-

sign Reviews [95] are intended to associate responsibilities with each reviewer. N-Fold in-

spections [82] aim to increase inspection effectiveness byreplicating the inspection a number

of times using independent teams. Formal Technical Asynchronous review method (FTArm)

[117] is an asynchronous review method which removes the need to have group meetings.

The variation used will depend on the document being inspected, past experience of inspec-

tion, team preference, criticality of inspection, and so on.

The benefits of inspection are generally accepted, with success stories regularly pub-

lished. In addition to Fagan's papers describing his experiences [37, 38], there are many

other favourable reports. For example, Doolan [31] reportsindustrial experience indicating a

30 times return on investment for every hour devoted to inspection of software requirement

specifications. Russell [103] reports a similar return of 33hours of maintenance saved for

every hour of inspection invested. Gilb and Graham [41] present many positive experience

reports. The benefits of inspection are a direct consequenceof its ability to be applied early

in the software development lifecycle. The longer defects remain in the system, the more

expensive they are to remove: the cost of removing a defect when the system is operational

is up to 1000 times the cost of removal during the requirements stage [41]. Inspections are

cited as one of nine best practices for software management [14] and appear at Level 3 of the

Capability Maturity Model [50].

The manner in which inspections are performed has remained essentially unchanged over

its lifetime. Inspection is a low-tech, paper-based technique, and as such has met resistance

[103]. Some feel that such a simple approach has no place in today's advanced development

environments. Inspection is also labour intensive, requiring the simultaneous participation of

three or more people. As a consequence, recent research has started to explore the application

www.manaraa.com

SECTION 1.1: BACKGROUND 3

of tool support to software inspection. By automating some parts of the process and pro-

viding computer support for others, the inspection processhas the capability of being made

more effective and efficient, thus potentially providing even greater benefits than are otherwise

achieved.

There are many possible benefits from moving to a computer-supported inspection. One

desirable attribute of an inspection is rigour. The processmust be rigorously followed to en-

sure repeatability, which is essential if feedback from theprocess is to be used to improve it,

as advocated by Gilb and Graham [41]. Rigour is also important to ensure the inspection is

as effective as possible. At the same time, some descriptions of inspection can be ambiguous

or misleading. It therefore becomes difficult to enforce theproper inspection process, since

the interpretation of guidelines will differ between individuals. Using computers to support

the process can help provide this rigour. Most documents areproduced electronically, hence

on-line inspection is a natural consequence. If the supporttool is integrated with the version

control system in use, the most up-to-date version of the document is then automatically avail-

able. Inspecting an electronic version of the document allows annotation of the appropriate

part of the document, instead of producing a completely separate defect list. Annotations are

stored on-line and can easily be shared amongst participants. Electronic versions of docu-

ments can be presented in ways to enhance the inspection, assisting inspectors with the defect

finding task. Computer support can also reduce the need for the face-to-face group meeting,

which is expensive to set up and run. Instead the meeting could be held in a distributed and/or

asynchronous fashion. Finally, computer support allows metrics from the inspection to be au-

tomatically gathered for analysis. This is more accurate than manual capture and allows more

finely-grained data to be gathered.

A number of prototype tools have been developed to support software inspection, and are

reviewed in detail in Chapter 3. Although existing systems present innovative approaches to

supporting software inspection, in general they suffer from several shortcomings. Primarily,

they support only a single, usually proprietary, inspection process. They also only support

inspection of a single document type, while today's software development environments pro-

duce a number of different document types, from plain text toPostScript and other graphical

formats. Support for inspection of all of these formats is desirable. Existing inspection tools

tend to treat the defect detection process as a simple changeof medium, assuming that inspec-

tors will use the same process for finding defects in an on-line document as when inspecting

a paper copy. Moving to a computer supported inspection, however, gives an opportunity

to provide more active support for finding defects. Finally,no comprehensive evaluations of

www.manaraa.com

SECTION 1.3: CONTRIBUTIONS OFTHESIS 4

these tools have been carried out to determine their effectiveness in comparison with tradi-

tional paper-based inspection. This issue must be addressed if tool-supported inspection is to

become an accepted alternative to, or even replace, paper-based inspection.

1.2 Contributions of Thesis

The work presented in this thesis is intended to address the above deficiencies. In particular,

it makes the following contributions:� A high-level inspection process description language which can be used as input to a

supporting tool to allow the support of any inspection process, or simply as a means to

unambiguously communicate inspection processes.� A prototype inspection support tool which implements this language and also allows

support for any type of document.� An investigation of several facilities which could increase inspection efficiency and

make on-line inspection easier, including a method for automatically collating multiple

defect lists into a single list, removing duplicates.� The first reported controlled experiments comparing paper-based and tool-based soft-

ware inspection.

1.3 Thesis Outline

The remainder of this thesis takes the following form:

Chapter 2: A Review of Major Inspection Processes

The body of the thesis begins with a review of eight of the mostcommon inspection

processes described in the literature, introducing basic concepts and terminology in

inspection.

Chapter 3: Existing Tool Support for Software Inspection

A review and comparison of a number of tools currently available to support software

inspection is presented in this chapter. A number of weaknesses in existing tools were

identified from this review, which suggested the main areas of research which should

be undertaken.

www.manaraa.com

SECTION 1.3: THESISOUTLINE 5

Chapter 4: Supporting a Generic Software Inspection Process

This chapter introduces IPDL, a language designed to allow easy definition of inspec-

tion processes. The first version of ASSIST (Asynchronous/Synchronous Software In-

spection Support Tool) is also described, a prototype tool which implements IPDL and

provides a means to compare basic tool-based inspection andpaper-based inspection.

Chapter 5: Evaluation of Basic Tool Support

Two evaluations of the work presented in Chapter 4 are discussed. The first compares

IPDL with other attempts at providing process-independentinspection tool support. The

second is a controlled experiment comparing paper-based and tool-based inspection.

This experiment shows there is no significant difference between methods, and provides

feedback on the usability of the tool.

Chapter 6: Enhancing the Software Inspection Process

Several techniques for improving the efficiency of softwareinspection are presented.

They include an automatic cross-referencing system, active checklists and automatic

collation of defect lists.

Chapter 7: Evaluation of Enhanced Tool Support

A second controlled experiment, this time comparing enhanced tool-based and paper-

based software inspection, is described. An investigationinto the effectiveness of the

auto-collation mechanism described in Chapter 6 is also presented.

Chapter 8: Conclusions

The final chapter summarises the content and contribution ofthis thesis, considers fur-

ther work related to this research, and presents some conclusions.

www.manaraa.com

Chapter 2

A Review of Major Inspection

Processes

A
s a prelude to describing existing tools for supporting software inspection, this chapter

reviews the most important inspection methods described inthe inspection literature.

Several are well-known and well-used, while others are lesswell-known, but provide impor-

tant concepts and ideas on an effective inspection process.For each method, background and

a description of the method are provided, along with a summary of the process. Except where

absolutely necessary, the description is limited to the details provided in the original article.

Obvious gaps which occur in the descriptions of some methodshave not been filled, and are

noted. The terminology used to describe each process is thatused in the original description.

2.1 Fagan Inspection

The original inspection process was defined by Michael E. Fagan in 1976 [37], with an up-

date published ten years later [38]. A Fagan inspection teamconsists of four to six people,

with each person having a well-defined role in the inspection. Themoderatoris the person

in overall charge of the inspection. It is the moderator's task to invite suitable people to join

the inspection team, distribute source materials and to organise and moderate the inspection

meeting itself. The inspection requires the presence of theauthorof the product under inspec-

tion. The author can give invaluable help to the inspectors by answering questions pertaining

to the intent of the document. Any remaining team members arecast as inspectors. Generally,

their only duty is to look for defects in the document. However, at the inspection meeting,

two inspectors are given special roles. Thereaderparaphrases the document out loud. The

www.manaraa.com

SECTION 2.1: FAGAN INSPECTION 7

Overview

Preparation

Inspection

Rework

Follow-up

Figure 2.1: The original inspection process defined by Michael Fagan.

recorder is tasked with noting all defects found, along with their classification and severity.

Although Fagan indicates that this task is accomplished by the moderator, another member

of the team is usually chosen, since the workload involved can be quite high, though mainly

secretarial.

Fagan describes five stages in the inspection process, depicted in Figure 2.1. The inspec-

tion begins with anoverview, involving the entire team. The author describes the general area

of work then gives a detailed presentation on the document produced. This is followed by dis-

tribution of the document itself, and any necessary relatedwork, to all team members. Each

team member then carries out individualpreparation, consisting of studying the document to

gain an understanding of it. Although defect detection is not an explicit objective here, some

defects will be found. Checklists may be used to help inspectors focus their effort. The next

stage is theinspection meeting, involving all team members, where defect detection occurs.

The reader paraphrases the document, covering all areas. During this process inspectors can

stop the reader and raise any issues they have discovered, either in preparation or at the meet-

ing itself. The team then discuss the issue until agreement is reached. If an issue is agreed

to be a defect, it is classified asmissing, wrongor extra. Its severity is also classified (major

or minor). At this point the meeting moves on. No attempt is made to finda solution to the

defect; this is carried out later. After the meeting, the moderator writes a report detailing the

inspection and all defects found. This report is then passedto the author forrework, where

the author carries out modifications to correct the defects found in the document. Afollow-up

phase then occurs, where the moderator ensures that all required alterations have been made.

The moderator then decides whether the document should be reinspected, either partially or

www.manaraa.com

SECTION 2.2: STRUCTUREDWALKTHROUGHS 8

Phase Timing Participants Documents used Documents produced
Overview S Moderator Product

Author Sources
Inspector

Preparation A Moderator Product Individual defect logs
Author Sources
Inspector Checklists

Inspection S Moderator Individual defect logs Master defect log
Author Product Inspection report
Inspector Sources

Checklists
Rework - Author Product

Sources
Master defect log

Follow-up - Moderator Product
Master defect log Follow-up report

Table 2.1: Summary of Fagan inspection phases and the possible timings, participants, re-
sources and products of each phase. Timing is either synchronous (S) or asynchronous (A).
Documents used indicates documents which are usually made available during the phase.
Documents produced indicates those documents which are created during the phase.

fully. Although not explicitly stated by Fagan, it is assumed this verdict is presented in a re-

port. It is also unclear whether partial or full reinspection is a continuation of this inspection,

or whether a new inspection is convened on the same document.The latter is assumed.

The Fagan inspection process is summarised in Table 2.1. Foreach phase the table lists the

phase timing (where appropriate), the participants, the documents made available and the doc-

uments produced. “Product” refers to the document undergoing inspection, while “sources”

indicates the documents used when creating the product. Forexample, a low-level design

document may be the source document for a section of code.

2.2 Structured Walkthroughs

Another popular method is Yourdon's Structured Walkthrough [124], which has aims similar

to those of inspection, but tends to be less formal and less rigorous. Yourdon defines seven

possible participant roles. Thecoordinatoris the person tasked with planning and organising

the walkthrough, and also takes the role of moderator duringthe walkthrough meeting. The

role of thescribe is to take notes on the walkthrough, including any defects found and sug-

gestions made. Thepresenteris tasked with introducing the product and is usually the author

www.manaraa.com

SECTION 2.2: STRUCTUREDWALKTHROUGHS 9

Preparation

Rework

Follow-up

Organisation

Walkthrough

Figure 2.2: The Structured Walkthrough process presented by Yourdon.

of the product. The role of presenter is optional. There are also a number ofreviewers, whose

task is to find defects in the product. The remaining three roles aremaintenance oracle(who

is concerned with future maintenance of the project), thestandards bearer(whose remit con-

cerns adherence to standards) and theuser representative(whose task is to ensure the product

meets the user's needs). Although Yourdon describes these as separate roles, it can be seen

that they are simply reviewers with special responsibilities.

The Structured Walkthrough process is shown in Figure 2.2. The first phase isorgani-

sationwhich begins with the producer requesting a walkthrough. The producer supplies the

appropriate documentation to the coordinator, who then distributes it to all participants. The

coordinator also arranges a time and place for the walkthrough and contacts all participants to

confirm the arrangements. The participants now spend time preparing for the walkthrough by

reviewing the product. During this stage the producer should be available to answer questions

and help participants familiarise themselves with the document. Although this preparation

phase is not explicitly described by Yourdon as a separate phase, it shall be treated as such.

Thewalkthroughitself begins with the presenter providing an overview of the product. The

length of this overview will depend on the familiarity of theparticipants with the document.

The product is then presented in its entirety and reviewers have the opportunity to make com-

ments. Comments from the preparation phase which require noexplanation can be passed

straight to the producer and the scribe. As reviewers present other comments, the producer

may ask for clarification, but should not spend time arguing about the validity of the com-

ment. As with other review methods, there should be no discussion on how each defect may

www.manaraa.com

SECTION 2.3: HUMPHREY' S INSPECTIONPROCESS 10

Phase Timing Participants Documents used Documents produced
Organisation - Coordinator

Producer
Preparation A Cooridnator Product Individual lists

Producer
Reviewer

Walkthrough S Coordinator Product Master list
Producer Individual lists
Reviewer

Rework - Coordinator Product Summary
Producer Master list

Follow-up - Coordinator Product

Table 2.2: Summary of the Structured Walkthrough phases andthe possible timings, partici-
pants, resources and products of each phase. Timing is either synchronous (S) or asynchronous
(A). The documents used and produced by each phase are also listed.

be corrected. The walkthrough phase should last between thirty and sixty minutes and fin-

ishes with a vote on the status of the product. After the walkthrough, the coordinator prepares

a management summary and a list of detailed comments. These comments are distributed

to all participants. The producer then makes the required alterations to the product during

the rework phase, deciding on the validity of each comment and seeking guidance from the

other participants as appropriate. Finally, afollow-upphase occurs to ensure that the required

changes have been made to the product. The phases, participants and documents present dur-

ing a structured walkthrough are summarised in Table 2.2.

2.3 Humphrey's Inspection Process

The inspection process described by Humphrey [50] is very similar to that described by Fagan;

however, there are some major differences. The inspection team consists of a number of

people with the expected roles, although they are namedmoderator, producerandreviewer.

The phases described are virtually identical in name to those described by Fagan, but the actual

process is different.

The process is depicted in Figure 2.3. Theplanningstage allows for selection of partic-

ipants and preparation of entry criteria. Theoverviewstage is identical to that of Fagan. It

is during thepreparationstage that the first deviation from Fagan's process occurs. Here,

reviewers are asked to find and log defects, unlike Fagan's method where defect detection is

deferred until the meeting. These defect logs are then passed to the producer for what could

www.manaraa.com

SECTION 2.4: GILB AND GRAHAM INSPECTION 11

Preparation

Plannning

Overview

Follow-up

Inspection

Rework

Analysis

Figure 2.3: The inspection process described by Watts Humphrey.

be termed theanalysisphase, where the individual logs are analysed and consolidated into a

single defect list. At the inspection meeting itself, the producer addresses each defect and can

ask reviewers to clarify the meaning of each defect. A list ofagreed defects is then produced.

The meeting is followed by the typical post-inspection activities of rework and follow-up.

This inspection process is summarised in Table 2.3, which describes the possible timing of

each phase and the documents required and produced.

2.4 Gilb and Graham Inspection

One of the most comprehensive texts on software inspectionsis that of Gilb and Graham [41].

The method they describe is obviously based on Fagan's work;however, it also incorporates

other lessons. One such lesson is the defect prevention process described by Jones [59]. This

discussion is limited to the inspection itself.

There are three defined roles in this type of inspection. Theleader is in overall charge

of the process and is tasked with planning and running the inspection. Theauthor of the

document is a required participant. As well as attending thelogging meeting, the author

should also take part in checking. The remaining team members arecheckers, whose duty is

www.manaraa.com

SECTION 2.4: GILB AND GRAHAM INSPECTION 12

Phase Timing Participants Documents used Documents produced
Planning - Moderator Inspection objectives

Producer Participants list
Overview S Moderator

Producer
Reviewer

Preparation A Reviewer Product Defect logs
Checklists Preparation report
Standards

Analysis - Producer Defect logs Consolidated log
Inspection S Moderator Consolidated log Master defect log

Producer Inspection report
Reviewer Inspection summary

Rework - Producer Product
Master defect log

Follow-up - Moderator Product
Producer Master defect log

Table 2.3: Summary of Humphrey inspection phases and the possible timings, participants,
resources and products of each phase. Timing is either synchronous (S) or asynchronous (A).
The documents used and produced during each phase are also listed.

simply to find and report defects in the document. During the logging meeting, one of the

checkers is assigned the role ofscribeand logs the issues found during the inspection.

The process is illustrated in Figure 2.4. It begins with ensuring that some entry criteria

are satisfied. This ensures that the inspection is not wastedon a document which is fun-

damentally flawed. This is followed by inspectionplanning, where the leader determines

inspection participants and schedules the meeting. This phase produces a master plan for the

entire inspection. The next phase iskickoff, where the relevant documents are distributed and

the inspectors briefed. Participants are assigned roles and goals are set. Such goals include

checking rates to be met and expected defect rates. The next phase,checking, is where each

checker works alone to discover defects in the document. These potential defects are recorded

for presentation in the next phase, thelogging meeting. The logging session is a highly struc-

tured meeting where potential defects (“issues”) found by the checkers are collected. The

emphasis here is on logging as many issues as possible and to this end the meeting is moder-

ated by the inspection leader, who ensures that discussion is kept focused and criticisms are

minimised. In addition to defects found during checking, other potential defects may be found

at the meeting itself. The meeting can be followed by abrainstormingsession to record pro-

cess improvement suggestions. After all potential defectshave been logged, the author takes

www.manaraa.com

SECTION 2.4: GILB AND GRAHAM INSPECTION 13

Planning

Entry

Kickoff

Checking

Logging

Edit

Follow-up

Exit

Brain-
storming

Figure 2.4: The inspection process as described by Gilb and Graham.

the issue list and performs anedit on the product. At this point, the issues are also classed

as defects. Afollow-up phase then occurs where the leader ensures that the edit phase has

been properly executed. Finally, someexit criteria must be satisfied before the inspection can

be declared complete. These criteria typically consist of such items as checking rates, which

must be within certain limits, and predicted number of defects left in the document.

From the above description it can be seen that the fundamental difference between this

process and that of Fagan is the stage where defect detectionis carried out, i.e. during an

individual phase rather than in a group phase. The process issimilar to Humphrey's, but the

similarity is not complete, since the producer is not expected to analyse defect logs before

the meeting. Instead, each checker simply presents defectswhen they are reached in the

document. Process improvement is also not an explicit feature of Humphrey's process, nor

are the entry and exit phases. A summary of Gilb and Graham's process is given in Table 2.4.

www.manaraa.com

SECTION 2.5: ASYNCHRONOUSINSPECTION 14

Phase Timing Participants Documents used Documents produced
Entry - Leader Entry criteria
Planning - Leader Master plan
Kickoff S Leader Goals

Author
Checker

Checking A Leader Product Issue lists
Author Sources
Checker Standards

Checklists
Procedures
Master plan

Logging S Leader Product Issue log
Author Sources
Checker Standards

Checklists
Procedures
Master plan
Issue lists

Brainstorming S Leader Process improvements
Author
Checker

Edit - Author Product
Issue log

Follow-up - Leader Product
Exit - Leader Exit criteria

Table 2.4: Summary of Gilb and Graham inspection process. Timing is either synchronous
(S) or asynchronous (A). The documents used and produced during each phase are also listed.

2.5 Asynchronous Inspection

All the inspection methods described so far have had one common element: a meeting where

the entire team get together to log and discuss defects. Thismeeting can be expensive and/or

difficult to set up and run, however, since one must ensure that all team members are available

at the same time and the same place, arrange suitable meetingspace and so on. An alternative

to an inspection meeting is to hold the entire inspection asynchronously, by providing some

means of supporting discussion without the entire team being present at the same place and

time. The simplest example of an asynchronous activity is that of Usenet, the worldwide

electronic news forum. Discussion proceeds by one person posting an article, which is then

read by many people. Some of these people then reply to this article by posting a reply,

www.manaraa.com

SECTION 2.5: ASYNCHRONOUSINSPECTION 15

Private review

Public review

Consolidation

Group Review
Meeting

Orientation

Setup

Conclusion

Figure 2.5: The FTArm asynchronous inspection process.

usually containing an edited version of the original article. This process continues, allowing

discussion to take place without everyone being present at the same time.

A similar system can be used for inspection. By allowing users to access an on-line

version of the document, they can add comments to the document (indicatingpotential defects)

using some type of annotation technology. These comments can then be made available to

other inspectors, who can comment on the comments. This procedure can continue until a

consensus is reached on the status of the original comment, as either a defect or a non-issue.

Once discussions have been completed on all comments, the inspection is complete and the

document can enter rework. Such an inspection method has been implemented using a review

tool called Collaborative Software Review System (CSRS) [57]. The tool implements an

inspection method known as Formal Technical Asynchronous review method (FTArm) [55].

As with traditional inspection, FTArm defines several roles: moderator, producerandre-

viewer. The process itself is shown in Figure 2.5 and consists of seven phases. The first

phase issetup, which involves choosing the members of the inspection teamand preparing the

document for inspection via CSRS. This involves organisingthe document into a hypertext

structure and entering it into the database.Orientationis equivalent to overview in the Fagan

process, and may involve a presentation by the author.Private reviewis similar to preparation.

www.manaraa.com

SECTION 2.5: ASYNCHRONOUSINSPECTION 16

Phase Timing Participants Documents used Documents produced
Setup S Moderator

Producer
Orientation S Moderator

Producer
Reviewer

Private review A Moderator Product Issues
Producer Checklists Comments
Reviewer Actions

Public review A Moderator Product Issues
Producer Issues Comments
Reviewer Comments Actions

Actions
Consolidation - Moderator Issues Consolidated issues

Comments Consolidation report
Actions

Review meeting S Moderator Product
Producer Issues
Reviewer Actions

Conclusion - Moderator Reports

Table 2.5: Summary of the FTArm asynchronous inspection phases. The timing of each phase
can be synchronous (S) or asynchronous (A). Roles defined forthe process are moderator (M),
producer (P) and reviewer (R). The documents used and produced during each phase are also
listed.

The reviewers read each source node in turn, and have the ability to create new nodes contain-

ing annotations. These annotations can include issues indicating defects, comments pertaining

to the intention of the document, which may be answered by theproducer, and actions, which

indicate a possible solution to remove a defect. When each reviewer has covered each node

(or sooner, if required), the inspection moves on to the nextphase. Inpublic review, all nodes

become public and inspectors can asynchronously examine each one and vote on its status.

Votes cast can either confirm the issue, disconfirm the issue or indicate neutrality. Additional

nodes can be created at this stage, immediately becoming publicly available. When all nodes

have been resolved, or if the moderator decides that furthervoting and on-line discussion will

not be fruitful, the public phase is declared complete. During consolidation, the moderator

analyses the results of the private and public review phases, and summarises unresolved is-

sues. The moderator can then decide whether agroup review meetingis to be held to resolve

the remaining issues. The final inspection report is then produced by the moderator during

conclusion, along with a metrics report.

www.manaraa.com

SECTION 2.6: ACTIVE DESIGNREVIEWS 17

Overview Review Discussion

Figure 2.6: The Active Design Review process.

From this description it can be seen that FTArm is inherentlycomputer-based. Computer

support is essential for providing an asynchronous discussion environment. A summary of the

FTArm process and the artifacts used and created during the process is given in Table 2.5.

2.6 Active Design Reviews

The Active Design Review (ADR) process [95] was designed to ensure thorough coverage of

design documents. The technique differs from traditional inspection processes in that instead

of one review involving a large number of people, several smaller reviews are held, each one

concentrating on different types of defects and involving asubset of reviewers. Reviewers

are chosen based on their specific skills and assigned such that each section of the document

undergoes each type of review. Although referred to as design reviews, the same technique

could be applied to other documents.

Essentially, only two roles are defined for the ADR process. Areviewerhas the expected

responsibility of finding defects, while thedesigneris the author of the design being scruti-

nised. There is no indication of who is responsible for setting up and coordinating the review.

The process is different to those discussed so far, in that itconsists of a variable number of

phases (Figure 2.6). It begins with anoverviewphase, where the designer presents an overview

of the design and reviewers are assigned review types and document sections, and meeting

times are set. The next phase is thereviewitself, which consists of each reviewer individually

completing questionnaires specific to their assigned defect type. Although each reviewer has

an assigned responsibility, there are also reviewers looking at the document overall, since the

other reviewers are tightly focused. This phase is the equivalent of the checking phase in Gilb

inspection.

The final stage,discussion, is where the designers read the completed questionnaires and

meet with the reviewers to discuss issues raised. Several meetings are held, usually one for

each reviewer responsibility, involving only that reviewer and members of the design team.

Hence the meetings are kept very small; at no point does the entire inspection team come

together for a meeting. When issues are agreed on, the reviewis complete and the designers

make appropriate changes to the design document. Active Design Reviews are summarised in

Table 2.6.

www.manaraa.com

SECTION 2.7: PHASED INSPECTION 18

Phase Timing Participants Documents used Documents produced
Overview S Designer Product

Reviewer
Review A Reviewer Product Completed

questionnaires
Discussion S Designer Completed

Reviewer questionnaires

Table 2.6: Summary of Active Design Review phases. Timing iseither synchronous (S) or
asynchronous (A). The review is based around the completionand discussion of appropriate
questionnaires. The documents used and produced during each phase are also listed.

Phase NPhase 1 Phase 2

Figure 2.7: The Phased Inspection process.

2.7 Phased Inspection

The Phased Inspection technique was developed by Knight andMyers with the goal of per-

mitting the inspection process to be “rigorous, tailorable, efficient in its use of resources, and

heavily computer supported” [87]. A phased inspection consists of an ordered set of phases,

each of which is designed to ensure the product possesses either a single, specific property

or a small set of related properties. The phases are ordered so that each phase can build on

the assumption that the product contains properties that were inspected for in previous phases.

The properties that can be checked for are not necessarily those concerned purely with defects

of functionality. They can include such qualities as reusability, portability and compliance

with coding standards. The process, consisting of a variable number of phases, is depicted in

Figure 2.7.

There are two types of phase:single-inspectorandmultiple-inspector. A single-inspector

phase uses a rigorous checklist, with the inspector deciding whether the product does or does

not comply with each item. The phase cannot be completed until the product satisfies all

checks. These phases are carried out by lone inspectors. In contrast, multiple-inspectorphases

are designed for properties which cannot easily be described by the binary questions in single-

inspector checklists. The appropriate documents are initially distributed to each participant,

who begin by examining this information and generating questions which clarify and improve

the documentation. The product is then inspected individually by each inspector. This indi-

vidual checking makes use of a checklist that is both application specific and domain specific,

www.manaraa.com

SECTION 2.8: N-FOLD INSPECTION 19

Phase Timing Documents used Documents produced
Single inspector - Product Defect list

Checklist Completed checklist
Multiple inspector

Examination A Product Question list
Sources

Inspection A Product
Sources
Checklist Completed checklist

Reconciliation S Product
Completed checklists

Table 2.7: Summary of the Phased Inspection phases. All phases are asynchronous (A), except
for the group meeting, which is held synchronously (S). Unlike other inspection procedures,
no roles are defined for participants. The major inspection artifacts are checklists, which are
used for both single and multiple inspector phases. The documents used and produced by each
phase are also listed.

though the questions are not binary, as they are in the single-inspector phase. The individual

checking is followed by a meeting, called areconciliation, in which the inspectors compare

their findings. Note that although it is not designed to do so,the reconciliation provides a

further opportunity for defect detection.

Phased inspections are designed to allow experts to concentrate on finding defects they

have specialised knowledge of, thus making more efficient use of human resources. For ex-

ample, it may be more efficient to have domain analysts inspecting code for reusability, since

they will have expert knowledge in that particular field. Thephased inspection technique

is summarised in Table 2.7, including the documents required and produced at each stage.

Computer support for Phased Inspections is discussed in Section 3.2.2.

2.8 N-Fold Inspection

The N-Fold inspection process [82] is based on the idea that the effectiveness of the inspection

can be improved by replicating it. While two teams may individually find 40-50% of the total

number of defects in the document, one team may find defects not found at all by the other

and vice versa. There will be some overlap between the defects found but the new defects

found can outweigh this disadvantage. By increasing the number of teams performing the

inspection, the percentage of defects found overall will gradually increase, until a point where

the cost of finding more defects (i.e. using more teams) is greater than the benefit gained

www.manaraa.com

SECTION 2.8: N-FOLD INSPECTION 20

Inspection N

Inspection 1

Rework and
Follow-up

Collation
Overview

Planning and

Figure 2.8: The N-Fold inspection process.

from removing those extra defects. The technique was originally designed to be used for user

requirements documents, since defects injected here are the most expensive to fix, but it could

be used any time that removal of defects is of paramount importance, such as in safety critical

systems.

In addition to the personnel required to hold each inspection, N-Fold inspection requires

the services of acoordinator1, whose task is to coordinate the teams and collect and collate

the inspection data. This is achieved by meeting with the moderator from each team. The

description of N-Fold inspection given in [82] is rather vague, apart from the essential fea-

ture that multiple inspections are carried out by independent teams. Therefore, the following

description is an extrapolated process, which would be necessary to effectively implement an

N-Fold inspection.

The process is shown in Figure 2.8. It begins with the usual planning stage of a traditional

inspection; however, this stage also includes deciding thenumber of teams to participate and

other details relevant to an N-Fold inspection. There will also be an overview stage to fa-

miliarise the participants with the context and content of the document and the goals of the

inspection. This is followed by a number of (usually concurrent) inspection stages, each

of which is entirely independent. This means they use completely independent teams, and

possibly completely different inspection processes. For example, one team may use Fagan in-

spection, another may use Active Design Reviews and yet another may use an asynchronous

inspection. Using different inspection processes improves the independence of each inspec-

tion, and will hopefully find more defects in the document. Once each inspection has been

completed, the process enters acollationphase, where the results of each inspection are tallied

and collated by the coordinator. This stage produces a master list of defects which are given to

the document's author for the traditionalreworkphase. This would be followed by afollow-up

phase ensuring the required items have been addressed.

The N-Fold inspection process is summarised in Table 2.8. Note that many of the details of1This role was originally termed “moderator”, but since eachinspection team already contains a moderator,
and to avoid conflicting terminology the title “coordinator” has been adopted.

www.manaraa.com

SECTION 2.9: CONCLUSIONS 21

Phase Timing Participants Documents used Documents produced
Planning - Coordinator
Overview S Coordinator Product

Moderator
Inspector

Inspection - - Product Defect lists
Collation S,A Coordinator Defect lists Master defect list

Moderator
Rework - Author Product

Master defect list
Follow-up - Coordinator Product

Master defect list

Table 2.8: Summary of the N-Fold inspection phases. The onlygroup phase is the collation
stage, which can be asynchronous (A) or synchronous (S). Documents and participants of each
phase are listed, except for the inspection stage, where they depend on the exact inspection
method(s) being used.

this process depend on the inspection method being used. Generally, the inspections produce

defect lists which must be collated into a single list.

2.9 Conclusions

Initially, there appeared to be a large variety of inspection processes. Under closer scrutiny,

a number of these are quite similar, consisting of minor variations of the individual prepara-

tion/group meeting structure originally proposed by Fagan. The most radical variations come

in the form of the N-Fold and asynchronous processes. The N-Fold process is designed to

increase the confidence in the quality of the document by using multiple, independent inspec-

tion teams. Asynchronous inspection is designed to obviatethe need for a synchronous group

meeting. Most process differences occur in terminology: the terms used for process phases,

participants and documents all vary between methods, whichcan cause confusion when com-

paring processes. A standard terminology and means of process description would therefore

be useful, both for communicating and comparing processes.

www.manaraa.com

Chapter 3

Existing Tool Support for Software

Inspection

T
his chapter begins by describing existing tool support for software inspection. A number

of such tools have been described in the literature over the past eight or so years. Table 3.1

shows the history of research in computer-supported inspection in terms of the production of

tools. As can be seen, there has been a steady interest in the topic throughout the decade. The

research contained in this thesis began in 1995.

There are two main types of tool: those that provide a means for capturing data from

paper-based inspections and those that provide on-line inspection of documents. As it would

be unfair to compare both types of tools, they are treated separately. The chapter ends with a

description of the major weaknesses of existing tools that were decided to be addressed.

3.1 Tool Support for Paper-based Inspection

3.1.1 COMPAS

COMPAS [6] is a development-process support tool which began life in 1984 as a simple

document management system. In the form described, its major features are modification

request management, document management and an inspectionand review subsystem, along

with various other housekeeping functions.

Initially, a document is entered into COMPAS along with various attributes about that

document. Each document has a status associated with it, which is initially set todraft . A

www.manaraa.com

SECTION 3.1: TOOL SUPPORT FORPAPER-BASED INSPECTION 23

Year Tools
1990 COMPAS

ICICLE
1991 InspeQ
1992 -
1993 CSI

CSRS
Scrutiny

1994 CAIS
QG4000

1995 Notes Inspector
1996 AISA

TAMMi
1997 DCI

hyperCode
InspectA
IPA

1998 WiP

Table 3.1: History of inspection support tools.

general purpose query facility is available to retrieve information about documents tracked by

COMPAS.

In terms of support for inspection, COMPAS first allows the inspection to be scheduled.

The system allows the required participants to be named and the time and place of the inspec-

tion to be set. An electronic notification can then be sent to each participant. The system can

also generate a set of inspection forms to be used. COMPAS automatically collects certain

data about each inspection and provides facilities for entering other types of data. Summary

inspection statistics can be extracted from the tool. For example data concerning one docu-

ment type may be extracted. These statistics include amountof material inspected, preparation

rates, inspection rates, detection rates and effort.

While details of COMPAS are sparse, it appears to provide useful metrics collection and

analysis for inspection. These facilities seem to be betterthan those found in many of the

on-line inspection tools.

3.1.2 Quality Group 4000

Quality Group 4000 at Telefónica Investagación y Desarrollo [52] report on the use of a tool

developed to support software inspections. The tool is never actually named, but is based on

several simple UNIX tools.

www.manaraa.com

SECTION 3.1: TOOL SUPPORT FORPAPER-BASED INSPECTION 24

On-line production of comments during reviews is supportedvia simple text files. A single

command allows the moderator to collect all comments into a single file. The tool can then

generate a paper report of these comments to be passed to the author for repair. The author then

marks up the paper copy of the report to reflect the changes performed, and passes it back to

the moderator. The moderator then uses the tool to produce a change agreement report, which

summarises the author's acceptance or rejection of each comment. This report is passed to all

reviewers, who can negotiate with the author about commentswhich have not been addressed.

The tool can store data from multiple reviews and provides a menu system allowing access to

the appropriate documents. It can also calculate a number ofmetrics.

3.1.3 Inspection Process Assistant

Inspection Process Assistant (IPA) [16] is a recent addition to the field of tool support. Its main

use is to allow defects in the product to be entered on-line. IPA models a process consisting of

planning (checking work product and organising the inspection team), individual preparation

(inspectors identify defects), meeting (group discussionof defects found), rework (fixing of

defects), verification (ensuring defects have been correctly fixed) and finalisation (moderator

validates results). It allows a database of available inspectors to be kept, and also allows

information on documents to be stored.

An inspection begins with the moderator using IPA to select the documents to be inspected

and the participants who will be involved. A viewpoint (areaof responsibility)can be allocated

to each participant, and the reader and recorder for the group meeting set. Finally, a date and

time for the group meeting is set.

When the moderator has defined the inspection, other participants must then access IPA

to customise the definition for themselves. IPA can then be used to record defects for that

inspector. Each defect can have a location, a summary, a detailed description and a classifi-

cation. When the inspector has finished preparation, the amount of time spent in preparation

can be entered.

When all inspectors have finished preparation, the moderator can use IPA to merge the

individual defects together into one single list to be discussed at the meeting. Unfortunately,

this is just a simple merge and there is no facility for the moderator to edit this list, e.g. to

remove duplicates.

During the group meeting, IPA is used by the recorder to record the disposition for each

defect (e.g. accept, reject, duplicate, etc.) and the overall result of the inspection (such as

“work product accepted”). The producer then can then use IPAduring rework to browse the

defect list and fix the appropriate items. The producer can mark each defect as corrected or not

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 25

corrected. During verification, the verifier uses IPA to browse the defect list and mark each

item as verified or not verified, commenting on the decision asappropriate. After verification,

the moderator finalises the inspection and can produce an inspection report. Finally, inspection

data can be exported from IPA for further analysis.

IPA provides fairly comprehensive support for the production of defect lists and collection

of some data. One major deficiency is the inability of the moderator to edit the merged defect

list before the meeting. This could reduce the size of the list, thereby reducing the length of

the meeting. And of course, like the other tools in this section, the possibilities provided by

on-line document presentation are not exploited.

3.1.4 Comparison of Tools to Support Paper-based Inspection

It is quite obvious that IPA has the most comprehensive support of the three tools. COMPAS

only supports the tracking of documents and inspection planning. QG4000 supports individual

comment preparation while IPA supports both individual preparation and the group meeting.

Although comment preparation on-line may make inspection more efficient, it may also be

inconvenient to work with both paper and on-line material atthe same time. Hence, most

work in tool support for inspection has concentrated on moving the entire process on-line.

3.2 On-line Inspection Tools

On-line inspection tools go one stage further than those already discussed: the entire process

is carried out on-line. These tools tend to be far more complex than their relatives discussed

in the previous section. The features provided by these toolcan be classed under four broad

categories: document handling, individual preparation, meeting support and data collection.

Document Handling Paper-based inspection requires the distribution of multiple copies of

each document required. Apart from the cost and environmental factors associated with such

large amounts of paper, cross-referencing from one document to another can be very difficult.

Since most documents are produced on computer, it is naturalto allow browsing of documents

on-line. Everyone has access to the latest version of each document, and can cross-reference

between documents. Also, the actual presentation of these documents can be designed to

enhance their inspection.

Computer support allows on-line annotation of documents, with annotations linked to the

part of the document to which they refer. They can then be madeavailable for all inspectors

to study before and during the inspection meeting. This has the added advantage of helping

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 26

to reduce the inaccuracies and mistakes which can occur during the inspection meeting, in-

cluding the failure to record some comments altogether. This effect has been observed by

Votta [118] and can occur in several situations, including when inspectors are unsure of the

relevance of their comments. By storing all comments on-line, it is easier to ensure that each

one is addressed.

Individual Preparation There are several ways in which tool support can assist in individ-

ual preparation. Tools can be used to find simple standard violations. While not as important

as logic defects, these must still be found to produce a correct document. If finding them can

be automated, inspectors can concentrate on the more difficult defects that have a potentially

greater impact if not found. This may be achieved by the introduction of new tools, or the

integration of the inspection environment with existing tools. There are various levels of in-

tegration, from simply reporting defects to actually producing an annotation relating to the

defect for the reviewer to examine.

Generally, inspectors make use of checklists and other supporting documentation during

preparation. By keeping these on-line, the inspector can easily cross-reference between them.

On-line checklists can also be used by the tool to ensure thateach check has been applied to

the document, thereby enforcing a more rigorous inspection, while on-line standards assist the

inspector in checking a document feature for compliance.

Meeting Support Prior to the group meeting, computer support may be used to monitor

inspectors' effort. The moderator can use this informationto decide when is the best time to

move from the preparation stage to the meeting, taking account of the amount of preparation

performed by each inspector. The moderator can also excludeanyone who has not prepared

sufficiently for the group meeting, or encourage them to invest more effort.

Since guidelines state that a meeting should last for a maximum of two hours [37], it may

take many meetings to complete an inspection. There is a large overhead involved in setting

up each meeting, including finding a mutually agreeable timeand place, a room to hold the

meeting and so forth. There is also an overhead involved for each participant travelling to the

meeting. By allowing a distributed meeting to be held using conferencing technology, it may

be easier for team members to “attend” the meeting using any suitably equipped workstation.

An alternative solution to the meeting problem is to remove the synchronous meeting

stage altogether, performing the inspectionasynchronously. In this type of inspection, each

inspector can perform their role independently. The inspection moves from stage to stage

when every inspector has completed the required task. This type of inspection can also reduce

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 27

meeting losses which occur when participants fail to reportdefects.

When a meeting is taking place, it can sometimes be useful to conduct polls to quickly

resolve the status of an issue. This is especially importantif the meeting is being held in a

distributed environment. Computer support can allow pollsto be quickly taken, thus helping

the inspection meeting progress more rapidly.

Data Collection An important part of inspection is the collection of data which can be

used to provide feedback to improve the inspection process.The measures will include time

spent in meeting, defects found, overall time spent in inspection, etc. Collecting this data is

time-consuming and error-prone when carried out manually.In fact, Weller [119] suggests

“...you may have to sacrifice some data accuracy to make data collection easier...”, which is

obviously undesirable. Computer support allows data from the inspection to be automatically

gathered for analysis. This allows inspectors to concentrate on the real work of finding defects.

Furthermore, the data can be analysed with little further work, unlike manual data collection

where the data has to be entered before it can be analysed which is an error-prone process.

These four areas represent the major facilities which can beprovided by an on-line in-

spection support tool. A number of such tools are now reviewed in terms of their support for

these four areas.

3.2.1 ICICLE

ICICLE (Intelligent Code Inspection in a C Language Environment) [9, 12, 13, 104], is de-

signed to support the inspection of C and C++ code. This tool is unique in making use of

knowledge to assist in finding common defects. Since the knowledge is of a very specific

kind, ICICLE is less suitable for supporting inspection of other document types. It can, how-

ever, be used to inspect plain text files by turning off the initial analysis. The tool supports

both individual preparation and the inspection meeting itself. During the inspection meeting,

the tool provides the functionality available in individual checking, supplemented by support

for cooperative working.

Document Handling The source code is displayed in a large window with each line num-

bered (see Figure 3.1). This window can be augmented by a second code window, allowing

the user to compare two parts of the code simultaneously. Next to the line numbers are two

symbols referring to comments. A letter indicates the status of the comment. This can include

deferred(not dealt with yet),ignored(user decides the comment is inappropriate or otherwise

suspect) ortransferred(chosen to be discussed at the inspection meeting). The second symbol

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 28

Figure 3.1: The main ICICLE display.

Figure 3.2: The ICICLE comment preparation window.

indicates the presence of a comment for this line. A hyphen indicates a single comment, while

an equals represents multiple comments.

Clicking on a line opens a comment window like that shown in Figure 3.2 for the line. This

window allows a comment to be modified or inserted and its status changed. Any changes to

this comment can be propagated to all comments on the line or even all comments in the code

which have the same text.

Individual Preparation ICICLE can automatically prepare comments on source code using

its analysis tools. These include the UNIX toollint and ICICLE's own rule-based static

debugging system.lint can be used to detect certain defects in C code, such as unreachable

statements and possible type clashes. The ICICLE rule-based system can be used to flag

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 29

Figure 3.3: The ICICLE comment proposal window.

both serious defects, such as failure to deallocate memory,and more minor defects, such as

standards violations. There is also the ability to include customised analysis procedures. The

comments produced by all these tools can either be accepted by the inspectors if they agree

with them, modified or else completely rejected. ICICLE alsoprovides a facility to allow

browsing of UNIX manual pages. The system also provides cross referencing information

for “objects” such as variables and functions. For example,clicking on the use of a variable

would give the user an option to move to the point of declaration, or any other usage of the

variable. This facility is available over multiple source files.

Meeting Support The inspection meeting is held with every inspector using ICICLE in

the same room. Distributed meetings are not supported, since the authors “do not wish to

supplant the ordinary verbal medium by which the bulk of meeting communication occurs”

[104]. During the meeting, each inspector has access to all documents as well as their own

comments. Each inspector has the code window displayed on screen. The reader controls the

traversal of this window for all participants, just as a single inspector does during comment

preparation. Every code window is locked to the reader's view, although an inspector can

open an extra window to allow simultaneous inspection of twosections of the code.

The reader proceeds through the document until an issue is proposed by an inspector,

opening a proposal window on all displays. The scribe's proposal window is shown in Figure

3.3. The team discuss the comment, and when discussion is complete, the scribe is able to

classify the comment and accept it, or reject the comment completely. If the comment is

accepted it is stored in a file which becomes the output of the meeting. During the meeting,

participants can send single line text messages to all otherparticipants.

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 30

Data Collection When the inspection meeting is complete, ICICLE generates alist of all

accepted defects to be given to the author of the product under inspection. A summary of

the defects by type, class and severity is also generated. The scribe can also prepare a report

detailing the total time spent in preparation and in meeting, the inspectors present and other

such process information.

3.2.2 InspeQ

InspeQ (Inspecting software in phases to ensure Quality) isa toolset developed by Knight and

Myers [65, 66, 87] to support their phased inspection technique. The technique was developed

to allow the inspection process to be “rigorous, tailorable, efficient in its use of resources, and

heavily computer supported” [65]. Phased inspections weredescribed in detail in Section 2.7.

Document Handling Thework product displayis used to browse the document under in-

spection. By using multiple copies, the inspector can simultaneously examine separate parts

of the same document. The browser allows the inspector to search the document. Thecom-

ments displayallows the inspector to note any issues found. InspeQ carries out formatting of

these comments before they are passed on to the author.

Individual Preparation A checklist displayis used to display the checklist associated with

the current inspection. The checklist also allows the inspector to indicate completion of each

check, by marking each item ascomplies, does not comply, not checkedor not applicable.

To help enforce a rigorous inspection, InspeQ ensures that all checklist items are addressed

by the inspector before the product exits the phase. The authors plan to extend the system to

ensure that each checklist item is applied to every feature associated with that item. Check-

lists usually ensure compliance with one or more standards,therefore astandards displayis

available which presents each standard in full.

Thehighlights displaycan allow the inspector to quickly identify specific features of the

document. These can be highlighted but can also be displayedin a separate window for

examination. An example would be to highlight all thewhile statements in a C program to

allow them to be checked for correctness, without the distraction of the surrounding code. This

function requires syntactic information about the document, which is more readily available

for code than any other type of document.

Meeting Support Since InspeQ is designed for individual inspector use, there is no support

for group meetings. It can, however, generate the comment list for each inspector. These lists

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 31

Figure 3.4: The Scrutiny work product window.

are then compared at the reconciliation.

Data Collection No data collection facilities are described.

3.2.3 Scrutiny

Scrutiny [15, 43, 44] is a tool based on the inspection methodused at Bull HN Information

Systems. This process consists of four stages. The first stage is initiation and is comparable

to overview in the Fagan model. The second stage ispreparation, as in the Fagan model. The

inspection meeting itself is calledresolution, while the final stage,completion, encompasses

both rework and follow-up. The roles taken by each participant are also similar, however

Scrutiny also implements some changes. First, the moderator's role is changed to include the

duties of the reader. In addition, the recorder role can be taken by more than one person.

Scrutiny also explicitly implements the role of the producer, who can answer questions re-

garding the document. Finally, there is another role in the form of theverifierwho ensures the

defects found by the inspection team have been correctly addressed by the author. This role

may be assigned to any participant. Any other members of the team are cast as inspectors.

Each stage of the process, along with each of the three roles,is modelled in Scrutiny.

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 32

Figure 3.5: The Scrutiny annotation window.

Document Handling Thework product windowallows each inspector to view the document

under inspection (see Figure 3.4). The document is displayed with each line numbered and

the current focus indicated by reverse video. The current focus is usually a single line but may

also be a zone of several lines. Text which has been inspectedis italicised, and the percentage

of the document covered is displayed in the top right hand corner. The window has controls to

move through the document line by line, and also has controlsto mark a zone. Finally, there

is a button to enable the creation of a new annotation.

When an annotation is created or modified, it appears in anannotation window, an exam-

ple of which is given in Figure 3.5. This displays the line numbers to which the annotation

refers and the author of the annotation, along with its content and a title. Buttons allow the

type of annotation to be recorded as either a question, potential defect, remark or reply. When

an annotation is created, an icon appears beside the line or zone to which it refers. Scrutiny

currently only supports text documents.

Individual Preparation Here, Scrutiny simply allows the inspector to traverse the docu-

ment, making annotations which can be used during the resolution stage. There is no assis-

tance with checklists or other supporting documentation.

Meeting Support Before the inspection meeting is started, the moderator canview the

preparation time of each inspector, to ensure that enough time has been given to allow adequate

preparation. Each inspector also has the opportunity to addtime for any off-line preparation

which they may have engaged in.

During the meeting, the work product window is used by each participant to view the

document, with the moderator having additional controls tochange the current focus and to

initiate a poll. The moderator guides the inspectors through the document, while they read

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 33

Figure 3.6: The Scrutiny control window.

and discuss the annotations made. Polls are used to resolve the status of an annotation.

Scrutiny also provides a main control panel called thecontrol window, a copy of which

is seen by each inspector (Figure 3.6). This window consistsof four major subwindows.

The participant statusdisplay contains a list of the participants along with an indication of

their current activities. Theannotationssubwindow contains a list of annotations made on

the current document, along with their owners and a type. Thedefectsubwindow lists defect

reports that have been discussed and their status agreed. The status includes the type and

severity of the defect. Finally, every time a poll is taken during the inspection meeting to

resolve an issue, a record of it is kept in thepollssubwindow.

Scrutiny can be used for both same-place and distributed inspection. The latter makes use

of teleconferencing facilities. It is also possible to holddistributed inspections without these

facilities by making use of Scrutiny's built in textual communications systems. The discussion

client allows inspectors to exchange textual points of discussion. Each participant has a list of

the current discussion points which can be read and replied to. Replies have a reference to the

original point, and participants can traverse these chainsof points, allowing them to follow

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 34

a discussion and then add their own comments. Scrutiny also provides a means of sending a

simple message to meeting participants. In addition to composing your own message, there

are several frequently required messages, such as a requestto move to the previous line, which

can quickly be sent. These messages can be sent to named individuals, or the group as a whole.

It is not clear how effective these mechanisms are when holding a synchronous meeting, since

the medium is obviously not as information rich as face-to-face communication.

Data Collection Scrutiny automatically generates an inspection report containing all the

relevant information about the inspection and its participants, details of the time spent by each

participant in the inspection and the coverage of the document they achieved. It also contains

a complete defect list with summary information.

3.2.4 CSI

Vahid Mashayekhi at the University of Minnesota has createdthree prototype inspection sup-

port tools, described in his doctoral thesis [83]. The first of these, Collaborative Software

Inspection (CSI) [84], is designed to support inspection ofall software development products.

The tool is described as applied to the Humphrey model of inspection [50]. In this variation,

each inspector creates a list of defects during individual inspection, which are then given to

the author of the document before the inspection meeting. Itis the author's task to correlate

these defect lists and to then address each defect at the inspection meeting.

Document Handling CSI provides a browser for viewing the document under inspection,

which automatically numbers each line. When a line is selected, anannotationwindow pops

up, allowing the inspector to make a comment about that particular line. This annotation is

supported by hyperlinks between the annotation itself and the document position to which

it refers. Since annotations can only refer to one line, and there may be a need for general

comments about an area of the document, CSI also supports anotepadsystem, which allows

annotations about missing material.

Individual Preparation Support is available from CSI for detecting defects by provision

of on-linecriteria which help the inspector determine defects. Also, when recording annota-

tions, the inspector is given guidance in categorising and sorting defects. After all inspectors

have finished individual inspection, the author can access all annotations associated with the

document and correlate them into a single defect list, supported by CSI through automatically

summarising and integrating the individual defect lists. The author can then categorise each

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 35

defect, either accepting it or rejecting it. CSI also allowsthe author to sort the defect list on

multiple keys, including severity, time of creation and disposition.

Meeting Support At the inspection meeting, the document under inspection ismade visible

on a window on each inspector's screen. The author guides themeeting using the correlated

defect list. Each item is discussed, and when agreement is reached regarding its severity,

this is noted by the recorder in theaction list. The original annotations are available at this

point to help inspectors understand the defect, and furtherannotations can be added during

the meeting. When the end of the defect list is reached, the inspectors agree on the status of

the meeting, indicating whether the material under inspection is to be accepted or reinspected.

CSI provides support for distributed inspections through an audioconferencing tool called

Teleconf [102].

Data Collection The inspection summaryis used to record meeting information such as

team members present, their roles and the status of the inspection meeting. CSI also provides

a history log. This collects several metrics from the process, such as thetime spent in the

meeting and the time taken to find a defect, as well as the number and severity of defects

found.

3.2.5 CAIS

The next prototype developed by Mashayekhi is Collaborative Asynchronous Inspection of

Software (CAIS) [85]. It is designed to be used asynchronously and therefore does not rely

on having all inspection participants present for any part of the process. It is hoped that asyn-

chrony can reduce the amount of time required to complete theinspection, since there is no

need to find a common time when all inspectors are free to carryout the meeting. An asyn-

chronous meeting can also solve some of the social problems which occur in synchronous

meetings, such as inspectors free riding, production blocking (where an inspector has to with-

hold a contribution until an appropriate time) and limited air time (only one person can speak

at a time).

Document Handling This system uses CSI for displaying and annotating documents.

Individual Preparation Again, CSI is used for individual preparation, therefore the facili-

ties here are identical.

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 36

Meeting Support The asynchronous meeting is supported by a meeting object. This pro-

vides a discussion and voting mechanism, and also notifies each participant when new discus-

sion has taken place. If an issue cannot be resolved during the asynchronous meeting it can be

sent to a synchronous meeting held later.

Data Collection The history log is used to collect data on the inspection. Themetrics col-

lected are: number of comments per person, number of votes per person, time for individual

defect collection, total meeting time, and when each participant made use of the system.

3.2.6 AISA

The final prototype developed by Mashayekhi is AsynchronousInspector of Software Arti-

facts (AISA) [108]. This prototype is designed to allow asynchronous inspection of graphical

documents, such as Data Flow diagrams. The tool is based on the Mosaic WWW client and

supports a three stage inspection process: defect collection (individual detection of defects),

defect correlation (where the producer integrates individual defect lists into a single master

list) and the inspection meeting (held asynchronously).

Document Handling The use of a WWW client allows AISA to support most graphical

documents. The document is prepared as a clickable image map(whether this is done auto-

matically or manually is not mentioned). Each document has ahierarchy of graphical images,

allowing the user to successively zoom in to smaller areas, although only two levels are im-

plemented. Each component document has a button allowing that component to be annotated,

along with a list of annotations for that component. Annotations can be viewed by clicking on

them.

Individual Preparation AISA simply support viewing and annotation of the document un-

der inspection. No other help is provided, except that AISA allows each participant to signal

their completion. When all participants have finished, a message is sent to the producer in-

dicating the end of the defect collection phase. The producer then uses AISA to correlate

the defect lists, removing duplicates and arranging them inthe order in which they are to be

discussed during the meeting.

Meeting Support The correlated defect list generated by the producer becomes the agenda

for the asynchronous meeting. Each defect has an associatedthread of discussion that partic-

ipants can add to. When discussion of a defect is complete, a proposal is generated for that

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 37

defect, which each participant can vote to accept or reject.The output of this meeting consists

of a summary of all defects and proposals.

Data Collection No data collection facilities are mentioned.

3.2.7 Notes Inspector

Notes Inspector (NI) [115] was also developed at the University of Minnesota. This tool

was built using Lotus Notes and, like CAIS and AISA, implements an asynchronous model

of inspection. In this model, the inspection consists of an individual defect finding phase

followed by an asynchronous meeting where participants discuss and vote on defects found.

Document Handling The product is stored as multiple Notes documents, with eachline of

text being stored as a single document. This appears a somewhat artificial way of storing the

document, but it allows annotations to be associated with individual lines of text. Non-textual

documents cannot be accommodated, however. Annotations can appear either as additional

lines within the document, or as symbols next to the appropriate line.

Individual Preparation This tool only permits the document to be read and annotated.No

further facilities are available to help individual preparation.

Meeting Support Notes Inspector is an asynchronous system and does not support the tra-

ditional group meeting. However, a discussion and voting system is available for use during

the asynchronous meeting. Each defect can have a thread of discussion, which inspectors can

view and extend. To resolve an issue, a proposal is created. Each inspector can vote to accept

or reject this proposal, or to abstain from the vote. Defectswhich are not resolved during the

asynchronous meeting can be set aside for a traditional synchronous meeting.

Data Collection No data collection facilities are available.

3.2.8 CSRS

Collaborative Software Review System (CSRS) [55, 56] is probably the most flexible of all

tools described here as it can be customised to support different variants of the inspection

process. This is accomplished using a process modelling language [117]. This language

has several facilities, including constructs for defining phases of the method, a construct for

defining the role of each participant, and constructs to define the artifacts used during the

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 38

Figure 3.7: The main CSRS window.

inspection. The latter also includes support for checklists. The language can also be used

to define the user interface, as well as to control the type of data analysis carried out by

CSRS. The description of CSRS presented here is based on its use to support an asynchronous

methods of inspection known as Formal Technical Asynchronous review method (FTArm).

This method is described in more detail in Section 2.5, but essentially consists of a phase of

individual review of the product (where all comments are kept private), followed by public

review (where all comments become publicly available and are discussed asynchronously).

Document Handling A document is stored in a database as a series of nodes. For source

code, these nodes would consist of functions and other program constructs. Source nodes are

created at the start of the inspection by the document authorwith the aid of the moderator. The

nodes are connected via hypertext-style links, allowing the inspector to traverse the document.

A typical source node is displayed in Figure 3.7. The name of the function is given, followed

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 39

Figure 3.8: A CSRS issue node.

by a specification of its intended function. This is followedby the source code itself.

Annotations are also stored as nodes, and can be one of three types. The first type is

a Commentnode, which is used to raise questions about the document andto answer them.

These are made public to all inspectors. AnIssuenode indicates a perceived defect in the

source node. Issue nodes are initially private to individual reviewers. An example issue node

is given in Figure 3.8. This issue is linked to the source codein Figure 3.7, where a link to the

issue node can be seen near the bottom of the display. Finally, anActionnode is a suggestion

of the action that should be taken to resolve an issue. These are also private to reviewers. The

action node given in Figure 3.9 details a possible fix for the issue raised previously.

Individual Preparation The FTArm method predominantly consists of individual work,

and this is where CSRS provides the most support. During the private review phase, each

inspector has a summary of which nodes have been covered and which have still to be covered.

This information is also available to the moderator, who will use it to decide when to move on

from private review to the next phase. Since additional nodes may be created after a reviewer

has reviewed all the currently available nodes, CSRS has thefacility to automatically e-mail

all reviewers when new nodes are created and have to be reviewed. CSRS also provides an

on-line checklist of standard issue types to assist the reviewer.

Support during public review is similar to that for private review, except now all nodes

are accessible to all participants. This time the main focusis on issue nodes. Each reviewer

has to visit each node, where CSRS can be used to vote on that node's status. Again, the

reviewer has summary information available, indicating which nodes have still to be visited.

The moderator can also use this information to decide when toterminate public review, usually

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 40

Figure 3.9: A CSRS action node.

when all reviewers have visited all nodes.

Meeting Support CSRS has little in the way of group meeting support, due to thepredomi-

nantly asynchronous nature of the inspection method implemented. The group review meeting

must be held face-to-face in the traditional manner. CSRS does not provide any support except

to help the moderator summarise the results and to produce a LATEX formatted report.

Data Collection CSRS provides automatic collection of such data as number and severity of

defects and time spent reviewing each node. It also has the ability to keep an event log, which

details the entire inspection from start to finish, allowingdetailed (manual) analysis later on.

3.2.9 TAMMi

TAMMi [101, 114] is a tool developed to support the GRCM quality model [113]. The model

is based on goals (G), rules (R), checklists (C) and metrics (M) and is designed to support

the sharing of consistent information between designers and inspectors. Each quality goal

is broken down into a number of rules, which are in turn brokendown to form checklists.

Rules are used to guide software design, while checklists are used to help inspectors check for

compliance with rules.

Document Handling TAMMi is designed to support inspection of PostScript documents,

allowing inspection of graphical as well as textual documents. Annotations can be marked di-

rectly on the document, with vertical lines in the margin being used to signal their occurrence.

Each annotation may have a subject, a description, the rule and checklist item which classify

this item, and an indication of its criticality. A separate window provides a summary of all

annotations made and allows the user to jump to any given annotation.

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 41

Individual Preparation TAMMi provides explicit support for support for the GRCM model

by presenting the checklist on-line to guide inspectors. The checklist is also used to classify

items found.

Meeting Support TAMMi does not explicitly support group meetings. However,a report

listing all the annotations entered by an inspector can be printed, which can then be used

during a traditional face-to-face meeting. The tool could also be used as an aid to the scribe.

Data Collection No data collection support is mentioned.

3.2.10 InspectA

InspectA [93] is another attempt to explore the possibilities offered by asynchronous inspec-

tion. The inspection process used starts with a phase of individual inspection, where inspec-

tors generate their initial list of comments. This is followed by review, where copies of these

initial lists are exchanged amongst inspectors, allowing them to discuss the validity of each

comment. This discussion proceeds asynchronously. The review phase is followed by an-

other round of individual inspection, with all comment lists being available to each inspector.

Comments can be reclassified, new comments added, and so on. At the end of this phase, the

moderator prepares a master list of comments to send to the author for repair.

Document Handling InspectA supports only plain text documents. It also allowsa list of

defects to be entered. Each defect may include the product text which is incorrect, a descrip-

tion of the defect, a class (Missing, Wrong or Extra) and a severity (Major or Minor). The

defects are not linked to the position in the document where they occur.

Individual Preparation InspectA allows the traversal of the document under inspection,

and can also display a single source document and a checklist. It also provides a mail facility

allowing participants to exchange comments and ideas. Thismail facility is also used to

distribute defect lists at the end of the individual phases.

Meeting Support InspectA is designed to perform a completely asynchronous inspection,

so no synchronous meeting facilities exist. It supports thereview phase of the inspection by

providing a find facility to help locate defects in the text (since no position is stored with the

defect). A notepad is also available for making comments. The tool also provides facilities

for the moderator to combine multiple defect lists into a master list.

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 42

Data Collection No data collection facilities are supplied.

3.2.11 hyperCode

hyperCode [97] is a WWW-based tool also designed to support different-time, different-place

inspection, however the process used is much simpler than that of InspectA. Preparation and

collection are performed concurrently, while resolution of issues is performed during the re-

work phase. When an inspection has been started, the relevant inspectors are notified by

e-mail. During a designated time-span, an inspector uses a standard WWW browser to study

and annotate the code under inspection. All annotations arepublic. When this period has

elapsed, e-mail is again sent to the inspectors and the author may then examine annotations

made and decide on the rework to be performed. On completion of the rework, the moderator

is informed, who then verifies the rework.

Document Handling hyperCode makes use of a standard web browser to allow code tobe

viewed and annotated. Code listings have the latest changesmarked and are automatically

translated into HTML. Line numbers in the source listing becoming hyperlinks for adding

annotations, page numbers are used to build a table of contents, and so on. Although the

example application is code inspection, it should be possible to apply the same techniques to

other document types.

Individual Preparation hyperCode only allows the inspector to traverse the code making

annotations. There is no mention of the use of checklists or other supporting documentation

such as design documents or standards.

Meeting Support No meeting support is present in hyperCode - the entire inspection is held

in an asynchronous fashion.

Data Collection Data collection facilities are not mentioned by the authors

3.2.12 WiP

WiP (Web Inspection Prototype) [46] is yet another WWW-based inspection support tool,

originating from the same institution as TAMMi (described above). Like TAMMi, WiP is

based around the GRCM quality model. An inspection begins with a setup phase, where the

documents required for the inspection are passed to WiP, inspectors are selected and roles de-

fined. During individual inspection, the inspector has access to the document under inspection

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 43

and can create annotations on a line-by-line basis. Relateddocuments and checklists can be

accessed, and help concerning the process and the tool is always available. Statistics about

the document can also be accessed. The next phase is public inspection, where WiP combines

inspectors individual lists into a single list. All inspectors can now view all annotations, and

add more as required. At the end of this phase, a report summarising the inspection can be

created.

Document Handling WiP makes use of a standard web browser to allow documents to be

viewed and annotated. Documents are restricted to text onlyand the view is limited to twenty

lines at a time. Annotations may only refer to single lines, but can be classified and have a

checklist reference associated with them.

Individual Preparation Inspectors can view and annotate the document. Checklists and

other supporting material can also be viewed.

Meeting Support No meeting support is implemented in WiP. All inspection phases are

held asynchronously.

Data Collection WiP collects the time spent inspecting the document and the number of

issues generated, and calculates the inspection rate and issues per thousand lines.

3.2.13 Distributed Code Inspection

The Distributed Code Inspection (DCI) prototype proposed by Doherty and Sahibuddin [30] is

designed to implement their distributed inspection process. The process starts with a planning

activity, where a synchronous or asynchronous methods is chosen. In the synchronous model

the next activity is a kick-off meeting where the participants are briefed on the source code and

the objectives of the inspection. In an asynchronous method, a briefing document is distributed

by e-mail. Both models continue with individual preparation, where participants attempt to

find defects in the code. A group activity then follows in bothmethods. Confusingly, the

authors state that all participants must be available at thesame time in both methods – surely

this contradicts the asynchronous model? Both methods thenend with a follow-up phase.

Details of the actual tool are sketchy, and written in the future tense, implying that the

system has not yet been created. It is (or will be) another WWW-based tool, allowing any user

with an ordinary WWW browser to make use of the system.

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 44

Document Handling A code viewer is used to display the code under inspection. Although

not explicitly stated, it can be assumed that this viewer is text only. Comments about the code

can be stored.

Individual Preparation On-line help is available, though it is not clear what this help refers

to, e.g. the tool, the code, etc. The specification of the codeis made available on-line. An

e-mail facility is also available to allow inspectors to seek clarification regarding the code.

Meeting Support Chat and e-mail facilities are available for group discussion. The com-

ments created during individual preparation can be viewed and discussed.

Data Collection No data collection support is mentioned.

3.2.14 Comparison of On-line Tools

Table 3.2 summarises the features of existing on-line inspection tools. It can be seen that while

basic document inspection and annotation are well-supported, the more advanced features are

less common. This section compares the features supported by each tool.

Document support Most tools handle only plain text documents. ICICLE, Scrutiny, CSI,

CAIS and hyperCode use the same technique of displaying the document with each line num-

bered. Annotations can then be made which are linked to an individual line. Scrutiny also

uses the idea of a current focus, which is a current area of interest upon which an annotation

can be made. CSRS divides the document up into smaller chunkscalled nodes, each of which

can be inspected on its own and comments made via new nodes linked to this one. InspeQ

and InspectA are the least well supported in this area, sincecomments are completely separate

from the source document, with only cut and paste facilitiesavailable to give a context to a

comment. In essence this only gives the facilities that a text editor can supply. Only two tools

support non-textual documents: AISA and TAMMi. Both allow annotation of graphical doc-

uments, the first via HTML and the second as PostScript. This lack of support for different

document types is one of the major shortcomings of existing tools, and must be addressed

if inspection support tools are to become a standard featureof software development support

environments. Annotations linked to the area of the document to which they refer also appears

to be a fundamental feature.

ICICLE, CSI, CAIS, AISA, Scrutiny, TAMMi, CSRS, InspectA and WiP all allow clas-

sification of annotations. The other tools only allow their creation or deletion. This limits

www.manaraa.com

S
E

C
T

IO
N

3
.2

:
O

N
-L

IN
E

IN
S

P
E

C
T

IO
NT

O
O

L
S

45

ICICLE CSI InspeQ Scrutiny TAMMi DCI CSRS CAIS AISA NI InspectA hyperCode WiP
Linked Annotations � � � � � � � � � �
Defect Classification � � � � � � � � �
Cross-referencing �
Automated Analysis �
Checklists � � � � � �
Supporting Material � � � � �
Distributed Meetings � � �
Decision Support � � � � �
Data Collection � � � � � �

Table 3.2: Summary of features of existing on-line inspection tools.

www.manaraa.com

SECTION 3.2: ON-LINE INSPECTIONTOOLS 46

the scope for collection of defect type metrics, although itstill allows the overall number of

defects to be measured. Classification of annotations is important for providing feedback on

the software development process, in terms of the most frequently occurring defect types.

Individual Preparation Checklists are supported by InspeQ, which uses them to enforce

a rigorous inspection by ensuring each item on the checklistis attended to by the inspector.

In a similar vein, CSI has the concept of a criteria list whichhelps inspectors find and cat-

egorise defects, and this is also available in CAIS. TAMMi, WiP and InspectA also provide

checklist support. As checklists are a fundamental featureof virtually all inspection types, it

is surprising that less than half of all tools provide any support.

In terms of other supporting material, InspeQ supports the displaying of standards, while

ICICLE can provide a browsing facility for manual pages likethose provided in UNIX. In-

spectA can display a single source document, DCI can displaya specification, while WiP can

display various supporting documents. Once again, supporting documents are vital part of any

inspection, yet they are overlooked by the majority of existing tools.

ICICLE is the only tool to provide any automatic defect detection. This is currently pro-

vided using the UNIX toollint and ICICLE's own rule based system, which contains knowl-

edge about C source code that can be used to detect such defects as coding violations. ICICLE

is also the only tool to provide cross-referencing, but thisis limited to C. Clearly there is much

scope for research in this area.

Meeting Support To ensure that each inspector has spent sufficient time in preparation,

CSRS can provide details on the amount of time spent on inspection by each inspector. This

prevents inspectors misleading the moderator about their state of preparation. The checklists

in InspeQ also perform this function. Scrutiny stores the percentage of document covered by

each inspector, as well as the time spent by each inspector inboth preparation and meeting.

Such data is useful for controlling the inspection, and mustbe made easily available.

Support for distributed meetings is only relevant to the synchronous inspection tools. CSI

uses Teleconf, which provides an audio channel only. Scrutiny also supports the use of an

audio channel, in addition to its discussion and messaging facilities. DCI provides textual dis-

cussion via chat and e-mail. ICICLE lacks these facilities and is designed to be used when the

inspection meeting takes place in one room with all inspectors present. InspeQ and TAMMi

are designed for individual inspector use only, and lack anysuch facilities. Videoconferencing

facilities are vital for allowing geographically distributed meetings.

Decision support is available through polls in Scrutiny, CSRS, CAIS and AISA. A voting

www.manaraa.com

SECTION 3.3: RESEARCHFRAMEWORK 47

mechanism would seem to be desirable for an asynchronous inspection tool, since it provides

a good way to reach a consensus, yet not all asynchronous tools support such a system. Even

in a synchronous meeting, it may provide a useful means of issue resolution.

Data Collection ICICLE automatically gathers metrics on the number and typeof issues

raised, as well as their severity, as noted by the scribe during the inspection meeting. CSI and

CAIS use a history log to record metrics. CSRS and Scrutiny have the most comprehensive

metric gathering capability. CSRS has the ability to gatherdefect metrics, as well as fine-

grained metrics on the amount of time spent by each inspectorreviewing each node. Scrutiny

has similar collection facilities, including the time spent in inspection and the coverage of

the document achieved by each inspector. WiP collects the number of issues found and the

total time spent in inspection, and can calculate the inspection rate and defect detection rate.

Actual data collected is specific to each development environment, therefore an inspection

support tool should be tailorable in terms of the data collected and the analysis performed.

3.3 Research Framework

Having investigated existing tools, a number of weaknesseswere identified. It was decided to

implement a prototype support tool to tackle these weaknesses. The first step was to provide

the basic features required of an inspection support tool and also to tackle some fundamental

omissions from existing support tools, namely:� Support of any inspection process. Computer support shouldnot be tied to a particu-

lar inspection method. Instead, the tool should be rigorousin its enforcement of the

inspection process, but tailorable as to which process it enforces.� Support of any document type. The system cannot be restricted to a single document

type, such as ASCII. Instead it must provide an extensible system for supporting multi-

ple types.� An annotation mechanism, where annotations are linked to the area of the document to

which they apply. Less than half of the existing tools provide such a mechanism, yet

linking defects to the section of the document in which they occur would appear to be a

basic requirement.� Classification of annotations, allowing data on defect types to be gathered and used to

pinpoint weaknesses in the software development process.

www.manaraa.com

SECTION 3.3: RESEARCHFRAMEWORK 48� Ability to display supporting documentation, such as checklists and standards, since

these are important documents in the inspection process.� A synchronous meeting mechanism allowing users to share data and vote on issues.

This would allow the exploration of the effectiveness of an on-line meeting.

These features were identified as being vital to any inspection support tool, and would form

the foundation of a comprehensive tool.

A common problem when developing new tools to support software development is lack

of proper evaluation, and the area of tool support for software inspection is no exception. With

this in mind, controlled experiments were planned to evaluate this research. The first would

compare paper-based inspection with basic tool-supportedinspection, using the prototype tool

implementing the features described above. This study would provide a baseline for further

research, and ensure there were no fundamental flaws with theconcept.

A second version of the tool would then be developed. This would implement more ad-

vanced features concerned with enhancing performance or reducing effort during inspection,

both for individuals and the team as a whole. Moving to a computer supported inspection

gives an opportunity to provide more active support for finding defects, along with other pro-

cess improvements. Features for this version would be basedon weaknesses in existing tools

and feedback from the first experiment. A second experiment would then be staged to com-

pare paper-based inspection with advanced tool support, inan attempt to explore the effect of

providing additional features.

www.manaraa.com

Chapter 4

Supporting a Generic Software

Inspection Process

T
his chapter describes work carried out to achieve the goals identified in the previous

chapter. The main aim of this work is to provide support for all inspection models. This

allows the most effective process for a given situation to beimplemented, optimising the costs

and benefits associated with the inspection. There are two possible solutions. The first is

to make use of an existing technology, while the second concerns the exploration of a new

approach. It was decided that the most appropriate approachwas to derive a purpose-built

process definition language. This language can be used as input to an inspection support tool,

allowing support of multiple processes.

The chapter begins by considering workflow tools and general-purpose process modelling

languages, two existing technologies which could be used toprovide support for multiple

inspection models. It then introduces Inspection Process Definition Language (IPDL), a lan-

guage capable of describing all existing inspection processes. The use of IPDL to describe the

Fagan inspection process is discussed in Section 4.1.4. (IPDL descriptions of the other seven

processes described in Chapter 2 can be found in Appendix C.)A comparison of IPDL and

other attempts at modelling software inspection processescan be found in Section 5.1.

Section 4.2 introduces ASSIST (Asynchronous/SynchronousSoftware Inspection Support

Tool), a prototype system used to implement the research presented in this thesis. It discusses

the execution of the IPDL implementation of the Fagan process and the facilities provided

to users. This section also discusses other goals identifiedin the previous chapter, including

support for multiple document types.

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 50

4.1 Inspection Process Definition Language

4.1.1 Implementation Technologies Considered

There are several existing technologies which could be usedto provide support for multiple

inspection processes. Two such technologies were considered: workflow management tools

and process modelling languages.

Workflow Management Tools

Within an organisation, there can be three types of process [40]. Material processes are those

concerned with physical components. Information processes are concerned with the creation,

processing and management of data. Business processes are descriptions of activities, imple-

mented as material and/or information processes, concerned with fulfilling a customer need

or satisfying a contract. A workflow is the description of thesequence of steps in a business

process, performed automatically and/or by human intervention. Defining a workflow allows

that process to be understood, evaluated and modified. Workflow management systems are

tools which support coordination and execution of tasks within a workflow, and its redesign.

Three types of workflow systems have evolved over the past decade or so, with increasing

levels of sophistication. Initially, image-based systemswere created to automate the flow

of paper through an organisation. Paper documents were digitised and the workflow system

used to route these documents in the appropriate manner [27]. Form-based systems were

the logical progression: instead of digitised document, electronic forms containing machine

readable data are routed around the organisation. This opens up the opportunity of automating

tasks. Finally, coordination-based systems are designed to facilitate the making and fulfilling

of commitments necessary for completion of work. As their name suggests, they aid the

coordination of personnel within the process.

A wide range of commercial workflow tools are available. A recent comparison of some

of these can be found in [25]. There are also a number of research prototypes. Since inspection

is simply a process involving documents and people, workflowtools could be used to support

it. Hence, a number of representative tools will be considered, with specific reference to their

applicability to inspection.

Regatta [111] is a system which represents work as a network of requests. A request,

representing a responsibility, is made from one person to another, and will have one or more

options for the recipient of the request. The recipient can accept or decline the request. A

policy is a set of requests which defines the process, and is represented using a visual process

language. Each plan can be decomposed into a subplan, supporting abstraction of the process.

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 51

These processes do not need to be complete before they are activated, and can be edited as

the process is followed. While the Regatta system could be used to represent the stages and

personnel in an inspection process, and a description of thetask to be performed at each stage,

it does not represent the documents within the system. The language has the goal of being

executable [112], but it is not clear how this is achieved, orhow the appropriate tools could

automatically be selected to support the process.

TriGSflow [64] is an architecture for a workflow management system incorporating object-

oriented and rule-based concepts and based on a commercial object-oriented database. A

workflow is modelled as a number of activities, each of which is performed by one or more

agents. Agents can either be automatic (i.e. some form of machine) or human (represent-

ing users). Activities performed by automatic agents are completely autonomous. Activities

involving human agents can either be executed by an application with user interaction, or

without any computer support. Activity nets (an extension of Petri nets) are used to specify

control flow between tasks, defining execution order. Each agent has a worklist, and data flow

between agents is modelled using orders, which insert data into an agent's worklist. Finally,

the system can apply rules to activity ordering, agent selection and worklist management.

This allows dynamic selection of activities and agents, andthe automatic selection of items on

worklists to be processed by automatic agents. This type of system could be used to implement

inspection processes, however it is still very much a research prototype and hence not widely

available. The combination of both activity nets and rules also makes process definition more

complex than it might otherwise be.

A recent trend in workflow systems, in common with the newer inspection support tools

described in Chapter 3 has concerned use of the World Wide Web[92]. The use of any

standard WWW browser to access the system allows any user to make use of a workflow

tool without installing dedicated software, essentially providing platform independence. The

browser is also an interface which most users are already familiar with.

One Web-based research prototype is DartFlow [18]. It uses Java applets for the interface

and agents to carry data and control information. When a userlogs on to the system, their

worklist is displayed. Clicking on a worklist item displaysan HTML form, completion of

which results in the generation of an agent to process the form. An example system demon-

strating a system for opening bank accounts is presented, although it is not clear how easily

DartFlow can be modified to implement other processes.

Another example is WebWork [91], a Web-based enactment system for the METEOR2
workflow management system. Workflows are modelled as a set oftasks and the dependen-

cies between them. The enactment system consists of task managers, application tasks and

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 52

a run-time monitor. Essentially, each task in the workflow ismapped to a task manager, an

application task and a verifier. The task manager reads data from the previous task, prepares

it for the current task, then invokes the application. Data is then collected and passed to the

verifier, which ensures the task has proceeded correctly andselects the next task to execute.

Tasks can be various types, including fully automated and those requiring human intervention.

It would therefore be possible to use this system to model inspection processes, invoking the

required tools at the appropriate time. Unfortunately, this type of WWW technology was not

available when this research was being performed.

Fundamentally, workflow systems have been concerned with routing information and in-

forming users of events, rather than supporting teamwork. They are usually used by many

users company-wide [18], rather than the small teams which are fundamental to inspection.

Steps within a workflow tend to be more finely-grained than those within an inspection pro-

cess, usually consisting of simple decisions. Also, there is no standard for process definition,

therefore a process defined in one workflow system cannot be used by another. Some tools

allow supporting applications to be executed to help perform the task. Not every organisation

has the same tools, however, so a process developed in one organisation may not be usable

in another. Ideally, process definitions should be as widelyapplicable as possible. The tech-

nology used is becoming increasingly sophisticated, however, and it seems likely that the

deployment of an inspection support tool based on such a system will become more feasible.

A WWW-based system, such as WebWork, is certainly now a more viable platform. In the

future, there may also be convergence on a standard for process definition.

As can be seen from the above descriptions, workflow systems have a process modelling

element. Hence, the next section explores the possibilities for defining inspection processes

presented by general-purpose process modelling languages.

Process Modelling Languages

The software development process is a key factor in the quality of delivered software [67].

Hence, there has been much research on modelling the process. Process models can be built

to understand the nature of the process under scrutiny (and therefore improve it), and they can

be used as a basis for automating the process. Since softwareinspection is a subprocess of

software development, it is natural to investigate the applicability of process modelling, with

a particular interest in the modelling languages available. Such a modelling language could be

adopted for describing inspection processes and used as input to an inspection support tool.

A number of process modelling languages (PMLs) have been proposed, utilising vari-

ous paradigms and approaches. McChesney [86] has developeda classification scheme for

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 53

process modelling approaches, a subset of which concerns the PML associated with the ap-

proach. Eight PML paradigms are identified: rule-based, imperative programming, object-

oriented, AI/knowledge-based, Petri net-based, functional programming, formal specification

and mathematical (or quantitative) modelling. Some of these are more widely used than oth-

ers. Example languages from each paradigm are now briefly described.

Marvel [60, 61] is a process-centred environment based around a rule-based process en-

gine. A particular environment consists of an object-oriented database containing process and

product data, rules defining the behaviour of the environment and a set of tool envelopes.

Each rule consists of three components. Preconditions are boolean expression which must be

true before an activity is performed. The second component is the activity itself, which may

invoke a tool, invoke another rule, or describe a task to be carried out by a human. Finally,

postconditionsare logical assertions which become true when the activity has been completed.

There may be multiple postconditions reflecting the possible results of the activity. Forward

and backward chaining of rules are used by Marvel to determine activities which can be per-

formed automatically. Tool envelopes allow Marvel to invoke tools used in the process model.

These envelopes specify the manner in which the tool is to be invoked and to return values

indicating success or failure. Note that the integration ofMarvel and the Scrutiny software

inspection tool is discussed in Section 5.1.1.

APPL/A [109] is an imperative modelling language based on Ada. A traditional program-

ming language was chosen as the basis for APPL/A as it provides basic control mechanisms,

data definition facilities, executability and other features which are necessary for modelling

processes. APPL/A extends Ada in a number of ways. It provides relation units, which repre-

sent relationships between objects in the process and provide data structures for representing

process data. This data is shared and persistent. Trigger units represent logical threads of

control which can react to events. These are generally used to propagate updates between re-

lations, to send notifications of changes in data, and so on. Predicate units specify conditions

on relations. They can be explicitly invoked or automatically invoked and are used to maintain

consistency. A consistent state exists when all predicateson a relationship are satisfied. If one

or more predicates are not satisfied then inconsistency occurs. Consistency management is

further supported by a set of specific constructs.

EPOS [54, 23], on the other hand, implements SPELL, a persistent, object-oriented lan-

guage which also makes use of rules. Processes are modelled as a typed network of tasks.

EPOS types (including tasks and data entities) exist in a hierarchy. Types can be subclassed

and augmented via single inheritance. A task type represents a step in the process and contains

a script to be executed. This script is surrounded by preconditions and postconditions, which

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 54

can be either static or dynamic. Static conditions allow forwards and backwards reasoning

without executing the script, while dynamic conditions allow the dynamic triggering of tasks.

The system provides an execution manager which enacts the process. It uses the precondi-

tions to determine when to enact a given task and then interprets the script associated with the

activity.

GRAPPLE [49] makes use of the AI planning paradigm. In this paradigm, the system is

expressed as a set of operators and a state schema (consisting of a set of predicates). These de-

fine possible actions within the system and the state of the system, respectively. A set of goals

are also defined, represented by logical expressions involving the state predicates. A plan is

a set of actions which achieve a goal given an initial system state. When applied to process

modelling, operators allow the definition of processes and plans become data structures rep-

resenting instantiations of the process. Each operator hasa precondition and a primary goal,

along with a set of side-effects. A set of sub-goals may also be defined, allowing the de-

composition of complex processes. These operators are dynamically instantiated to generate

plans which can be executed. The paradigm is aimed at emphasising the goals which must be

achieved, rather than the actions which must be taken to achieve them.

The SPADE (Software Process Analysis, Design and Enactment) environment [4, 5] pro-

vides the SLANG (SPADE Language) process modelling language, based on Petri nets. A

SLANG process model consists of a set of type definitions and aset of activity definitions.

Types are defined in an object-oriented style, consisting ofa hierarchy of subtype relation-

ships. Activities are modelled by Petri nets with process data being represented by typed

tokens of the net. Each activity is specified by a set of places, a set of transitions and a set of

arcs. State is represented by an assignment of tokens to places. The occurrence of an event

is modelled by a transition, where tokens are removed from the input places of the transition

and added to the output places. Each activity is divided intoan interface, which interacts

with other parts of the process, and an implementation, which is hidden. Each activity can be

composed of a number of sub-activities. Activities can be executed in parallel.

HFSP (Hierarchical and Functional Software Process) [110]is an example of a functional

modelling system. A process is defined as a set of mathematical functions, each of which

represents a process element with inputs and outputs. Each function defines the relationships

between inputs and outputs, and can in turn be decomposed into subelements (with matching

inputs and outputs). Decomposition continues until each process element maps to a single

tool invocation or human operation. HFSP implements sequencing, iteration and concurrency

of process elements and also allows communication between elements.

The formal specification language LOTOS [53] has been another avenue of research. A

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 55

specification consists of a number of processes, each of which is described by a behaviour

expression. Behaviour is defined in terms of the sequence of events in which the process can

participate. An event defines a synchronisation between processes. LOTOS specifications can

describe the temporal ordering of these events, and can alsomodel non-determinism and con-

currency. Yasumotoet al. [123] described the use of LOTOS to model software development

processes. The process is described in terms of the actions and order of primitive activities.

Finally, an example of quantitative modelling is the systemdynamics approach of Abdel-

Hamid and Madnick [1]. This technique simulates the system being modelled as a set of

equations. When these equations interact, they provide feedback loops which simulate the

dynamic nature of the system. The accuracy of the model depends on the form and parame-

ters of the equations. The approach can be used to investigate the effect of altering process

parameters, e.g. the number of developers involved.

When considering how they may be applied to inspection processes, it is worth consider-

ing how such a language will be used. Potential users of the language will include inspectors,

moderators and inspection support tool developers, each ofwhom will have a different view-

point and different requirements. Inspectors will have to follow processes defined. Moderators

will use it to describe existing processes and to develop newprocesses. Tool developers will

be concerned with implementing support for the language, providing adequate facilities for

each phase in the process.

A list of requirements can now be formed. The language must besimple to allow processes

to be easily written and modified. The language should be readily accessible and not require a

significant learning effort. For example, industrial inspection training courses last a maximum

of three or four days. It should be reasonable to teach the language within that timeframe

alongside the myriad of other inspection issues. Furthermore, to be amenable to tool support,

the language must be unambiguous, machine readable and executable. To achieve widespread

support (i.e. be adopted by a number of tool developers) simplicity is also important. While

the main purpose of this language would be to describe inspectionprocesses for the application

of tool support, it should also be simple enough to allow processes to be followed manually.

For this reason, process descriptions should also be compact and readable, perhaps using

an English-like syntax or a simple graphical notation. In terms of inspection elements, the

language must primarily be able to represent people and documents. It must also represent the

phases of the inspection and their execution order, with scope for concurrency.

Quantitative modelling can be immediately discarded, since the model only describes nu-

merical aspects of the process. While the use of preconditions in AI and rule-based paradigms

allow automatic transitions between states, it is not clearhow useful this is for inspection

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 56

processes, since the moderator generally makes the decision as to when to move from one

phase to the next, and the grounds for making the decision vary from inspection to inspec-

tion. In a non-computer supported environment this featureis obviously irrelevant. In fact,

the functional, AI, and rule-based paradigms rely on computer support. Hence, their value in

a non-computer supported environment is debatable.

Another concern is ease of understanding. Heimbigner [48] compares rule-based and

procedural languages. He concludes that while rule-based languages are flexible and can

handle unexpected events, it is difficult to understand the process flow. Similar comments can

be made concerning functional languages. On the other hand,procedural languages are good

for describing normal execution but are less flexible and cannot easily handle unanticipated

events. This is not a disadvantage where inspection is concerned, because the process is linear

with no optional paths. The only non-normal event is an earlytermination of the process,

which can be catered for easily.

Complexity is another issue. Formal specification languages have a reputation for being

difficult to use in general. Implementing such a language as part of an inspection support

tool is a non-trivial task. Similar arguments can be appliedto functional, rule-based and Petri

net-based languages. Object-oriented languages have their benefits in terms of reuse and the

grouping of related object by inheritance. Again, however,there are problems in terms of

understanding such languages [79] and the proper implementation of object-oriented features

is non-trivial.

Extensive type definition facilities, like those availablein SLANG, are not required. From

the review of processes in Chapter 2 it is apparent that inspection has well-defined types,

in terms of documents and participants. Hence, type definition facilities are a complication

which can be avoided.

It clear from the descriptions above that most PMLs are highly expressive, allowing a

multitude of processes to be defined. For the desired application, however, such flexibility

is not required. Although a flexible notation is required to allow all inspection variations to

be described, there is also a well-defined outline process which needs to enforced. There are

other disadvantages in choosing an existing PML. Most PMLs appear to have steep learning

curves and require extensive programming skills from theirusers. It is preferable to minimise

the amount of skill required by the user, to allow widespreaduse of the language. Choosing

an existing PML also requires either writing a process engine afresh or obtaining from the

authors of the language. The first would be a difficult and time-consuming task for many of

the complex languages available, while the second would unnecessarily restrict the choice of

development environment.

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 57

It was decided, therefore, to define a new language specific tosoftware inspection. This

avoids taking an existing language and appling artificial constraints, Furthermore, a language

with such constraints should be easier to parse, with reduced complexity. A language designed

specifically to model inspection processes should also simplify the task of writing processes,

since information about the basic form of an inspection process is already encoded in the

language. As simplicity and ease of understanding are paramount, the procedural paradigm

was chosen.

One decision which remains to be made is the choice between a textual and graphical

notation. A graphical notation can be more user-friendly and understandable. The supporting

environment is more complex to implement, however. Furthermore, a mapping between the

graphical semantics and an executable representation is required to allow process enactment

[22]. Hence it was decided to initially implement a textual notation. A graphical representa-

tion could then be derived if required.

4.1.2 Derivation of Generic Process

To design a language capable of describing inspection processes, the first step is to derive

a generic inspection process. This process should describethe essence of inspection, yet

provide flexibility in that each inspection variation can beadequately expressed. The process

was derived by examining the eight inspection types described in Chapter 2.

Initial Process Derivation

The derivation of a generic inspection process begins with the observation that every inspec-

tion has three major stages:Organisation (deciding on participants, timing and other details),

Detection(performing the actual inspection and finding defects) andCompletion (fixing the

defects and checking the work done). These three broad stages are present, to a greater or

lesser extent, in all the inspection methods described in Chapter 2. The first and last stages

vary only slightly between various inspection methods, while the major variations appear dur-

ing the detection stages.

Organisation Activities

The earliest inspection phase described is theentryphase proposed by Gilb and Graham [41].

This phase ensures that specific criteria are metbefore the inspection starts, reducing the

chances of a wasted inspection. This becomes the first inspection phase. This phase is optional

depending on the actual inspection type.

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 58

The next phase is some form ofplanning, sometimes known as set-up. At this point the

moderator has to organise the numerous details of an inspection. This ranges from choosing

and inviting participants, preparing documents and support material, and deciding how to

split the target material. Other typical activities include distributing inspection material and

assigning roles. This phase is an explicit part of some inspection processes, particularly that

of Humphrey and of Gilb and Graham, but not of others. Hence, the phase is defined to be

optional.

The final activity during organisation isoverview, present in numerous methods. This

phase is multi-purpose, with many possible activities. A major event is usually a presentation

on the document by the author. This phase is optional.

Detection Activities

The next step is to examine the detection stage in more detail. A traditional inspection gen-

erally has two phases here: an individual phase and a group phase. The processes defined

by Gilb and Graham, Fagan and Humphrey all have this type of arrangement, and so do the

multiple inspector phases of phased inspections. An obvious first step is to assume that the de-

tection may have two types of phases: individual and group. This can be generalised further,

however, by saying that detection will consist of one or moremeetings. Meetings can then be

categorised according to their timing (synchronous or asynchronous), objective (examination,

detection or collection), the number of participants and whether data is shared between par-

ticipants during or after the meeting (public and private visibility, respectively). For example,

individualpreparation in Fagan inspection is simply an asynchronous meeting with four or five

participants, where the data created is kept private to eachparticipant. On the other hand, the

inspection meeting itself is a synchronous meeting where data is available to all participants.

These two meetings represent the detection activities of Fagan's inspection and it can easily be

seen that the approach is similar for both Humphrey and Gilb and Graham-type inspections.

Now consider phased inspections. A single inspector phase is simply a meeting with only

one person in attendance. A multiple inspector phase is similar to a Fagan or Humphrey

inspection. So the entire phased inspection can then be described as a series of generic meet-

ings. Active Design Reviews consist of a single individual phase followed by multiple group

phases, each with different participants. This can also be modelled as a series of meetings.

Next, consider the FTArm asynchronous process. Private andpublic review can be de-

scribed by two generic meetings, however, there is also a consolidation meeting where the

moderator must decide if a synchronous group meeting shouldbe held. Thisconsolidation

step can be generalised to be a decision step where the need for a further meeting (of any

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 59

type) can be decided. This allows the modelling of the optional group review meeting in

FTArm, and also provides further flexibility to allow the specification of optional meetings in

any inspection process.

Finally, as was shown in Chapter 2, one of the most radical ideas for performing inspec-

tions involves the use of two or more independent teams. These teams will inspect the same

material, possibly using independent inspection methods,at the same time. A requirement of

this technique is the presence of acollationphase to assimilate the results from the indepen-

dent inspections. To increase flexibility, multiple collation phases are allowed.

Completion Activities

The last stage is perhaps the most well-defined. Essentially, there are two objectives here: de-

fects found during the inspection must be corrected, and thechanges which have been carried

out must be checked. These two objectives are achieved in thereworkandfollow-upphases

respectively.

During the rework phase, the author of the document tackles each defect found during the

inspection. This phase is called theeditphase by Gilb and Graham and they also use this phase

to assign a final classification to each defect, unlike Fagan inspection where this is performed

at the inspection meeting. This phase is defined to be optional since defects in the product

do not have to be repaired. Instead, it may be more cost-effective to apply the results of the

inspection to process improvement. Rework is also not required when the inspection is used

for training or education.

With the changes being made to the document, it is now usuallythe moderator's duty to

ensure that the changes have been carried out satisfactorily, by means of a follow-up activity.

At this point the moderator must also decide whether or not the document should be rein-

spected. This will depend on the extent and type of defects found. The average number of

defects found per page of document should also be compared with a historical figure for this

type of document. An unusually high or low value may indicatean extremely defective doc-

ument or an ineffective inspection, respectively. In either case the document should probably

be reinspected. The follow-up is not defined for all inspections, and is therefore optional.

The next possible phase isexit, proposed by Gilb and Graham. This phase is intended to

validate the inspection by ensuring that criteria such as checking rate and defect density have

been met. As with the entry phase, it is assumed that some formof exit criteria are set and

met, although these may be implicit.

The final phase which must be considered is metrics collection and analysis. Although

not a distinct phase in any of the processes described, collection and analysis of such data is

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 60

Overview

Planning

Entry

Collation

Consolidation

Rework

Follow-up

Exit

Meeting

Metrics

Detection

Organisation

Completion

Figure 4.1: The generic inspection process.

deemed to be an important part of inspection. For this reason, it is proposed as a final explicit

phase. The phase consists of preparing a report containing the appropriate measures of the

inspection, and is optional. Figure 4.1 shows the complete generic inspection process.

Inspection Participants and Documents

Having derived the process, possible participants can now be decided, along with the possible

resources required at each phase and the products generatedby the inspection. Starting with

the people involved, the key participant is themoderator, whose task is to plan and coordinate

the entire inspection. The moderator will select and inviteother participants, ensure that the

required documentation is available and up-to-date, and moderate any group meeting that

may be held. The moderator is sometimes referred to as theleader, and is required in every

inspection.

The next participant to be considered is theauthor. As the person responsible for the

document under inspection, the author usually has two main tasks: to brief other inspection

participants on the document and to fix any defects found during the inspection. The author

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 61

can also be known as theproducer.

Most participants in an inspection are those whose main responsibility is finding defects:

the inspectors(known variously asreviewersor sometimescheckers). A typical inspection

will require the services of two or more inspectors. It is therefore required that the number

of possible inspectors is not constrained in any way. Given the assignment of reviewers to

specific defect types that is practiced in ADRs, and a similarscheme using scenarios proposed

by Porter [99], the ability to assignresponsibilitiesto inspectors is also required. The respon-

sibilities will usually indicate a set of inspection aids which would assist inspectors in finding

their assigned types of defects.

Further roles can be defined for two of the inspectors if a traditional synchronous group

meeting is held. Therecorder(or scribe) is tasked with making a note of defects raised at the

meeting. This master defect list is passed to the author for rework. The optional role ofreader

involves guiding the pace of the meeting and possibly paraphrasing the document.

The final participant is only relevant to an N-Fold inspection. Thecoordinatoris tasked

with coordinating the entire inspection, much like a moderator, but dealing with multiple in-

spections rather than just one. The coordinator will typically only interact with the moderator

of each inspection team involved, collating the results from each inspection. Therefore the co-

ordinator is only involved in the entry, planning and overview phases of the organisation stage,

the collation phase of the detection stage, and the follow-up and exit phases of the completion

stage.

From the process descriptions in Chapter 2, it can be seen that documents used and pro-

duced during each phase can be divided into several generic types:� Product The document undergoing inspection.� Report A report simply details the outcome of a phase, or of an entireinspection. It is

usually completed by the moderator.� Inspection PlanThis is created during the planning phase and is the definitive prescrip-

tion of the inspection process and the people who will followit.� SourceA document used to produce the document undergoing inspection, for example,

the design document for a section of code.� Detection aid A document which assists the inspector with finding defects.This in-

cludes checklists which help to ensure adequate coverage ofboth the document and

of common defect types, items such as scenarios which assignresponsibilities to each

inspector and questionnaires.

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 62

Phase Timing Participants Documents available Documents produced
Organisation

Entry - Coordinator Entry criteria
Moderator

Planning - Coordinator Inspection plan
Moderator

Overview S Coordinator Product
Moderator
Author
Inspector

Detection
Meeting S,A Moderator Product Individual lists

Author Sources Master list
Inspector Checklists Report

Standards
Inspection plan
Individual lists

Consolidation - Moderator Individual lists Report
Master list

Collation S,A Coordinator Master lists Collated list
Moderator

Completion
Rework - Author Product Report

Collated list
Master list

Follow-up S Coordinator Product Report
Moderator Collated list
Author Master list

Exit - Coordinator Exit criteria
Moderator

Table 4.1: Summary of generic inspection phases and the possible timings, participants, re-
sources and products. Timing is either synchronous (S) or asynchronous (A). Possible docu-
ments available at each phase, along with documents that maybe produced during each phase,
are also listed

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 63� Standard The product will usually have to conform to a set of standards. These stan-

dards can be used for compliance checking during an inspection. This type of document

describes the process to be followed at each phase in the inspection.� List This is a generic document type for lists of comments produced by participants.

These comments may concern defects in the product, process improvement suggestions,

change requests for non-product documents and so on.� Criteria Inspection entry and exit criteria may be required. Entry criteria ensure the

inspection is not wasted on unsuitable material while exit criteria are used to ensure

the inspection has been carried out correctly. Such criteria include inspection rates and

estimated percentage of defects found.

Of course, some of these are only useful during certain phases, therefore the notation should

only provide relevant alternatives at each phase. At the same time, the flexibility of the no-

tation should not be unnecessarily limited. Finally, although inspection is usually concerned

with finding defects in the product, the process should also allow defects in supporting mate-

rials, such as standards and procedures, to be noted, as required by Gilb and Graham [41].

Table 4.1 summarises the roles, resources and products relevant to each inspection phase.

Note that the coordinator is only present in an N-Fold inspection, and that the roles of reader

and recorder may only be assigned during a synchronous groupmeeting.

4.1.3 IPDL Definition

Having developed a generic inspection process, a notation to adequately describe existing

inspection processes was derived. This notation is the result of giving due consideration to

the issues described in Section 4.1.1. The following sections describe the grammar of the

language using a Backus-Naur style of notation. In this notation, a phrase in italics is non-

terminal, while words intypewriter style indicate language keywords. The “::=” operator

is used to show expansion of non-terminal clauses. A plus sign (“+”) indicates one or more

instances of a given clause, whileopt indicates that the clause is optional. Finally, square

brackets indicate alternatives, with the alternatives separated by vertical bars.

Structure of Process Description

The description of a software inspection consists of two parts. The first part contains decla-

rations listing the participants and their roles, along with the documents which will be used

and created during the process. The second part describes the process itself, split into the

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 64

softwareinspection ::= inspection inspectionname
declarations
process
end

inspectionname ::= string
declarations ::= declarations

documentdeclarations
responsibilitydeclarationsopt
participantdeclarations
classificationdeclarationopt
end

process ::= process
organisationprocess
detectionprocess
completionprocess
end

organisationprocess ::= entryopt planningopt overviewopt
detectionprocess ::= [detectionjn fold]
completionprocess ::= reworkopt follow upopt exitopt metricsopt
string ::= “ ' ” character+ “ ' ”
character ::= Any printable character or white space.

Figure 4.2: Initial process definitions.

documentdeclarations ::= documents documentdefinition+ end
documentdefinition ::= documentname documenttype
documentname ::= identifier
identifier ::= non whitespacecharacter+
non whitespacecharacter ::= Any printable character which is not white space.
documenttype ::= [product jreport jsource jstandard j

list jcriteria jplan jdetection aid]

Figure 4.3: Document definitions.

three stages derived in Section 4.1.2. There is also a facility for naming the inspection. The

initial definition of the inspection is that given in Figure 4.2. The keywordsinspection

andend are used to delimit the description.inspection nameis simply an arbitrary string sur-

rounded by quotes. The declaration section consists of inspection documents, responsibilities,

participants and classification scheme. Each of these is described in the following sections.

The inspection process itself mirrors the process described earlier, consisting of the three ma-

jor phases of organisation, detection and completion. The initial definitions of these are also

presented and each will be described in more detail later.

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 65

targets ::= targets documentname+
inputs ::= inputs documentname+
outputs ::= outputs documentname+
Figure 4.4: Document inclusion clauses.

responsibilitydeclarations ::= responsibilities responsibilitydefinition+ end
responsibilitydefinition ::= responsibilitynamerequires fdocumentname+gopt end
responsibilityname ::= identifier

Figure 4.5: Responsibility definitions.

Inspection Document, Participant and Responsibility Declarations

The first section within the declaration part of the description describes all documents which

are available and created during the entire inspection, andis defined in Figure 4.3. This section

simply defines names for each of the documents to be used within the inspection. When the

inspection is instantiated and run, part of the planning task is to associate the real inspection

documents with each document defined. The format of such documents as criteria lists and

reports is therefore left to the implementation. Note that the language words are reserved and

are not available for use as document identifiers, or any other user-defined objects.

The definition of each phase of the inspection will require the documents present and

created during that phase to be defined. This will be achievedby the use of several clauses,

defined in Figure 4.4. Any document name appearing in these clauses must be declared within

the document declaration section. The first of these introducestargetdocuments, which may

be of any type described above and are the actual documents being inspected. There is no

constraint on the type since it is not unreasonable to allow standards, checklists and other

supporting material to be inspected at the same time as the product. Theinputs keyword

indicates documents which are made available to this phase,and may also include documents

of any type. Theoutputs keyword indicates the documents created or edited during the

phase, which may either be reports, plans, criteria lists, detection aids or lists. During each

phase, participants will only have access to documents defined for that phase using these

clauses.

The next part of the description is concerned with describing the participants involved

with the process and the responsibilities which they may be assigned. A common inspection

practice is to assign reviewers responsibility for certaindefect types, thus hopefully improving

the coverage and effectiveness of the inspection. This responsibility usually comes in the form

of a checklist or other defect finding aid. Figure 4.5 shows how a responsibilitymay be defined

in terms of documents. Each responsibility has a name and a list of documents associated with

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 66

participant declarations ::= participants participantdefinition+ end
participant definition ::= participantnameis

role
participant listsopt
responsibilityassignmentopt
end

participant name ::= identifier
participant lists ::= lists documentname+
responsibilityassignment ::= responsibility responsibilityname+
role ::= [coordinator jmoderator jauthor jinspector]

Figure 4.6: Participant definitions.

it. These will usually be checklists or other detection aids, but may also include standards

or any other document type. These documents should be made available to the appropriate

participant by the support tool.

The definitions for inspection participants are shown in Figure 4.6. There will usually

be several constraints on the selection of participants. Typically, there must either be one

moderator,or one coordinator and several moderators, depending on the type of inspection.

This constraint is not part of the language because it may unnecessarily limit its flexibility.

Instead, it is left to the implementation to enforce such restrictions as required. Zero or more

authors may be declared, to allow maximum flexibility. Any number of inspectors may also

be declared. Thelists subclause indicates the document which this participant will use to

record defects, change requests or other such items previously discussed when considering the

list document type. Finally, the responsibility names usedmust be previously declared in the

responsibility declaration section above. Note that any single person may have more than one

role or responsibility. During each phase, any participantwith no defined responsibility will

only be given access to documents defined in that phase, i.e. those generally available. One

such possible document is a general checklist used by everyone.

The participants description is simply a list of people involved and the names of their

roles. Note that the participant list isnot a list of the real people involved; it simply lists the

names of the “characters” in the inspection and the roles they will play. For example, a Fagan

inspection may have:

Moderator is moderator

indicating that the person called Moderator is executing the moderator's duties. Contrast

this with a Gilb and Graham-type inspection, where the person carrying out the task of the

moderator is known as the leader:

Leader is moderator

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 67

classificationdeclaration ::= classification classificationname
classificationname ::= string

Figure 4.7: Item classification clauses.

participant ::= participant participant name
participants ::= participants participant name+

Figure 4.8: Participant inclusion clauses.

This convention allows the naming of roles in any way required, allowing us to use terms

which coincide with any inspection practice. This also allows many people to take the same

role, for example to have multiple inspectors, each with a unique responsibility:

Inspector_MF is inspector

lists MF_defects

responsibility Missing_Functionality

end

Inspector_AM is inspector

lists AM_defects

responsibility Ambiguity

end

Figure 4.7 shows the item classification clauses. These are used to optionally specify

the classification scheme to be used for list items. The name of the classification scheme

used must be known to the implementation (e.g. “Fagan”). Classification names are not

part of the language definition. The implementation is also responsible for the manner in

which items are classified. For example, the number of classification levels may vary between

implementations.

Finally, for each phase of the inspection the participants required to be present must be

indicated. This is achieved with the two definitions shown inFigure 4.8. The first definition

indicates that only one participant should be present, while the second indicates the possibility

of more then one person taking part. The use of these definitions will be shown along with

each phase, but any participant name used within these clauses must have previously been

declared in the participants declaration section.

The Organisation Process

As seen in Section 4.1.2, the organisation stage may have three phases: entry, planning and

overview. Figure 4.2 shows the order in which these phases must occur, and indicates that they

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 68

entry ::= entry phasename
participant
targetsopt
inputsopt
outputs
end

phasename ::= string

Figure 4.9: Entry phase definition.

planning ::= planning phasename
participants
targetsopt
inputsopt
outputs
end

Figure 4.10: Planning phase definition.

are optional. Each of these phases is defined in turn, starting with the entry phase, shown in

Figure 4.9. This defines a name for the entry phase and indicates that only a single participant

is required during this phase, usually either the moderatoror the coordinator, depending on

the type of inspection. At least one output document must be defined, usually a criteria list. A

report detailing the outcome of the phase is also usually defined. Other documents may also

be present using the targets and inputs keywords

The next phase defined is planning, shown in Figure 4.10. Again, this phase may be named

according to the method being described. Although planningwill generally involve a single

moderator, multiple participants must be allowed for, especially in the case of an N-Fold

inspection, where the cooperation of several moderators and a coordinator may be required

to form the inspection plan. In this case, the coordinator should have overall control over

the planning stage, while the other participants can provide input. With multiple participants

there must be either a single moderator or a single coordinator. Again, this constraint is left to

the implementation. At least one output must be defined (usually a plan), but others outputs,

along with targets and inputs, may be defined.

The final organisation activity is overview, shown in Figure4.11. This phase requires the

definition of the participants involved, the format of the meeting, either local (same place) or

distributed (different place). The presenter is the personwho carries out the briefing; this is

usually the author. The overview phase is optional.

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 69

overview ::= overview phasename
location [local jdistributed]
participants
presenter participantname
targets
inputsopt
outputsopt
end

Figure 4.11: Overview phase definition.

detection ::= [meetingphase consolidationstepopt]+
meetingphase ::= [multi meeting jsingle meeting]
multi meeting ::= parallel phasename

singlemeeting
singlemeeting+
end

consolidationstep ::= consolidation meetingphase

Figure 4.12: Detection stage definition

The Detection Process

When defining the detection activities in Section 4.1.2, it was asserted that there would either

be a single detection activity, or an N-Fold activity. This is shown in Figure 4.2. A single

detection activity was defined to consist of at least one meeting phase, possibly interspersed

with consolidation steps. At this point the possibility of having several parallel meetings is

also introduced to provide extra flexibility. This allows subsets of the team to meet separately.

A consolidation step begins with a consolidation meeting, where it is decided if a further

meeting is required. This is followed by the definition of theoptional meeting. The definition

of detectionis shown in Figure 4.12.

A meeting is defined to be a phase with one or more participantswho may meet syn-

chronously or asynchronously, and whose discussion may be private or public. The meeting

may have one of three objectives: examination, defect detection, or defect collection. The as-

signment of roles during the meeting must also be allowed. Finally, the documents produced

and used in the meeting must be defined. The definition of a meeting is shown in Figure 4.13.

The definition starts with the keywordmeeting , followed by the meeting name. The

objective, timing, location and visibility are then set, along with the maximum duration of the

meeting in minutes. The implementation should use the duration to help guide the moderator

during the meeting. This is followed by a list of all meeting participants, as defined earlier.

The roles of reader and scribe may be assigned. If no reader isspecified, then it is assumed

that any participant can guide the meeting (such as in a Humphrey-type inspection where the

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 70

singlemeeting ::= meeting phasename
objective [examination jdetection jcollection]
timing [synchronous jasynchronous]
location [local jdistributed]
visibility [public jprivate]
durationopt
participants
rolesopt
targets
inputsopt
outputsopt
end

duration ::= duration integer

Figure 4.13: Meeting phase definition.

roles ::= roles role assignment+
role assignment ::= participantnameis meetingrole
meetingrole ::= [reader jscribe]

Figure 4.14: Role definition.

document is not paraphrased). If the scribe is not specified then the moderator should be given

that role by default. The roles are followed by target documents, inputs from previous phases

(such as lists) and outputs generated during this meeting (such as reports). All documents are

optional except for target documents. The role assignment section is defined in Figure 4.14.

Only the roles ofReader andScribe are defined.

The consolidation phase may follow any meeting, and is used to decide on the need for

a further meeting to resolve any remaining issues. The definition is shown in Figure 4.15.

Again, the phase may be named, and this is followed by the single participant who will per-

form the consolidation (usually the moderator). The targetdocuments and input documents

to this phase are then specified, which generally consist of the product and one or more lists,

respectively. Finally, at least one output must be defined: this is usually a report.

The alternative to a single detection activity is to have multiple, parallel detection activities

with a collation stage, i.e. N-Fold inspection. To increaseflexibility, there is the possibility

consolidation ::= consolidation phasename
participant
targets
inputs
outputs
end

Figure 4.15: Consolidation phase definition.

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 71

n fold ::= n fold phasename
fold
fold+
collation+
end

fold ::= fold phasename
detection
end

Figure 4.16: N-Fold stage definition.

collation ::= collation phasename
timing [synchronous jasynchronous]
location [local jdistributed]
participants
roles
targets
inputs
outputs
end

Figure 4.17: Collation meeting definition.

of holding more than one collation meeting. The definition isgiven in Figure 4.16. As usual,

the phase may be named. The definition will then consist of twoor more detection activity

definitions, as described above, surrounded by the keywordsfold andend , along with one

or more collation meeting definitions.

The collation meeting definition is shown in Figure 4.17. Foreach collation, a number

of participants can be listed, usually several moderators along with the coordinator, one of

whom must be nominated scribe with a role definition, anotherof whom may be nominated

reader. Inputs will generally consist of a collected list ofdefects from each inspection. The

output will usually be a single master list of defects for theentire inspection, but reports may

also form outputs from this phase. Several collation meetings may take place, to allow for the

possibility of the coordinator meeting with a subgroup of moderators. In this case, an input to

subsequent meetings should be the collated lists of defectsfrom previous meetings.

The Completion Process

The completion process consists of four activities, as shown in Figure 4.2: rework, follow-up,

exit and metrics, all of which are optional.

The rework phase is defined in Figure 4.18. Although rework isgenerally carried out by

the author, the possibility of another participant performing rework is catered for. This may

occur if the author is not part of the inspection team, or is otherwise unavailable. Various

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 72

rework ::= rework phasename
participant
targets
inputs
outputsopt
end

Figure 4.18: Rework phase definition.

follow up ::= follow up phasename
participant
targets
inputs
outputs
end

Figure 4.19: Follow-up phase definition.

documents may be made available during this phase. Target documents are always required,

with the implementation having to provide some means of editing these documents. Input

documents will typically consist of one or more lists. The output of the phase may consist of

one or more reports, or other documents as required.

The next phase is follow-up, involving checking the work performed in rework, and is

defined in Figure 4.19. Only one person should perform follow-up: this is usually the moder-

ator (or coordinator), but there is the possibility of another participant performing this task. A

target document is always required, and other input documents (usually a list of defects) must

also be present. Finally, the defined output is one or more reports.

Next is the optional exit phase, defined in Figure 4.20. This is similar to the entry phase

in that it defines one or more output documents, usually listsof criteria which must be met.

A report detailing the outcome of the phase may also be appropriate. Input and target docu-

ments may also be defined. One single participant is involvedin this phase: this is either the

moderator or the coordinator, depending on the inspection type.

Finally, the metrics collection and analysis phase is shownin Figure 4.21. This follows the

format of other phases. The main difference is thedata subclause. This is used to indicate

the measures which must be supplied by the tool for this phase. Each measure consists of

its name, an optional participant name for whom this measureapplies, and an optional phase

name which states which phase that particular measure is to be taken from. For example, to

collect the number of list items produced by the participantModerator during the phase

'Preparation' , the following might be used:

data

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 73

exit ::= exit phasename
participant
targetsopt
inputsopt
outputs
end

Figure 4.20: Exit phase definition.

metrics ::= metrics phasename
participant
data
targetsopt
inputsopt
outputs
end

data ::= data measure+
measure ::= identifier participantnameopt phasenameopt

Figure 4.21: Metrics collection phase definition.

list_items Moderator 'Preparation'

Other metrics, such as the length of the product, are not specific to a single phase or a single

participant and do not require to be specified. No measures are defined in IPDL. It is assumed

that the measures available will depend on the implementation, or the organisation performing

the process.

4.1.4 IPDL Example - Fagan Inspection

An IPDL description of the Fagan code inspection process is shown in Figure 4.22. The

description starts by titling the inspection “Fagan Code Inspection”. The declaration section

first of all lists all documents used and created in the inspection. TheMaster plan is the

definitive guide to the inspection. Although not explicitlymentioned by Fagan, it is assumed

that such a plan must be prepared for the inspection.Code is the document under inspection.

Design is the source document from which the code is derived. This isfollowed by the

declaration of six defect lists, one for each participant and a master list which will contain the

defects logged by the entire team. Finally, two reports are declared. One is used to detail the

outcome of the inspection meeting, while the other will contain the moderator's findings from

the follow-up phase. The declarations section also defines the inspection participants. Five

participants are declared: the moderator, author and threeinspectors.

The process section defines the six phases of a Fagan inspection. ThePlanning phase

simply involves the moderator creating the master plan for the inspection, which details the

www.manaraa.com

SECTION 4.1: INSPECTIONPROCESSDEFINITION LANGUAGE 74

inspection 'Fagan Code Inspection'
declarations

documents
Code product
Design source
Defects1 list
Defects2 list
Defects3 list
Defects4 list
Defects5 list
Master_defects list
Meeting_report report
Follow_up_Report report
Master_Plan plan

end
participants

Inspector1 is inspector
lists Defects1 end

Inspector2 is inspector
lists Defects2 end

Inspector3 is inspector
lists Defects3 end

Moderator is moderator
lists Defects4 end

Author is author
lists Defects5 end

end
end
process

planning 'Planning'
participants Moderator
outputs Master_Plan

end
overview 'Overview'

location local
participants

Moderator
Author
Inspector1
Inspector2
Inspector3

presenter Author
targets Code

end
meeting 'Preparation'

objective examination
timing asynchronous
location local

visibility private
participants

Moderator
Author
Inspector1
Inspector2
Inspector3

targets Code
inputs Design

end
meeting 'Inspection'

objective collection
timing synchronous
location local
visibility public
participants

Moderator
Author
Inspector1
Inspector2
Inspector3

roles
Inspector1 is reader
Inspector2 is scribe

targets Code
inputs Design
outputs

Master_defects
Meeting_report

end
rework 'Rework'

participant Author
targets Code
inputs

Master_defects
Design

end
follow_up 'Follow-up'

participant Moderator
targets Code
inputs

Master_defects
Design

outputs Follow_up_Report
end

end
end

Figure 4.22: An IPDL description of the Fagan inspection process.

actual participants involved in the inspectionand the documents to be used. TheOverview is

defined to involve all participants and involves the author presenting the code to be inspected.

The process then moves into the first of two detection phases.The Preparation phase

involves all participants individuallyexamining the document, hence the objective of the phase

is examination, the work is carried out asynchronously, andall data created by participants

remains private. The target of the phase is the product (i.e.Code) and the source is the design

document. Individual defect lists are implicitly available. The next phase is the inspection

meeting, again involving all participants. This time the meeting occurs synchronously, and all

data is made public. The objective of the phase is the collection of defects into a master defect

list, which is an output of the meeting, along with a meeting report. Two roles are defined

www.manaraa.com

SECTION 4.2: INTRODUCTION TO ASSIST 75

during the meeting: the reader and the scribe, which are assigned to Inspector1 and Inspector2

respectively. TheRework phase involves the author taking the code and the master listof

defects and performing the required fixes. This work is checked in theFollow-up phase by

the moderator, again using the code and the master list of defects, who also produces a report

on the follow-up.

4.1.5 Conclusions

IPDL has been derived with the intention of allowing inspection processes to be easily com-

municated, and to be used as input to an inspection support tool. Its simplicity should also

allow its use in non-tool supported environments IPDL was designed to be simple to use when

defining new processes, and to provide relatively short definitions. This is achieved by using

a language with a much higher level of abstraction, where theemphasis is on the implementa-

tion providing much more knowledge about the type of phases involved, hiding these details

from the user. On the other hand, this does mean that IPDL is more restricted in the processes

which can be defined. As ever, there is a trade-off between flexibility and simplicity, and it

was decided that a simple, easy to use language would be more generally accepted.

It should be borne in mind that, with the exception of asynchronous inspection (which is

inherently tool-based), IPDL represents paper-based processes. The act of introducing tool

support may alter the way in which such processes are performed. The facilities available will

vary from tool to tool, also having an effect.

4.2 Introduction to ASSIST

The first version of ASSIST [69] was implemented with three goals in mind: to demonstrate

IPDL, to investigate mechanisms for providing support of any document type, and to provide

a means for comparing basic tool-supported inspection withpaper-based inspection. The first

version was capable of executing any process written in IPDL, ensuring that the process is

followed precisely and that the inspection participants are provided with the correct materials

and tools at each stage of the inspection. This allows ASSISTto perform inspections with any

number of people on any number and type of documents.

ASSIST is implemented in Python [68], an interpreted, object-oriented language. It is

based on a client/server architecture, with a central server storing all inspection data, docu-

ments and personnel information. The client provides the user interface to the system, allow-

ing users to modify, store and compile processes, enter personnel and document data, and to

actually perform an inspection. This architecture allows distributed inspections to be easily

www.manaraa.com

SECTION 4.2: INTRODUCTION TO ASSIST 76

Figure 4.23: Joining the inspection.

held. Currently, a World Wide Web-based implementation is amore generic solution, allowing

anyone with a standard WWW browser to access the system. At the time of the initial design

of ASSIST, however, WWW technology was not mature enough to support such a system.

4.2.1 Using ASSIST to Execute the Process

To use an IPDL process with ASSIST, the process definition is first entered into ASSIST

where it is compiled ready for use. When a new inspection is started, ASSIST loads a copy

of the compiled inspection and allows the instigator to finalise the details of the personnel

and documents which are used in the inspection. For each participant and document in the

declaration section, the instigator may enter a person or document from ASSIST's databases.

New personnel and documents can be added to these databases at any time. For example,

consider the Fagan process shown in Figure 4.22. For the document known asCode during

this inspection, the real documentseries.cc is associated with it. Similarly, for the partic-

ipantAuthor , the real personfraser is chosen. When all details have been finalised, the

inspection can be started.

At this point, each participant is informed of their participation by email, and when they

start ASSIST the inspection name will appear in their list ofpending inspections, as shown

in the top window in Figure 4.23. Double clicking on the inspection name allows the inspec-

tor to participate in that inspection, bringing up anExecutewindow, like the bottom window

in Figure 4.23. This window shows thePreparation phase of a Fagan inspection from

the moderator's perspective. It can be seen that all five inspection participants are required

www.manaraa.com

SECTION 4.2: INTRODUCTION TO ASSIST 77

to be present, shown by the list of names in the top half of the window. This corresponds

with the IPDL description given earlier. Each participant has the name of the person perform-

ing that role in brackets. Similarly, the IPDL description for this phase required the docu-

mentsCode andDesign to be present. These are represented byseries.cc andSeries

Specification respectively, since those documents were chosen when the inspection de-

tails were finalised. Finally, the definition ofModerator specified thatDefects4 would

be used as a defect list for this participant. This document also appears in the document list.

Next to each participant's name is a status indicator, with the letter ' C' used to indicate

that the person is currently participating in this inspection, while an ' F' is used to indicate that

the participant has finished their work in this phase, controlled by an item in theInspection

menu. TheInspection menu also allows each participant to leave the inspection. TheMod-

erator menu is only available to the moderator and contains controls to advance or abort the

inspection. If the current phase has a time limit it is shown in theTime remaining box at the

top right of the window. Finally, the bottom line of the window shows the current fold (for an

N-Fold inspection), the current phase, and any responsibility which this participant may have.

4.2.2 Inspection Facilities

The facilities available to the participants depend on the inspection phase. Figure 4.24 shows a

typical view of the Fagan inspection described in Figure 4.22. This view is of the Preparation

phase.

Document Handling In contrast with all existing inspection tools, ASSIST has aflexible

document type system, allowing new document types and theirassociated browsers to be

added as required. This addresses one of the fundamental weaknesses identified in existing

tools. ASSIST has an open architecture with a well-defined interface which browsers must

follow. This interface allows the use of standard ASSIST features such as annotation. Several

browsers were implemented for the first version.

The list browser allows the user to manipulate lists of items, typically document annota-

tions describing defects. Lists can be either read only or read-write. Each item within a list

consists of a title, the name of the document which the item refers to, a position and a textual

description. Classification of defects was deemed to be an essential feature of an inspection

support tool, therefore ASSIST allows items to be classifiedaccording to a user-definable

classification scheme (specified by IPDL), with up to three levels. The list browser allows

items to be added, removed, edited and copied between lists.ASSIST implements a flexible

mechanism for describing the positions of annotations, allowing annotation at virtually any

www.manaraa.com

SECTION 4.2: INTRODUCTION TO ASSIST 78

Figure 4.24: Using ASSIST to inspect some C++ code.

scale, from individual letters and words up to paragraphs, sections, and whole documents.

The system automatically links annotations and the area of the document to which they refer.

Thecode browserallows documents to be viewed and annotated via the list browser. The

browser is based on the concept of a current focus, i.e. a lineof code which is currently

under scrutiny. The current focus can be annotated, or existing annotations read. The browser

indicates the current line number and the percentage of the document inspected. The view

of the document can be split horizontally or vertically, allowing two separate areas of the

document to be viewed simultaneously. Finally, a find facility is available, allowing the user

to search for specific strings in the document. The code browser and the list browser are shown

in Figure 4.24.

www.manaraa.com

SECTION 4.2: INTRODUCTION TO ASSIST 79

Individual Preparation This consists of each inspector studying the product and adding

defects to their private lists. ASSIST provides asimple browser, which is similar to the

code browser but without annotation facilities. This browser is used for all supporting docu-

ments, such as checklists and specifications, which are themselves not being inspected. All

relevant documents are therefore available on-line, satisfying another of the criteria identified

in Section 3.3. When preparation has finished, the moderatormoves the inspection on to the

Inspection stage. The facilities of ASSIST then change to allow a synchronous meeting to be

held.

Meeting Support During a group meeting, the focus for the whole group is controlled by

the reader: when the reader moves the focus to a new line, the browsers of the other partic-

ipants are automatically updated. The list browser allows participants to propose items from

their personal lists to the whole group, allowing the item tobe discussed and voted on. If

the item is accepted, it is copied to a master list of defects,representing the output of the

group meeting. The scribe may also edit proposed items to reflect refinements suggested

at the meeting. ASSIST also makes use of the MBone video toolnv , audio toolvat and

whiteboard toolwb, along with its own textual discussion mechanismdiscourse , to allow

distributed meetings. The list browser allows threads of discussion to be created, supporting

asynchronous meetings.

Data Collection ASSIST collects the time spent in inspection, the order in which lines of

code are inspected, and the time each defect was found.

Apart from the process modelling facilities, this implementation of ASSIST provides the

level of functionality required to compare tool-based inspection with paper-based, a level

which is similar to that provided by the tools described in Chapter 3. The next chapter de-

scribes a controlled experiment to compare paper-based andtool-based inspection Not only

would this give information on the comparative effectiveness, it would provide useful feed-

back on the usability of ASSIST and help shape the remaining research, in terms of advanced

facilities to support defect detection. The next chapter also qualitatively evaluates IPDL.

www.manaraa.com

Chapter 5

Evaluation of Basic Tool Support

T
his chapter presents an evaluation of IPDL, comparing it with other means of describing

inspection processes. It also presents an evaluation of thebasic version of ASSIST. This

takes the form of a controlled experiment comparing it with paper-based inspection.

5.1 IPDL Evaluation

The evaluation of IPDL takes two forms. To begin with, it mustbe able to describe all popular

inspection processes. Section 4.1.4 showed the implementation of Fagan inspection, while

IPDL descriptions of the other seven processes described inChapter 2 can be found in Ap-

pendix C. IPDL must also be compared with other methods of defining inspection processes.

There are currently three alternative methods for representing inspection processes: general

process modelling languages, the technology underlying the Scrutiny inspection support tool,

and the modelling facilities provided by CSRS. General purpose languages have already been

described. This section compares IPDL with Scrutiny and CSRS.

5.1.1 Scrutiny

The Scrutiny tool [15], described more fully in Section 3.2.3, is an inspection support tool

based on ConversationBuilder [63], which in turn is a generic tool designed to support collab-

orative work activities. ConversationBuilder (CB) provides a structured conversation model

which is suitable for modelling the process of software inspection.

www.manaraa.com

SECTION 5.1: IPDL EVALUATION 81

The CB architecture consists of three components. The Message Bus is a multi-cast mes-

saging system which allows communication between all components of CB and its applica-

tions. Next is the User Interface Suite which provides each client with the means to manage

the user interface, along with other housekeeping tasks such as file manipulation. Finally,

there is the Conversation Engine which manages collaboration and the actual application ac-

tivities. Each application is known as a protocol and is a CLOS (Common Lisp Object System)

description of the conversation to be enacted by the conversation engine.

Scrutiny implements a basic four stage inspection process.Initiation allows the mod-

erator to organise the inspection by obtaining the product to be inspected and inviting the

participants.Preparationis an individual activity where each inspector prepares comments

and questions about the product.Resolutionis a synchronous group meeting where the an-

notations created in preparation are shared and discussed,with the results being noted by the

recorder. Finally,Completionallows the results of the inspection to be processed and propa-

gated to other stages of the development process.

The fundamental inspection process used by Scrutiny is described with Petri nets, which

define the states a role can reach at each stage of the inspection. The role of the user determines

the interface presented (and, hence, the facilities available) to that user. CB allows two types

of data to be displayed: private data (which can be seen only by its owner) and shared data

(which can be accessed by any participant in the review). Shared information can be either

synchronous or asynchronous. Synchronous information hasany updates propagated to all

appropriate users immediately, while asynchronous data isonly presented when requested by

the user.

To generalise the process, work was carried out to alter the operations available to each

role and during each stage. A major change came from splitting Preparation into two sections:

private preparation and shared preparation. To model different review methods, Scrutiny al-

lows a number of policies concerning when and how participants move from private prepara-

tion to shared preparation. While this change of policy undoubtedly improves the flexibility

of Scrutiny, it is still limited to a basic four stage process. There is no ability to move between

individual and group stages at will, as is required by some methods. There is also no provision

for holding meetings concurrently, or for supporting an N-Fold type inspection. IPDL, on the

other hand, was designed with these features as a fundamental part of the language.

The use of CB provides much scope for complete process flexibility, since it is designed

as a generic CSCW system. However, this flexibility is balanced by the effort required to im-

plement a full system, which is a non-trivial task. IPDL is designed to obviate such effort. The

difficulties in extending and modifying CB-based applications have been noted: ACME [2]

www.manaraa.com

SECTION 5.1: IPDL EVALUATION 82

was produced as an attempt to extend Scrutiny with process evolution capabilities, and inte-

grates the Marvel process engine [60] with CB. Marvel itselfhas already been described in

Section 4.1.1.

The extensions planned for Scrutiny consisted of adding a number of schemes to improve

the effectiveness of reading annotations and allowing Scrutiny to be customised for specific

inspection types. This customisation comes in the form of allowing specific tools to be run

for each inspection type, and is, in essence, adding a new step to the inspection process. For

example, inspection of C code may require the static analysis toollint to be run on the product.

Integration with Marvel was chosen as the implementation vehicle as it allowed other work

on Scrutiny to proceed unhindered. This integration consists of the Marvel system monitoring

the actions of CB and using this information to form an external view of the Scrutiny process.

Marvel's envelope facility is then used, in conjunction with a message sending program, to

send messages to Scrutiny.

Arguably the most interesting part of this research concerns the addition of new process

steps. It can be seen how this work may be further generalisedby adding other steps to the

inspection. However, it is not clear how flexible such an approach may be, or how easy it is to

implement. Some of the implementation described involves programming at a low level, and

it is exactly this type of effort that IPDL is aimed at avoiding.

Finally, an improved version of Scrutiny with much more flexibility was designed, but the

project was ended before implementation could take place [42], hence any further evaluation

is impossible.

5.1.2 CSRS

CSRS (Collaborative Software Review System) [117], described in Section 3.2.8, is a com-

puter based review system developed to implement a softwareinspection framework derived

by its author. The framework breaks inspection into a seriesof phases. Each phase can be

classified by three characteristics: objective, interaction mode and technique. The objective

describes the goal of each phase, and can be one of comprehension, examination or consoli-

dation. A comprehension phase is concerned with becoming familiar with and understanding

the document. An examination phase is intended to be used forfinding defects. A consoli-

dation phase is where items found by individual reviewers are collated into an agreed form.

The interaction mode is concerned with the degree and type ofcollaboration. A group interac-

tion involves all participants together, while an individual interaction involves each reviewer

working alone. A selective subgroup interaction involves only a subset of the inspection team.

With a group or subgroup interaction, the type of collaboration can also be defined, either as

www.manaraa.com

SECTION 5.1: IPDL EVALUATION 83

synchronous or asynchronous. A synchronous interaction involves all participants perform-

ing their task at the same time. With asynchronous interaction the participants can perform

their task at any time convenient to them. The final characteristic is the technique used by

participants to achieve the stated objective, of which there are several types. Inspection tech-

niques vary from straightforward free review to checklist assisted inspection. Consolidation

techniques include discussion and voting. Techniques may also involve the use of tools. Each

phase may also have a set of entry and exit criteria associated with it. The criteria usually de-

fine properties that can be expected of both review artifactsand participants before and after

each phase. Using this framework, each major inspection method is modelled as a sequence

of phases, along with the appropriate characteristics.

This framework was used to develop the process modelling facilities in CSRS. These fa-

cilities are based around a set of languages, the most important of which are the data and

process modelling languages. The data modelling language is used to describe the documents

manipulated by the inspection, including their type and relationships with other documents.

Each document is represented by one or more nodes, which in turn contain fields of various

types. Nodes may also have attributes and status associatedwith them. Relationships between

nodes are represented by typed links, implementing a hypertext network. Four base nodes

types are defined. Source nodes contain documents to be reviewed. Commentary nodes are

used to contain items generated during the inspection, suchas defects. Checklist nodes con-

tain verification aids such as checklists. Administrative nodes contain information about the

review process itself, including details of participants.These node types can be inherited and

specialised.

The process modelling language defines the phases that compose each inspection. It is

based around a single multi-purpose phase which can be giventhe attributes, such as objective

and interaction mode, which have been defined within the framework. A process description

consists of a set of ordered phase definitions. CSRS allows these phases to be invoked either

manually or automatically. Manual invocation involves theadministrator periodically check-

ing the status of a phase and activating the next phase as required. Automatic invocation is

supported by the use of exit and entry criteria.

In comparison with IPDL, the facilities of CSRS are far more generic, providing a less

rigid underlying process model, consisting of a sequence ofgeneric phases. On the other

hand, CSRS cannot be used to model concurrent process steps.For example, in N-Fold in-

spection a potentially important document is inspected multiple times using one or more in-

spection methods. While this may be modelled serially, it isimportant that the inspections can

occur concurrently, otherwise the expense of the inspection will exceed the benefits. Also, the

www.manaraa.com

SECTION 5.1: IPDL EVALUATION 84

generic phase cannot be used to model tasks such as planning and rework. These tasks are an

integral part of the inspection process and must be modelledin some way, especially if it is

intended to make use of computer assistance. Describing theinspection as a series of generic

phases may restrict the support that can be provided for eachphase. Since, as has been shown,

inspections consist of a limited number of well-defined phases, it is preferable to explicitly

model as many of these phases as possible, while a similar approach of describing such char-

acteristics as objective can then be used for the more variable phases of defect detection and

collection. This is the approach used in IPDL.

Other questions arise with respect to computer assistance.For example, the framework

introduces the idea of roles, but it is not clear how responsibilities are associated with these

roles. There appears to be no methods for providing each reviewer with specific checklists for

their responsibilities, such as is required for Active Design Reviews [95]. This is a feature of

IPDL.

A major difference between CSRS and IPDL is the size of process definitions. The

CSRS definition of FTArm is around 2700 lines of code. The IPDLversion, presented in

Appendix C.5, is less than 200 lines. The difference in effort required to produce these is

obvious. This difficulty is perhaps illustrated by the fact that no attempt has been made to

write descriptions of existing processes. In contrast, IPDL descriptions of the eight processes

used in its derivation have already been shown. The CSRS languages are also tightly cou-

pled to the underlying system, consisting of a set of Emacs-Lisp functions and macros. This

makes it difficult to use in another inspection tool, especially one which is not Lisp-based.

IPDL is language and environment independent, and its syntax is such that it can also be used

in a non-computer supported environment as a means of precisely communicating inspection

processes.

5.1.3 Conclusions

IPDL has successfully been used to implement the eight inspection processes from which it

is derived. The diversity of these processes helps ensure that IPDL is capable of describing

any existing inspection process. It should also be capable of describing many future processes,

provided they conform to the organisation-detection-completionmodel which underlies IPDL.

Although Scrutiny is based on a generic CSCW system which would allow support of mul-

tiple inspection processes, tailoring such a system is non-trivial, especially compared to the

ease with which processes can be defined in IPDL. The process modelling facilities of CSRS

provide much flexibility but once again this flexibility comes with the price of increased com-

plexity. IPDL avoids this complexity by providing high-level, application specific constructs,

www.manaraa.com

SECTION 5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 85

resulting in concise, readable process descriptions whichcan be used both as input to an in-

spection support tool and to document a paper-based process.

5.2 Comparing Basic Tool-based and Paper-based Software In-

spection

Tool-supported inspection will only become an accepted practice if it can be demonstrated that

it does not detract from the main goal of software inspections: finding defects. Furthermore,

if it can be shown that the simplest level of support does not alter the efficiency of inspec-

tion, other, more advanced, support can be explored secure in the knowledge that the overall

concept is not fundamentally flawed.

While a number of advantages of tool-based inspection have already been identified, there

are a number of possible disadvantages. The time required totrain an inspector in the use of

the tool may become an issue. If the tool is too complex, it maydetract from the effectiveness

of the inspection, even in experienced inspectors. Also, many people are far slower at typing

than handwriting, slowing down the process of noting down defects, especially if the tool is

heavily mouse-based.

There may also be two problems concerning the move from paperto screen. One concern

is the limited amount of screen space. Examination of the product, a source document and

a checklist requires three windows to be on-screen simultaneously. However, most common

displays are not capable of simultaneously showing three such windows of sufficient size to

be useful. The screen may also be cluttered with other windows necessary for operation of

the tool, such as has been described in Scrutiny [44]. Contrast this with paper-based inspec-

tion, where inspectors are free to find as large a workspace asrequired and to spread all the

documents around in a manner comfortable to their working method. The second problem

concerns reading text from a screen. There have been a numberof studies comparing reading

from screen versus reading from paper, and Dillon [29] provides a good review of these. Evi-

dence points to a 20–30% reduction in speed when reading fromscreen compared to reading

from paper, while reading accuracy may suffer for visually-or cognitively-demanding tasks.

On the other hand, comprehension appears not to be affected,and may even be improved. Er-

gonomic issues may also have a part to play in reading text from a screen. These include the

fixed orientation of the screen, differing width to height ratios, refresh rates, image polarity,

display quality and so on. Reading from screen has also traditionally been thought to be more

tiring than reading from paper, while there appears to be a natural tendency for users to prefer

paper. Several caveats apply when considering how these types of study apply to tool-based

www.manaraa.com

SECTION 5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 86

inspection, including their length, the type of text used, and the task being performed. Lastly,

it should be noted that the quality of an individual display will affect the usability of such a

tool, and that the ideal presentation will vary depending onthe individual user, implying that

the ability to customise the tool is an advantage.

This section describes a controlled subject-based experiment designed to investigate any

possible reduction in inspection efficiency when moving to atool-based inspection process.

An appropriate measure of inspection efficiency is the number of defects detected in a constant

period of time. When comparing tool-based and paper-based inspection the following null

hypothesis,H0, can be formed:

There is no significant difference in performance between individuals performing

tool-based inspection and those performing paper-based inspection, measured by

the total number of defects found during a given time period.

The alternative hypothesis,H1 is simply:

There is a significant difference in performance between individuals performing

tool-based inspection and those performing paper-based inspection, measured by

the total number of defects found during a given time period.

Similar hypotheses can also be formed when considering the performance of inspection teams

as a whole.

5.2.1 Evaluations of Existing Inspection Support Tools

While there have been a number of attempts at implementing tool support for software inspec-

tion, the quality of evaluation of each tool varies enormously. In the case of ICICLE [12], the

only published evaluation comes in the form of lessons learned. In the case of Scrutiny, in ad-

dition to lessons learned [44], the authors also claim that tool-based inspection is as effective

as paper-based, but there is no quantifiable evidence to support this claim [43].

Knight and Myers [66] describe two experiments involving their InspeQ inspection tool,

designed to support their phased inspection method. The first simply provided information

on the feasibility of their method, and on the usability of the associated toolset. The second

experiment involved inspection of C code, but provided no comparison with paper-based in-

spection. Mashayekhi [83] reports on the implementation ofthree prototype tools, with the

aim of investigating distribution and asynchrony in software engineering. Again, no com-

parisons with paper-based inspection are made, except in the case of group meetings, where

comparable meeting losses are found using both the tool and paper-based methods.

www.manaraa.com

SECTION 5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 87

Finally, CSRS (Collaborative Software Review System) has been used to compare the cost

effectiveness of a group-based review method with that of anindividual-based review method

[116]. Again, since both methods are tool-based, there is noindication of the relative merits

of tool-based and paper-based inspection.

Although the evaluations described above attempt to measure, in various ways, the effec-

tiveness of tool support, the fundamental question “Is tool-based software inspection as effec-

tive as paper-based inspection?” remains unanswered. Practically all existing support tools

provide the level of support required to test the hypothesesstated above. Given that favourable

comparison with paper-based inspection is the means by which tool-supported inspection will

become acceptable, it is surprising that there is little investigation of this nature.

5.2.2 Experiment Design

The testing of the hypotheses required two groups of subjects to inspect a single document,

one using a tool-based approach and the other using a paper-based approach. To ensure that

any effect was not simply due to one group of subjects being ofhigher ability, the subjects

must also inspect a second document, this time using the alternative approach. The inspection

process used was an abbreviated Gilb and Graham type. It consisted of two phases: an indi-

vidual detection phase, where each subject inspected the document for defects, and a group

collection meeting, where individual lists were consolidated into a single master list for the

group. The group phase also provided an additional defect detection opportunity. An IPDL

process implementing this inspection was written and used as input to ASSIST for the tool-

based parts of the experiment. The appropriate inspection involving the correct participants

and documents was initiated for each group as required.

Subjects

The experiment was carried out during late 1996 as part of a team-based Software Engineer-

ing course run by Strathclyde University's Department of Computer Science for third year

undergraduates. The students already had a firm grounding inmany aspects of Computer Sci-

ence. In particular, they had been taught programming in Scheme, C++ and Eiffel, and had

also completed a course in the fundamentals of Software Engineering. Subject motivation was

high, since the practical aspects of the experiment formed part of their continual assessment

for this course, the final mark of which contributes to their overall degree class.

A total of 43 subjects participated in the class, split into two approximately equal sections.

Section 1 had 22 subjects and Section 2 had 21 subjects. The split was achieved by ordering

www.manaraa.com

SECTION 5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 88

subjects according to their mark in a C++ programming class (C++ was chosen as the type

of code to be used in the experiment). Adjacent subjects werethen blocked into sets of four,

with two randomly chosen subjects assigned to one section, with the remaining two subjects

assigned to the other. Within the two sections the subjects were organised into groups of

three (and a single group of four). This was done in such a way as to create equal ability

groups, based on their C++ programming marks. Section 1 therefore consisted of six groups

of three subjects and one group of four subjects, while Section 2 contained seven groups of

three subjects.

Materials

Having previously assisted with the running of several defect detection experiments [90,

122], it was decided that the most appropriate material to inspect would be C++ code. A

number of factors influenced this decision. Initially, source code was chosen as the appropriate

material due to ease with which defects in code can be defined.This is in contrast with, say,

English language specifications, which provide many problems of ambiguity. It is also easy

for inspection of such material to degenerate into arguments over English style and usage.

Intelligent seeding of defects in code avoids these problems and provides a well-defined target

against which performance can be judged. It is also easier for the experimenter to classify

defects and hence subject performance is more accurately measured.

Subject experience was also taken into account. Inspectionmust be performed by per-

sonnel with experience in the type of document being inspected. It was therefore important

to choose material in a form which the subjects had experience in. This also avoids teaching

a new notation or language which subjects may spend much of their time trying to under-

stand and become familiar with, instead of finding defects. Since the subjects were competent

in C++, material in that language was chosen for the experiment. The decision was further

ratified by the availability of high quality material from a local replication of Kamsties and

Lott's defect detection experiment [62]. Of course, the actof choosing a single material type

affects the extent to which the results can be generalised. It is felt, however, that the results

are applicable to inspection of source code in general.

For the training materials, a selection of programs originally used in Kamsties and Lott's

experiment were used, since each program had an appropriatespecification, a list of library

functions used by the program and a comprehensive defect list. These programs were origi-

nally written in non-ANSI C and were translated into standard C++ for the experiment. The

programs used were:count.cc (58 lines, 8 defects),tokens.cc (128 lines, 11 defects)

andseries.cc (145 lines, 12 defects). A further example,simple sort.cc (43 lines,

www.manaraa.com

SECTION 5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 89

4 defects) was created for use in the tool tutorial.

Since the Kamsties and Lott material had already been used inthe same class the pre-

vious year, the two programs to be used for the experiment (and, hence, the assessment),

were specifically written afresh. One program (analyse.cc , 147 lines, 12 defects) was

based on the idea of a simple statistical analysis program given in [28]. The second program

(graph.cc , 141 lines, 12 defects) was written from a specification for aFortran graph plot-

ting program, originally found in [8]. For each program, a specification written in a similar

style to that of the Kamsties and Lott material was also prepared, along with appropriate lists

of library functions.

There is no clear consensus on the optimal inspection rate. For example, both Barnard

and Price [7] and Russell [103] quote a recommendation of 150lines of code per hour. On

the other hand, Gilb and Graham [41], recommend inspecting between 0.5 and 1.5 pages per

hour, translating to between 30 and 90 lines of code. All conclude that lower rates improve

defect detection. Each practical session lasted two hours,giving an inspection rate of around

70 lines per hour. This figure represents a compromise since subjects were not professional

inspectors and could not be expected to perform at the highest recommended rates. At the

same time, there was enough time pressure to make the task realistic. Two hours is also a

standard inspection meeting length.

The actual inspection task was to use the program specification and list of library functions

to inspect the source code for functionality defects, making use of a checklist. Use of a check-

list is standard inspection procedure, and subjects were supplied with the checklist described

below. Subjects were specifically discouraged from finding defects relating to other qualities,

such as efficiency. Each program was seeded with functionality defects and with checklist vi-

olations. These were based on those naturally occurring when the programs were written, and

those found in the Kamsties and Lott material. For the two experimental programs, defects

in one program were matched, in terms of type and perceived difficulty, with defects in the

other program, in an effort to match the overall difficulty ofthe programs. All programs used

compiled with no errors or warnings usingCCunder SunOS 4.1.3.

The checklist used was derived from a C code checklist by Marick [81], a C++ checklist by

Baldwin [3] (derived from the aforementioned C checklist),the C++ checklist from [51] and a

generic code checklist from [33]. Items which were considered to be irrelevant were removed

from the C and C++ checklists (for example, no programs made extensive use of macros),

along with esoteric items, such as those dealing with threaded programming and signals. From

the generic checklist, items not relevant to C++ were removed. Duplicates were then removed

and the remaining items grouped into a number of categories.An additional category was

www.manaraa.com

SECTION 5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 90

added concerning differences between the specification andbehaviour of the program. Finally,

another edit was performed on the checklist to reduce the number of categories, allowing the

checklist to fit on two sides of paper. It was felt that a short checklist covering the major

points to consider would be more effective than a much longer, more detailed checklist which

the subjects would struggle to cover in the time allowed. This follows practice recommended

by Gilb and Graham [41]. The checklist and all other materials used in the experiment are

presented in Appendix D.

Instrumentation

For paper-based inspection, each subject was given an individual defect report form, like that

in Appendix D.3, containing blank entries to be filled with each defect found. For group meet-

ings, the scribe was given a similar form to prepare the master list, presented in Appendix D.4.

During tool-based inspection, ASSIST was used to keep both individual lists and the master

list. Each practical session was limited to a maximum of 2 hours. Almost all participants

made use of the full two hours.

For each subject, data collected were the total number of correct defects found, along with

the number of false positives submitted (i.e. defects whichsubjects incorrectly identify), and

similarly for each group. Also calculated were meeting loss(number of defects found by at

least one individual in the group, but not reported by the group as a whole), and meeting gain

(number of defects reported by the group, but not reported byany individual) for each group.

Finally, for each defect in each program, the frequency of occurrence was obtained, both in

tool-based and paper-based inspection.

Experiment execution

The practical element of the course ran over a period of ten weeks. The first six weeks were

devoted to providing the subjects with training in softwareinspection and using ASSIST,

as well as refreshing their C++ knowledge. These practical sessions were interspersed with

lectures introducing each new topic where appropriate. After inspection of each program was

complete, the subjects were presented with a list of defectsin that program. The remaining

four weeks were used to run the actual experiment. Appendix D.1 details the exact timetable

used. Each practical session was run twice, once for each section of the class, thus ensuring

their separation when using different methods on the same program. Both practicals occurred

consecutively on the same afternoon of each week.

www.manaraa.com

SECTION 5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 91

Threats to Validity

Any empirical study may be distorted by influences which affect dependent variables without

the researcher's knowledge. These are threats to internal validity, and the possibility should

be minimised. The following such threats were considered:� Selection effects may occur due to variations in the naturalperformance of individual

subjects. This threat was minimised by creating equal ability groups.� Maturation (learning) effects concern improvement in the performance of subjects dur-

ing the experiment. The data was analysed for this and no effect was found. Sec-

tion 5.2.3 describes this analysis in more detail.� Instrumentation effects may occur due to differences in theexperimental materials used.

To help counteract the main source of this effect in the experiment, both groups of

subjects inspect both programs.� Presentation effects may occur since both sets of subjects inspect the programs in the

same order. It is believed that if such an effect exists, it issymmetric between both sets

of subjects, and that the effect presents less risk than the plagiarism effect possible when

the order of presentation is reversed for one set of subjects.� Plagiarism was a concern in our experiment since the group phase of each experimental

run took place one week after the individual session, hence providing an opportunity

for undesired collaboration among subjects. This was mitigated by retaining all paper

materials between phases. With the same purpose in mind, data from the tool regarding

the individualphases was extracted immediately after eachsession. Furthermore, access

to the tool and any on-line material was also denied. Any plagiarism effect between

groups would be noticeable by any group presenting an above average meeting gain.

No such groups were detected.� Boredom may have affected the results. Subjects were asked to perform a total of

six inspections. Although these were spread over ten weeks,it is likely that subject

enthusiasm was waning towards the end of the experiment. On the other hand, the use

of the tool may have provided some novelty to mediate this factor.

Threats to external validity can limit the ability to generalise the results of the experiment

to a wider population, in this case actual software engineering practice. The following were

considered:

www.manaraa.com

SECTION 5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 92

Program analyse.cc graph.cc
Section 1 2 1 2
Method Tool Paper Paper Tool
Subjects 22 21 22 21
Mean 7.68 7.76 6.64 6.00
St. Dev. 1.55 1.92 1.43 2.05
St. Error 0.33 0.42 0.30 0.45
F Ratio 0.02 1.40
F Prob. 0.88 0.24

Table 5.1: Analysis of variance of individual defect scores.� The subjects involved in the experiment may not be representative of software engi-

neering professionals. This was unavoidable since the choice of subjects was limited by

available resources.� The programs and defects used may not be representative of the length and complexity

of those found in an industrial setting. The programs used were chosen for their length,

allowing them to be inspected within the time available. However, the amount of time

given to inspect each program was representative of industrial practice quoted in popular

inspection literature.� The inspection process used may not correspond to that used in industry, in terms of

process steps and number of participants. For example, the process used did not involve

the author presenting an overview of the product, giving no context for the inspection.

A rework phase was also not used. However, the detection/collection approach used in

the experiment is a standard process [41].

These threats are typical of many empirical studies, e.g. [62, 99]. They can be reduced

by internal and external replication of the experiment, with other subjects, programs and pro-

cesses.

5.2.3 Results and Analysis

Defect Detection

The raw data from the experiment can be found in Appendix E.1.1. Table 5.1 presents

a summary of the data and the analysis of variance of the individual phases of both inspec-

tions. For each program, the method used by each section of subjects is shown, along with

the number of subjects in that section and the mean number of defects found in the program.

www.manaraa.com

SECTION 5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 93

Program analyse.cc graph.cc
Section 1 2 1 2
Method Tool Paper Paper Tool
Groups 7 7 7 7
Mean 10.86 10.71 9.57 8.86
St. Dev. 0.69 0.95 1.27 1.07
St. Error 0.26 0.36 0.48 0.40
F Ratio 0.10 1.29
F Prob. 0.75 0.28

Table 5.2: Analysis of variance of group defect scores.

The standard deviations, standard errors andF ratios and probabilities are also shown. For

analyse.cc , it is obvious that there is very little difference in performance, and this is con-

firmed by the analysis of variance. Forgraph.cc , the section using paper-based inspection

appear to outperform that using the tool, although this difference is not significant. In both

cases the null hypothesis concerning individuals cannot berejected.

Table 5.2 presents a summary of the data and the analysis of variance of the group phases

of both inspections. These results follow the same pattern as for individual: analyse.cc

provides very similar results between methods, whilegraph.cc provides a larger difference,

but which is not statistically significant. Again, the null hypothesis as applied to groups cannot

be rejected.

Under further investigation, the data from the individual phase of thegraph.cc inspec-

tion failed the Levene test for homogeneity of variances. This is probably due to the increased

difficulty of graph.cc compared withanalyse.cc , discussed next. However, the ro-

bustness of theF test is well documented. For example, Boneau [10] has studied the effects

of violating the assumptions which underlie thet test, and generalised these results to theF

test. Provided samples sizes are sufficient (around 15) and virtually equal, and a two-tailed

test is used, non-homogeneity of variances should not causedifficulties. A similar conclusion

is presented by Edwards [34]. As a safeguard, the Kruskall-Wallis non-parametric test was

applied to all four sets of data, and gave results similar to those for the parametric tests, with

no significance.

The data was analysed for any effect stemming from the order in which the methods

were used and for any difference caused by the two programs. The results are shown in

Table 5.3. There proved to be no significant difference between subjects who used the tool

first and those who used paper first. However, the results indicated a significant difference in

www.manaraa.com

SECTION 5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 94

Effect F Ratio F Prob.
Order 0.34 0.56
Program 33.78 �0.01
Order�Program 2.20 0.15

Table 5.3: Analysis of variance of method order and program.

the difficulty ofanalyse.cc compared withgraph.cc . This was also supported by one of

the post-experiment questionnaires (described in more detail later in this section). The greater

difference in performance withgraph.cc may imply that tool-based inspection becomes

less efficient as the material under inspection becomes morecomplex. This could be due to

the use of the tool interfering with the cognitive task of defect detection. Finally, the data was

analysed for any effect from the order in which the methods were used combined with the two

different programs. No significant result was found.

The next set of data to be analysed concerned the detection frequencies of individual

defects. Comparing the frequencies achieved by each methodwould allow the discovery of

defects which tool users found particularly easy or difficult in comparison with paper-based

inspection. This might then indicate benefits of the tool, orways in which the tool could be

improved. It should be noted, however, that due to the natureof the data in some cases these

differences will be due to natural variation, and hence do not correspond to any underlying

effect. Therefore, although examining the data at this level is useful, caution must be exercised

to avoid hypothesising about effects which do not exist.

Figure 5.1 summarises the frequency with which each defect was found inanalyse.cc

during the individual phase. In most cases there is no great difference between the scores

achieved with the tool compared to those using paper. Considering the four defects with the

largest differences (1, 4, 7, and 8), there is no clear indication why such differences exist.

Defect 1 is an array indexing error, defect 4 concerns outputappearing at the wrong point in

the program, defect 7 concerns missing functionality and defect 8 is a failure to initialise an

array. In theory, defect 8 should be found by all subjects, since it is explicitly covered by a

checklist item. The difference may indicate that it is more difficult to use the on-line checklist

(lack of screen space). On the other hand the low scores pointto an an overall lack of checklist

use. Hence, the promotion of checklist usage may be a means through which tool support can

increase inspection efficiency.

Figure 5.2 shows the frequency of detection for the group phase of theanalyse.cc

inspection. The largest difference is for defect 3 with onlyone tool-based group finding it,

www.manaraa.com

SECTION 5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 95

Defect

12
11
10
9
8
7
6
5
4
3
2
1

D
et

ec
tio

n
R

at
e

(%
)

100

80

60

40

20

0

Paper

Tool

Figure 5.1: Summary defect detection data foranalyse.cc (individuals).

compared to three paper-based groups. The reason for this becomes apparent by considering

the individual results. Only two tool users found this defect, each belonging to distinct groups.

One group reported the defect, while the other did not. In contrast, three paper-based subjects

found the defect, each of whom belonged to a different group.All three groups managed to

report this defect. Given a different makeup of groups, thisdifference could have been reduced

to zero.

Figure 5.3 summarises the defect detection frequency for the individual phase of the in-

spection ofgraph.cc . The largest difference appears for the third defect, whichwas found

by 90.9% of the paper-based inspectors, yet only 61.9% of thetool users. This alone represents

35% of the overall difference between tool and paper. This defect concerns a missing function

call, which means the program does not print some output specified by the specification. In

fact, this is a very easy defect to detect using the search facility of the tool. By entering the

function name as the target of the search, the inspector can find calls to that function, almost

guaranteeing that the defect will be found. However, although the mechanics of the find facil-

ity were explained, the use of the tool to detect such defectswas not explicitly taught to the

www.manaraa.com

SECTION 5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 96

Defect

12
11
10
9
8
7
6
5
4
3
2
1

D
et

ec
tio

n
R

at
e

(%
)

100

80

60

40

20

0

Paper

Tool

Figure 5.2: Summary defect detection data foranalyse.cc (groups).

subjects. The reason for subjects performing paper-based inspection finding this defect more

easily is not clear. A difference of just over 20% in favour ofpaper-based inspection occurs

for defect 5 (variable names X and Y are transposed), but there is no obvious reason for this

difference. The same applies to defect 11 (an incorrect calculation), which has a difference of

just over 20% in favour of the tool.

The defect detection data for the group phase of the inspection of graph.cc is shown

in Figure 5.4. This time defect number 8 has the largest difference between methods. The

data for the individual phase already shows that this is the most difficult defect to find. The

relatively poor performance of the tool can be explained by the fact that every individual

who found the defect belonged to a separate group, giving thepaper-based groups a 3 to 1

advantage. Another paper-based group also managed to find the defect at the meeting, giving

4 to 1. Finally, the single tool user who actually found the defect either failed to mention it at

the group meeting or was talked out of it, since that group didnot report it. A similar trend is

apparent with defect 9, with 4 individual tool users mappinginto 4 groups, and 7 paper users

mapping into 6 groups. Again, these results show group makeup has an effect on the group

www.manaraa.com

SECTION 5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 97

Defect

12
11
10
9
8
7
6
5
4
3
2
1

D
et

ec
tio

n
R

at
e

(%
)

100

80

60

40

20

0

Paper

Tool

Figure 5.3: Summary defect detection data forgraph.cc (individuals).

result. Different group makeups could have reduced both these differences to 1, or it may have

increased the difference.

The overlap between group members' defect lists can have a fairly significant effect on

the group score. If there is a large overlap (i.e. individuals have many defects in common)

the group score is likely to be lower than that of a group with asmall overlap (individuals

have few defects in common, hence the total score is higher).Groups with individuals whose

defect lists have a greater overlap are disadvantaged, eventhough individual scores may be

very respectable. On the other hand, if more than one participant reports an individual defect,

the risk of that defect becoming a meeting loss may be reduced.

False Positives

In addition to the number of defects found by each subject, the number of false positives

reported was also measured. False positives are items reported by subjects as defects, when

in fact no defect exists. It is desirable to investigate whether tool-supported inspection alters

the number of false positives reported, since an increase would reduce the effectiveness of

www.manaraa.com

SECTION 5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 98

Defect

12
11
10
9
8
7
6
5
4
3
2
1

D
et

ec
tio

n
R

at
e

(%
)

100

80

60

40

20

0

Paper

Tool

Figure 5.4: Summary defect detection data forgraph.cc (groups).

the inspection. On the other hand, if use of the tool in some way suppressed false positives,

the efficiency of the inspection would be increased, with less time wasted on discussing these

issues.

Table 5.4 presents the analysis of variance for the false positive data from the individual

phases of each inspection. While the tool appears to providean improvement over paper for

analyse.cc , this difference is not significant. On the other hand, the means forgraph.cc

are almost identical, and this is confirmed by the ANOVA test.The analysis of variance for

the false positive data of the group phases is shown in Table 5.5. For both programs, there is

no difference between the tool-based and paper-based approaches.

Examination of the false positives revealed no discernibledifference in those produced by

tool-based inspection as compared with paper-based. The only point of interest was that some

of the false positives which occurred were defects which hadoccurred in training material.

Presumably the subjects had memorised these as defect typesand submitted them as defects

without checking if they actually occurred, in the hope of increasing their score.

www.manaraa.com

SECTION 5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 99

Program analyse.cc graph.cc
Section 1 2 1 2
Method Tool Paper Paper Tool
Subjects 22 21 22 21
Mean 3.59 4.19 3.23 3.24
St. Dev. 1.943 1.94 1.9 2.14
St. Error 0.41 0.42 0.4 0.47
F Ratio 1.02 �0.00
F Prob. 0.32 0.99

Table 5.4: Analysis of variance of individual false positives.

Program analyse.cc graph.cc
Section 1 2 1 2
Method Tool Paper Paper Tool
Groups 7 7 7 7
Mean 3.57 3.14 2.14 2.43
St. Dev. 1.72 1.46 1.34 2.22
St. Error 0.65 0.55 0.51 0.84
F Ratio 0.25 0.08
F Prob. 0.62 0.78

Table 5.5: Analysis of variance of group false positives.

www.manaraa.com

SECTION 5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 100

Program analyse.cc graph.cc
Section 1 2 1 2
Method Tool Paper Paper Tool
Groups 7 7 7 7
Mean 0.29 0.14 0.43 0.57
St. Dev. 0.49 0.38 0.79 0.53
St. Error 0.18 0.14 0.30 0.20
F Ratio 0.38 0.158
F Prob. 0.55 0.698

Table 5.6: Analysis of variance of meeting gains.

Program analyse.cc graph.cc
Section 1 2 1 2
Method Tool Paper Paper Tool
Groups 7 7 7 7
Mean 0.14 0.14 0.71 0.71
St. Dev. 0.38 0.38 0.49 0.95
St. Error 0.14 0.14 0.18 0.36
F Ratio 0 0
F Prob. 1.00 1.00

Table 5.7: Analysis of variance of meeting losses.

Meeting Gains and Losses

The final set of data to be analysed concerns meeting gains andlosses. Synchronous meetings

are frequently cited as necessary because it is believed that factors such as group synergy can

improve the output of the meeting, manifested in defects being found at the meeting which

have not been found during the individual phase (providing defect detection, and not just

defect logging, is an objective of the meeting). On the otherhand, defects may be lost when

a participant fails to raise a defect found during the individual phase. It was hypothesised

there would be no difference between tool and paper-based methods for both gains and losses.

Table 5.6 shows the analysis of variance of meeting gains, while Table 5.7 shows the analysis

of variance of meeting losses for group meetings in both inspections. It is clear there is no

significant difference between methods.

Overall, gains and losses are insignificant. The small meeting gain indicates that subjects

were not performing extra defect detection at the group meeting, despite being told that this

was an opportunity which could be exploited. The small meeting loss perhaps indicates a lack

www.manaraa.com

SECTION 5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 101

of discussion of each defect, or (more likely) subjects were“playing safe” by putting every

reasonable defect into the group list. On a per-defect basis, there are two possibly significant

occurrences. Ingraph.cc defect 4 appears as a meeting loss for three groups and defect10

appears as a meeting loss for four groups. Both are split evenly between methods. Why these

defects have more significant meeting losses is not clear, other than they appear to be two

of the hardest defects to find. Hence, subjects may be easily persuaded they are not correct

defects.

Debriefing Questionnaires

During the course, subjects were asked to complete four questionnaires. The first two were

given after the full practice using ASSIST, one after the individual inspection (Questionnaire

1, 67.4% response rate) and one after the group meeting (Questionnaire 2, 48.8% response

rate). These questionnaires focussed on eliciting qualitative feedback on ASSIST. Two further

questionnaires were then presented, one after the first phase of the experiment was complete

(Questionnaire 3, 93% response rate), the other after the second phase of the experiment was

complete (Questionnaire 4, 93% response rate). These questionnaires concentrated on such

topics as the overall difficulty of the task and the relative merits of paper-based and tool-based

inspection. The full text of the questionnaires can be foundin Appendix D.11. This section

presents some results from these questionnaires.

Questionnaire 1 One concern when moving to tool-based inspection is the easewith which

the user can navigate around the document, since doing so on paper is very natural. When

asked to rate the difficulty of moving around the document 3.4% of the subjects found it very

difficult, 20.7% found it difficult, 24.1% found it average, 37.9% found it easy and 13.8%

found it very easy. Overall, most people seemed to have no difficulty, but around 25% of

subjects finding some difficulty is concerning.

A second factor, discussed previously, is the number of windows which each user has to

have open at one time. When asked how the number of open windows affected their inspection

efficiency, 13.8% of subjects said it improved, 31% said it had no effect and 55.2% thought

it reduced their efficiency. The conclusion here is obvious:the number of open windows is

definitely a problem. One possible solution is the use of a “virtual window manager”, which

gives users a number of workspaces which they can move between with single keystrokes.

This allows all windows to be open full-sized without overlaying each other. The use of a

virtual window manager was not common among the subjects.

Finally, the question “Compared with manual (paper-based)inspection, do you feel that

www.manaraa.com

SECTION 5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 102

computer-based inspection is more efficient, less efficient, or about equally efficient?” was

asked, and subjects were also asked to give reasons. 55.2% ofrespondents deemed it less

efficient, 26.6% thought it equally efficient, and 17.2% found it more efficient. The majority

of negative responses here concern the number of windows used and, to a lesser extent, the

speed of the tool. Positive responses were generally given by those who found it easier to

manipulate their defect lists.

Questionnaire 2 Subjects were asked to rate the ease-of-use of the defect proposal system.

14.3% of subjects found it difficult to use, 38.1% found it average, 28.6% found it easy to

use, while 19% found it very easy to use. The voting mechanismprovided by ASSIST was

deemed to be useful. 52.4% of subjects found it helped resolve issues, 33.3 % said it had no

effect, and only 14.3% thought it hindered issue resolution.

Subjects were asked to rate the effect ASSIST had on their group meeting. 4.8% said it

had a large negative effect, 19% said it had a negative effect, 38.1% said it had no effect, and

38.1% said it had a positive effect (no subjects said it had a large positive effect). Overall,

the use of a tool would seem to have enhanced the meeting. Whenasked whether a tool-

based meeting is more efficient than a paper-based meeting, 38.1% of subjects said it was less

efficient, 47.6% said it was equally efficient, while only 14.3% said it was more efficient.

Questionnaire 3 Subjects were first questioned about their understanding ofthe code. 5%

of subjects understood 41-60% of the program, 25% understood 61-80% of the program, with

the remaining 70% claiming to understand 81-100% of the program. Only 5% of subjects

thought there was not enough time to inspect the code, 87.5% thought they were given the

correct amount of time, and 7.5% thought there was too much time.

The group meeting was found to be a useful part of the inspection for most subjects.

When asked if their understanding of the program was changedat the meeting, 2.5% said

their understanding was confounded, 35% said their understanding was unchanged, but 62.5%

said their understanding was increased. This finding supports the common view that meetings

are a useful education mechanism. When asked to guess the meeting gain for their inspection,

7.5% said that no gains had been made, 40% said that one or two extra defects had been found,

47.5% said that 3-5 extra defects has been discovered, and 5%estimated that more than five

had been found. Subjects obviously believed that group discussion of the program helped find

more errors, although these estimates seem very optimistic. Subjects perhaps misunderstood

the phrase “meeting gains”, thinking it included defects found by other inspectors which they

themselves had not found. Subjects were also asked to estimate their meeting loss. 27.5%

www.manaraa.com

SECTION 5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 103

said that no losses had occurred, 35% believed that one or twodefects had been lost, 27.5%

estimated that 3-5 defects had been lost and 10% believed that more than five defects had

gone astray. In general, these estimates seem high (especially those who said more than five).

Again, there may be misunderstanding of terminology – some subjects may have assumed

“meeting loss” included defects discovered during individual preparation but discarded at the

meeting because they were genuinely incorrect.

Subjects were asked to rate their overall group performancein terms of the percentage of

defects which they believed their group had found. 2.5% believed they had only found 21-

40% of the defects, 30% thought they had found 61-80%, and 67.5% believed they had found

81-100% of the total defects. In general, subjects seemed toslightly underestimate their group

performance, but not by much.

Finally, subjects who used ASSIST for this phase of the experiment were asked to rate

the usability of ASSIST, with 90.9% of the tool users responding. 10% found it extremely

usable, 50% found it fairly usable, 35% found it average, and5% thought it fairly unusable

(no subjects found it totally unusable).

Questionnaire 4 As with Questionnaire 3, subjects were first asked about their understand-

ing of the program. 2.5% understood only 21-40% ofgraph.cc , 20% understood 41-60%

of the program, 37.5% understood 61-80% of the program, and only 40% understood 81-

100% of the code. Comparing this result with that from theanalyse.cc inspection there

is an overall reduction in understanding of the program by the subjects. When asked if suf-

ficient time was given to inspect the program, 35% of subjectsthought that insufficient time

was given, 62.5% thought that the time given was about right,and 2.5% thought there was too

much time. Comparing this with the result from theanalyse.cc inspection, it is obvious

that more people found it difficult to inspect the program in the time given. Finally, the sub-

jects were asked to rate the complexity ofgraph.cc compared toanalyse.cc . 49% of

subjects believedgraph.cc to be much more complex, while 44% believed it to be slightly

more complex, and only 7% considered it to be of similar complexity toanalyse.cc . These

results all support the earlier statistical analysis concerning the difference between programs.

Once again, the group meeting was found to be useful. 25% of subjects reported no change

in their understanding of the program, while 75% said their understanding was increased. In

terms of meeting gains, 5% of subjects thought no gains had been made, 60% thought one or

two extra defects had been found, 22.5% reported a gain of 3-5defects, and 12.5% thought

more than five extra defects had been found at the meeting. In terms of meeting loss, 72.5%

of subjects believed no losses had occurred, 17.5% believedone or two losses had occurred,

www.manaraa.com

SECTION 5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 104

10% reported losses of 3-5 defects, with no-one reporting more than five losses. These figures

are more realistic than their counterparts from Questionnaire 3, although still higher than the

true figures.

Tool users were asked to rate the usability of ASSIST, with 100% of users responding.

4.8% found it extremely usable, 33.3% found it fairly usable23.8% found it average, 33.3%

found it fairly unusable and 4.8% found it totally unusable.This result is poorer than that

for those who used ASSIST to inspectanalyse.cc , and may indicate that the difficulty of

graph.cc affected users perception of the tool.

Questionnaire 4 ended with some general questions about subjects' overall performance.

When asked to rate their understanding of software inspection, 7.5% of subjects believed they

understood it completely, 32.5% understood it well, 55% understood it reasonably well, while

5% were slightly unsure. Concerning their knowledge of C++,80% of subjects believed it to

be adequate for the tasks set and 20% believed it to be inadequate.

Subjects were then asked several questions comparing tool-based and paper-based inspec-

tion. When asked to compare their use of the checklist duringeach inspection, 37.5% stated

they used it more during paper-based inspection, 52.5% usedit about the same amount with

both methods and only 10% used it more with ASSIST. This is probably due to the lack of

screen space during a tool-based inspection. Of the three large documents which inspectors

must use (product, specification and checklist), the checklist was probably regarded as the

least important by subjects, and hence its window would be left closed most of the time.

Subjects were asked to indicate their preference for screen-based and paper-based docu-

ments. 15% stated a preference for screen-based, 20% had no preference and 65% preferred

paper. This overwhelming preference for paper is undoubtedly due to its familiarity and per-

ceived flexibility (e.g. ability to write comments on code, ability to spread documents out as

required, etc.).

The question “Overall did you feel you performed better during individual inspection

using manual (paper-based) inspection or ASSIST, or were you equally effective with both

methods?” was asked. 39% of respondents claimed to have performed better using paper-

based inspection, 39% had no preference, while 22% claimed to have performed better with

ASSIST. The low preference for ASSIST probably stems from the familiarity of paper, which

people are comfortable with. It is possible that extended training with ASSIST would increase

its user acceptance. When the same question was asked with regard to the group meeting, the

number of people preferring paper-based inspection dropped to 19.5%, the number with no

preference increased to 61% and the number preferring ASSIST dropped to 19.5%. This

change is probably due to the perception of the group meetingbeing an easier task than the

www.manaraa.com

SECTION 5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 105

individual phase. Collating defect lists is presumably easier than finding the defects in the

first place, therefore the method used to perform the collation task is less important. There is

no clear correspondence between preferences for individual and preferences for group: some

people who expressed a preference for paper-based individual inspection then went on to

select ASSIST for the group meeting, others always preferred paper-based or always preferred

ASSIST, yet others moved from preferring paper-based to no preference or from preferring

tool-based to no preference.

The qualitative statements indicating preference made interesting reading. People who

indicated a preference for paper-based inspection generally liked the tactile nature of paper,

allowing them to scribble notes on the code itself. Others simply preferred reading code

on paper instead of on-screen. A number of people found it awkward moving between the

code, specification and checklist windows of ASSIST. While the scribe's burden is reduced in

ASSIST, one subject commented that it wastooeasy to propose defects and put them into the

master defect list, and therefore the phrasing of the defectwas not usually considered as much

as when the scribe had to manually write it down.

People who preferred ASSIST pointed out the following advantages. It was easy for the

group as a whole to see exactly where individuals' defects were, and it was also considered

easier to compile the master defect list, giving more time for the group to search for further

defects. Others found it easier to traverse the code, and a number of people preferred the

defect creation/editing facilities. The voting method forresolving defects was also considered

to be useful.

People who expressed no preference also made interesting points. For example: “[It]

was easy to look through code when it was on paper, but ASSIST has its advantages such as

searching through the document for keywords...[During group meetings] paper-based inspec-

tion provoked more discussion, [but] ASSIST made it easier for [the] reader”.

5.2.4 Conclusions

The results from this experiment show that a straightforward computer-based approach to in-

spection does not degrade the effectiveness of the inspection in any significant way. There

is no significant difference in the number of defects found. The number of false positives

reported and the amount of meeting gains and losses were alsomeasured, and again no sig-

nificant difference was found. Although the experiment madeuse of student subjects and

inspected short pieces of code, the inspection process usedwas realistic and the rate of in-

spection was typical of industry.

Some lessons about the facilities provided by ASSIST were learned. The defect proposal

www.manaraa.com

SECTION 5.2: COMPARINGBASIC TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 106

and voting system was liked by subjects, and hence could be left unaltered. The speed of the

tool appeared to be a concern among users, and methods of improving performance had to be

investigated. Some facilities were obviously not being used to their full extent, such as the

find facility. Hence, proper training is vital to ensure subjects are competent with the tool.

Suggestions for features to be added to ASSIST were also produced by the experiment.

The first concerns checklist usage. The questionnaire results indicated subjects made more use

of the checklist during paper-based inspection. An aspect of the tool which could therefore be

improved is the ease of use of the checklist. It was also noticed that subjects using paper-based

checklists marked items on the checklist as they completed them. Devising an equivalent of

this for on-line checklists is therefore another line of research. Navigation around the docu-

ment was deemed to be easier on paper. Again, this is a featurewhich could be improved in

the tool. The number of windows used by the tool was a concern for most subjects, since all

the windows could not be open on the screen at one time. This could be improved by min-

imising the number of windows used, making the windows more compact, providing resizable

windows and providing facilities for moving between windows. In fact, the user interface may

have had a biasing effect on the experiment if subjects disliked particular aspects of the tool.

It may be that the effect of the interface of the tool obscuresthe comparison of methods.

If the inspection efficiency cannot be increased by finding more defects, perhaps the num-

ber of false positives can be reduced. This would increase the efficiency of the inspection

meeting, as well as reducing the amount of time required by the author to tackle the defect

list. Many false positives found in the experiment were due to subjects' uncertainty concern-

ing aspects of C++. A standard C++ reference as part of the tool may help reduce this type of

false positive.

Having established that the concept of tool supported inspection is not fundamentally

flawed, various methods of increasing the efficiency of inspection, based on the results of this

experiment, were investigated. The next chapter describestheir implementation.

www.manaraa.com

Chapter 6

Enhancing the Software Inspection

Process

H
aving compared basic tool-supported inspection with paper-based inspection and found

no significant difference between the two, the next stage wasto investigate methods of

enhancing the efficiency of tool-support. This investigation was based on feedback from the

comparison experiment and requirements alluded to in various areas of the literature.

To begin with, navigation within documents and the number ofwindows used by the

tool were found to be problematic during the first experiment. Automatic cross-referencing

was thought to be a solution to these problems. Essentially,this facility would provide links

between related areas of documents. Instead of scrolling a window to find the correct place,

or finding the correct window, the link would allow the user tomove directly to the relevant

part.

Checklist usage during the first experiment appeared to be poor. Two features were de-

signed to address this issue. Active checklists would allowusers to mark off items as they

were used, something which subjects were observed to perform with paper versions of the

checklist. Active checklists could also make use of the cross-referencing facility to provide

links between document features and appropriate checklistitems.

As some of the false positives produced by subjects in the experiment appeared to stem

from weaknesses in C++ knowledge, an on-line reference guide was an obvious addition.

Combining this with an active C++ checklist and the cross-referencing mechanism could pro-

vide a complete C++ inspection environment. In this environment, features of C++ code could

be automatically linked to relevant checklist items and reference entries.

www.manaraa.com

SECTION 6.1: AUTOMATIC CROSS-REFERENCING 108

Finally, a major task at an inspection group meeting is collating multiple defect lists into

a single master list. Automating this task could reduce the length of the meeting, or even

obviate the need for such a meeting. This was the final area examined.

The above features were implemented in a new version of ASSIST, with the intention of

comparing the enhanced version with paper-based inspection. This chapter describes these

features in detail.

6.1 Automatic Cross-referencing

The major difference between computer-based and paper-based inspection is that documents

are now presented on-screen instead of being distributed aspaper copies. Available screen

space is a limitation to the usability of an inspection tool.Inspection requires the participant to

frequently move between several documents, yet most displays in common use are not capable

of simultaneously displaying several windows of sufficientsize to be useful. This means that

windows have to be frequently closed and reopened, or restacked, hindering the inspectors

performance. This type of “window overload” was reported inquestionnaire responses from

subjects involved in the comparison experiment.

A feature which may help mitigate this problem is a cross-referencing system. Essentially,

this would link related parts of each document together. If designed properly, it could provide a

means of navigating within documents, as well as cross-referencing between documents. The

major obstacle to such a system is the variety of document types that have to be dealt with:

the strategy applied to English language documents is obviously different to that applied to

source code, and even different source languages will have different strategies.

The open architecture implemented in ASSIST has already been described. It allows

document-type specific browsers to be easily added, provided they comply with a well-defined

interface. This feature provides the means to solve the cross-referencing problem: each

browser can provide its own means of deriving references, and the standard interface can

be used by the system to integrate and access these references.

The scheme developed consists of two stages. The first stage occurs when a new inspec-

tion is started. At this point each document to be used in the inspection has cross-references

generated for it by the appropriate browser. These references are stored as part of the inspec-

tion data. The second stage occurs when an inspector uses thetool to perform part of the

inspection. At that point, the references for all the documents used during the current phase

are combined to form a cross-reference table. This means that inspectors are not given ref-

erences to documents which are not in use during this phase. This cross-reference table is

www.manaraa.com

SECTION 6.1: AUTOMATIC CROSS-REFERENCING 109

Figure 6.1: The ASSIST simple browser, showing a list of cross-references.

available to any browser through the standard interface, allowing lookups to be performed.

How this information is used is entirely dependent on the browser in question, but the browser

interface provides a call which, when given a document name and position, brings the appro-

priate window to the front of the screen (opening it if required), and scrolls the document to

that position.

As an example, consider the simple browser provided in ASSIST. This is intended to be

used for displaying ASCII source documents, more specifically English language documents.

The cross-reference generator for this browser starts by dividing the text into words. Each

word is then checked against a stop list of information-freewords (such as “a” and “the”),

and discounted if it appears. Many stop lists have been described, ranging from a few tens of

words to hundreds of words [47]. The stop list used was [39]. If the word does not appear

in the stop list it is stemmed to find the root of the word. Stemming allows words which

are related but not identical to be linked [47]. For example,calculationwould also reference

calculatesandcalculated. The stemming algorithm used was the popular Porter algorithm

[100]. The root, the whole word and its position are then added to the list of cross-references.

www.manaraa.com

SECTION 6.2: ACTIVE CHECKLISTS 110

In use, selecting a word in the document brings up a list of references to similar words in this

and other documents. Selecting a reference moves the document to the appropriate position

or opens another browser, as required. Figure 6.1 shows the simple browser and a list of

cross-references.

6.2 Active Checklists

Most software inspections make use of checklists. In its simplest form, a checklist consists of

a list of items which the inspector must investigate. Each item is usually a simple statement

or question designed to highlight typical ways in which defects may manifest themselves in

the document under inspection. Checklists can be general, or they can be specific to a single

document type, notation or language.

In their traditional guise, there is no requirement to actually answer the question or indicate

completion of the item. The checklist used for the experiment described Section 5.2 is an

example of this. In fact, many of the paper checklists returned by subjects after the experiment

had markings obviously showing which items had been applied. A natural extension of this

idea is to present the checklist in such a way as to require each item to be completed. This

type of checklist has been implemented to a limited extent inInspeQ [66]. Details are sparse,

however, and items can only be marked as completed.

Checklist items can obviously be written which require morethan binary answers. Active

Design Reviews [95] make use of questionnaires which inspectors have to fill in and discuss

with the designer. It is obvious that answers may include numbers, sentences, dates, etc. In

general, each checklist item would require the inspector toperform a task to answer it, the

performance of which may lead to finding defects. Presentingthese items on-line and storing

the answers provided by each inspector is an obvious area which can be supported by an

inspection tool.

A final possibility when checklists are presented on-line isto link them directly to areas

of the document to which they may apply. This would promote checklist usage, since appli-

cable checklist items can be easily found by users. For example, in a C++ checklist there may

be items which must be applied to allfor loops in the code under inspection. Sections 6.1

discussed a generic mechanism for cross-referencing between arbitrary documents. This can

be used as a means to achieve references between checklist items and areas of the document.

It can be implemented by allowing a keyword to be associated with each checklist item. The

browser which displays the document can then“plant” corresponding keywords in appropriate

places within the document. To continue the example, the C++checklist items concerning

www.manaraa.com

SECTION 6.2: ACTIVE CHECKLISTS 111

checklist ::= checklistsection+
checklistsection ::= heading checklistitem+
checklistitem ::= [subheadingjmultijopenjnumericjdatejcheck]

Figure 6.2: The format of a checklist.

for loops would have a unique keyword. The browser displaying the code would then as-

sociate this keyword with each occurrence of thefor loop, with the result that the system

would automatically provide links between the checklist and code. The system would work in

both directions: for each checklist item, all appropriate areas of the document could be listed,

and for each area of the document all appropriate checklist items could be accessed.

To allow checklists to be easily created, a specific definition language was derived. A

checklist is considered to consist of a number of sections, each of which consists of a heading

plus one or more individual checklist items. A checklist item can be one of the following:� Subheading: A subheading simply allows the checklist to be grouped in logically re-

lated sections.� Multi : A multi is a multiple-choice question, where two or more predefined responses

are supplied for the inspector to select from.� Open: An open item allows textual answers to be supplied.� Numeric: A numeric item is used when the answer is expected to be an integer.� Date: Requires the answer to be in the form of a date.� Check: A check item can only be marked complete.

The basic format of a checklist is defined in Figure 6.2. Each item type is defined in

Figure 6.3, along with the definition of the checklist heading. The notation used is identical to

that used in describing IPDL.

The checklist heading consists of the keywordheading followed by the heading itself.

A subheading has a similar format. A multi consists of the keyword multi followed the

question and two or more responses. An open question requires the keywordopen , followed

by the question and the maximum length of the answer required. In the same manner, a

numeric question requires the keywordnumeric , followed by the question itself and the

maximum answer length. Furthermore, the units following the answer may be specified. A

www.manaraa.com

SECTION 6.2: ACTIVE CHECKLISTS 112

heading ::= heading string keywordopt
subheading ::= subheading string keywordopt
multi ::= multi question response response+ text answeropt keywordopt
open ::= open question length textansweropt keywordopt
numeric ::= numeric question length unitopt numericansweropt keywordopt
check ::= check question checkansweropt keywordopt
date ::= date question dateansweropt keywordopt
length ::= length integer
unit ::= unit string
text answer ::= answer string
numericanswer ::= answer integer
dateanswer ::= answer DD“ / ”MM“ / ”YYYY
checkanswer ::= answer [yes jno]
question ::= string
response ::= string
string ::= “ ' ” character+ “ ' ”
character ::= Any printable character or white space.
integer ::= Any standard integer.

Figure 6.3: The definition of checklist items.

date question requires the keyworddate followed by the question. Similarly, a check item

only requires the keywordcheck followed by the question to be specified.

Each item may have a “correct” answer associated with it. This answer may be used for

ensuring the checklist has been completed correctly. The answer is indicated by the keyword

answer followed by the answer itself, in the appropriate format. Finally, each item may have

a keyword associated with it. This keyword is designed to be used for cross-referencing with

other documents, as described above.

This checklist language was implemented in ASSIST as the Checklist Browser. It is shown

in Figure 6.4 displaying the C++ checklist used in the first comparison experiment. In this

case, each item is a simple check, which can be marked as completed when the inspector

has finished with that item. Items requiring more complex answers have associated spaces in

which to type the answers. Clicking on an item gives a menu with cross-references for that

item. Selecting a reference brings the appropriate window to the front, scrolls it to the correct

position, and highlights the referenced item, just as described in Section 6.1.

www.manaraa.com

SECTION 6.3: A C++ INSPECTIONENVIRONMENT 113

Figure 6.4: An example of an active checklist.

6.3 A C++ Inspection Environment

The cross-referencing system and active checklists described so far are applicable to inspec-

tion of any document type. With a view to repeating the paper vs. tool experiment, their use

in inspecting C++ was investigated. The browser used for displaying the code under inspec-

tion in the original experiment was a simple generic browserwith no specific facilities. A

C++ specific browser, with knowledge of the language and syntax, was an obvious avenue to

explore. Feedback from the first experiment also gave information on ways to improve the

system in general. When designing this browser, the following features were deemed to be

necessary:� Links between variable declarations and usages. This wouldallow users to easily de-

termine the type of variables, how they have been initialised, and where in the program

they are used, hence supporting defect detection.� Links between function declarations and usages. Users could determine whether func-

tion calls are being made correctly, and where in the programeach function is used.

www.manaraa.com

SECTION 6.3: A C++ INSPECTIONENVIRONMENT 114

Again, this would help support defect detection.� References to appropriate checklist items. This would promote checklist usage, a per-

ceived weakness in the first version of ASSIST.� An on-line guide to C++, preferably linked to the code. The type of false positive

reported by subjects during the first experiment suggested aguide to C++ would be

useful.� Character-level annotation. The browser used in the first experiment could only annotate

a single line. The ability to annotate any contiguous block of text would allow more

precise positioning of defects.

To provide useful information about the code under inspection requires intelligent parsing

of the code. Since writing a C++ parser is a non-trivial task,a public domain C++ parser,

cppp [26], was used. This parser creates an abstract syntax graphof the program which

allows information about the major constructs in the code tobe more easily extracted.

For each variable and function in the source code,cppp assigns a unique identifier. This

identifier is placed in the syntax graph whenever the variable or function is referred to in

the source code. The C++ browser parses the tree looking for such identifiers and creates

references to them for the appropriate place in the source code. When completed, this gives a

complete cross-reference table for all functions and variables. To the user, this information is

available by clicking on a function or variable name. Doing so brings up a list of references to

all other uses of that object. Selecting a reference moves the browser to the appropriate place

and highlights the occurrence. The C++ parser also providesinformation about the types of

each variable, and this information is shown in the reference list. This allows inspectors to

easily decide whether implicit type conversion is happening during an expression, and whether

data is being lost as a result.

Creating references to checklist items is fairly straightforward. The checklist used in

the first experiment was rewritten in the checklist format described above. Each item in the

checklist was given a unique keyword. For each C++ feature inthe syntax graph, the C++

browser inserts the appropriate keyword in the reference list for the corresponding location

in the source code. For example, the C++ keywordswhile andfor have references to the

checklist items concerning the corresponding loop type, while all operators have links to the

items concerning order of evaluation, implicit type conversion and so on. Some checklist

items were also supplemented by supplying extra information concerning how to use the tool

to apply that item. For example, the item concerning 'dead code' had an extension suggesting

the use of the cross-referencing mechanism and the find facility.

www.manaraa.com

SECTION 6.3: A C++ INSPECTIONENVIRONMENT 115

Figure 6.5: The C++ reference, displayed using the Help Browser.

Another goal was to have some form of on-line C++ reference. Rather than incorporate

this directly into the C++ browser, a more generic form was chosen. Another browser was

created, known as the Help Browser. This browser implementsa subset of HTML tags and

allows a document to be presented as a series of sections and subsections, each of which

is displayed as single page. It also generates a contents page and allows keywords to be

associated with each page. This allows references between areas of code and pages in the

Help Browser. A short C++ guide was then written, with pages on major constructs, types

and keywords, and including information on the standard library. Each page has a keyword

associated with it. When the C++ browser parses the code under inspection, it inserts these

keywords into the reference list for appropriate places in the code, in the same manner as for

checklists. For example, if a#include directive refers to one of the standard libraries, the

keyword associated with that library is generated at the appropriate position. When awhile

loop is detected, the keyword for thewhile construct page is inserted. Therefore, when the

cross-reference data for the code and C++ guide are combined, pages in the guide provide

links to parts of the code to which they apply. Similarly, C++reserved words likefor and

www.manaraa.com

SECTION 6.3: A C++ INSPECTIONENVIRONMENT 116

Figure 6.6: The C++ browser.

while have links to the corresponding pages of the guide. The Help Browser displaying the

C++ guide is shown in Figure 6.5. This shows the page on theswitch statement, with a list

of references to other relevant pages in the reference, checklist items and appropriate sections

of the code under inspection.

The C++ browser creates all internal references, links to the checklist and links to the C++

reference with one pass through the syntax graph produced bycppp . Unfortunately,cppp

lacks some features to allow truly comprehensive cross-referencing. For example, whencppp

encounters a named constant it substitutes the value of the constant rather than leaving the

name. Hence, it is impossible to provide a link between the use of a constant and its declara-

tion. For the purposes of tool evaluation, these links can be(and were) inserted manually. A

more complete C++ parser would allow everything to be performed automatically.

Finally, several other enhancements were made. The browserused in the first experiment

could only annotate at the line level, with defect positionsbeing given as line numbers. To

allow more accurate defect positioning, it was deemed necessary to allow annotation at the

www.manaraa.com

SECTION 6.4: AUTOMATIC DEFECTL IST COLLATION 117

character level. Feedback from the first experiment also showed that subjects became confused

during the group meeting because the browser showed defectsbelonging to all participants,

and it was not clear who had prepared which annotation. Hence, another facility implemented

allowed users to choose between displayingall annotationson the code, only their annotations,

or no annotations at all. The C++ browser is shown in Figure 6.6. A list of references for the

declaration of the variableInputFile is shown. These include places in the code where the

variable is used and a checklist item.

6.4 Automatic Defect List Collation

The group meeting present in almost all inspection processes is expensive to set up and run,

requiring the simultaneous participation of three or more people. Some would argue that

their cost is unjustified and they should be replaced altogether. For example, Votta [118]

presents evidence that meeting costs outweigh their benefits and suggest their replacement by

depositions. Asynchronous inspection via a supporting tool is another proposed method for

replacing synchronous meetings, e.g. [83, 117]. Proponents of group meetings, on the other

hand, contend that the benefits of group meetings are not easily quantified. Education of new

inspectors is one quoted benefit, while synergy, found in many small group situations [105],

is another.

A major component of the group meeting is collating individual defect lists into a single

master list. To reduce the amount of effort required at the meeting, Humphrey [50] recom-

mends that the moderator should perform the collation before the meeting. The collated defect

list then becomes the agenda for the meeting. Although not particularly demanding, collat-

ing defect lists can be time consuming. This section describes automatic defect list collation

(auto-collation), designed to allow multiple lists of issues or defects to be combined into one

with duplicate entries automatically removed.

It is unlikely that duplicate items from different inspectors will be identical, hence some

form of approximate matching must be used. A defect or issue in ASSIST has several com-

ponents (Figure 6.7):� The title of the item.� The document in which this item occurs.� The position within the document where the item occurs.� A free-form text description of the item.

www.manaraa.com

SECTION 6.4: AUTOMATIC DEFECTL IST COLLATION 118

Figure 6.7: Editing an item in a list.� Up to three levels of classification.

When comparing items for duplicates, document name and position are considered together

as the position, the title and text description are considered together as the content of the issue,

and the classification is considered on its own. The mechanism used is to score items on their

similarity in each of these facets. If two items match with a score above a threshold, one of

the items is discarded.

In terms of position, the closer the physical locations of the two items, the higher the

score is given, with 0 representing no match and 1 representing identical positions. Items

occurring in different documents are given a score of 0. Positions in ASSIST are given as one

or more integers, separated by points if necessary. For example, a simple line number is given

as23. A specific character on that line may be23.12 . The scheme can be extended to as

many levels as required, and its hierarchical nature allowsit to be used for many document

types. For example, chapter and section numbering in English documents follows this scheme.

When performing a comparison, each component of the position is weighted according to its

importance, with leading numbers being more significant.

When comparing the contents of two items, the first step is to generate a list of words

occurring in each item. Any words appearing in the stop list (identical to the one described in

Section 6.1) are removed, since these words contribute little to the meaning of the contents.

The remaining words are stemmed, again using Porter's algorithm. The two word lists are

compared and the number of common words found, expressed as afraction of the total number

of words in the smaller list, gives a score of between 0 and 1. The more words which are

common to both items, the higher the score.

The three classification levels also contribute to the similarity score, with the levels scaled

in the ratio 2:1:1. This allows one classification factor to be given importance over the other

www.manaraa.com

SECTION 6.4: AUTOMATIC DEFECTL IST COLLATION 119

Figure 6.8: Auto collation of defect lists.

two. Each classification level in one item is checked with thecorresponding level in the other,

and a simple binary decision made whether they match or not. Checking all three levels gives

a score between 0 and 1.

To allow more flexibility when performing the auto-collation, the relative importance of

each facet can be altered. Figure 6.8 shows the control window for the implementation of

auto-collation in ASSIST, which allows the various factorsaffecting the auto-collation to be

set. TheContents, ClassificationandPositionvalues indicate the relative importance of the

each facet when calculating the similarity between two items. The total of all these factors

must sum to 1, hence increasing (decreasing) one factor decreases (increases) the others. The

similarity value is calculated by multiplying the individual values by the appropriate factor,

adding them together, then scaling to give a value between 0 and 1.

Finally, the similarity value for two items must be comparedwith a value used to deter-

mine whether the items are sufficiently similar to be declared duplicates. This value is the

Acceptance Threshold, and it can be defined by the user. The higher the threshold value, the

more similar two items must be to be declared duplicates. Toohigh a threshold, however, will

result in no matches being made.

An initial investigation into the use of auto-collation proved encouraging, and it appeared

to be an efficient way of removing duplicate items. As can be imagined, however, the set of

values used as factors has a huge effect on the result of the auto-collation, with the outcome

ranging from discarding virtually all items to performing no removals. Hence, a more rigor-

ous experiment was performed to determine the ranges withinwhich these factors are most

usefully set. This experiment is described in Section 7.2.

www.manaraa.com

SECTION 6.5: CONCLUSIONS 120

The resulting system also provides a new format for the inspection meeting. Each partic-

ipant can prepare in their own time in the normal way. Prior tothe meeting, one participant

can use the auto-collation mechanism to combine defect lists. At the group meeting only one

participant needs to access the tool, to show documents and edit the master defect list. This

participant essentially takes the role of the reader and scribe, which is possible since both

roles are less arduous with the help of computer support. Thedisplay from the single tool can

be projected for all participants to see. This makes the bestuse of the tool both in individ-

ual preparation and as an administrative aid during the meeting, but also allows the meeting

to proceed in a traditional, face-to-face way. Furthermore, there is no need to have multiple

computers arranged in an appropriate way in a communal room.

6.5 Conclusions

The basic version of ASSIST used in the comparison experiment showed no significant differ-

ence between the effectiveness of tool-based and paper-based inspection. This system could

then be used as a vehicle to explore facilities for enhancingthe inspection process. Sev-

eral such facilities were identified from the first experiment. A method of cross-referencing

both within and between documents was identified as a means ofassisting users in managing

the large number of windows which have to be used in an inspection support tool. Active

checklists are designed to promulgate checklist usage amongst users. Along with the cross-

referencing system and a C++ code browser, they have been used to create a C++ inspection

environment. This environment links checklist items with relevant areas of the code. It was

hoped that this more streamlined environment would prove more user-friendly, allowing users

to concentrate on the task of finding defects. At the same time, the new features such as

variable tracing should help with the detection of defects.Finally, collating defect lists was

identified as a time-consuming task. This has been addressedby developing a method for

automatically collating defect lists while removing non-identical duplicate items.

Several miscellaneous improvements suggested by users were incorporated into the new

version of ASSIST. Originally, many of the windows used by ASSIST did not resize properly,

and some did not resize at all, hence users had to deal with a number of large windows clutter-

ing the screen. All windows were now properly resizable. Several speed improvements were

made to reduce the amount of time users spent waiting for the tool, which caused frustration

in the first experiment. These, combined with an upgrade to the machines used to run the

experiment, made a faster environment for the user.

To evaluate the new version of ASSIST, implementing the enhanced features described in

www.manaraa.com

SECTION 6.5: CONCLUSIONS 121

this chapter, it was decided to re-run the comparison experiment described in Chapter 5. This

experiment would compare paper-based inspection with the enhanced version of the tool. To

assess the efficiency of the auto-collation mechanism, it was decided to carry out a rigorous

experiment using data from both comparison experiments. The next chapter presents these

experiments in detail.

www.manaraa.com

Chapter 7

Evaluation of Enhanced Tool Support

H
aving investigated various methods of improving the efficiency of inspection, the next

step was to evaluate their impact. This chapter describes a controlled experiment com-

paring paper-based inspection with inspection using a version of ASSIST implementing the

C++ inspection environment described in the previous chapter. The environment provides

cross-referencing within and between documents, and active checklists with links to relevant

features in the code. This chapter also describes an investigation into the effectiveness of the

auto-collation system.

7.1 Comparing Enhanced Tool-based and Paper-based Software

Inspection

7.1.1 Introduction

To investigate the effectiveness of enhanced tool support,the experiment comparing tool-

based inspection with paper-based inspection was re-run. This second experiment was identi-

cal in all respects, except the version of ASSIST used featured the support detailed in the previ-

ous chapter, namely the C++ browser, C++ reference, active checklists, and cross-referencing

[70]. Feedback from the first experiment also resulted in a number of miscellaneous bug fixes,

interface updates and feature enhancements.

The null hypothesis for this experiment,H0, is identical to that of the first experiment:

There is no significant difference in performance between individuals performing

tool-based inspection and those performing paper-based inspection, measured by

the total number of defects found during a given time period.

www.manaraa.com

SECTION 7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 123

The alternative hypothesis,H1 is also identical:

There is a significant difference in performance between individuals performing

tool-based inspection and those performing paper-based inspection, measured by

the total number of defects found during a given time period.

Similar hypotheses can again be formed regarding the performance of groups.

7.1.2 Experiment Design

The design of this experiment was identical to the previous experiment. Testing of the hy-

potheses requires two groups of subjects to inspect a singledocument, one making use of the

tool and the other using paper. Subjects then swap methods and perform an inspection on

another document, ensuring that any effect observed is not due to one group of subjects being

of greater ability. The same inspection process was used, consisting of an individual detection

phase, followed by a group collection meeting.

This experiment was carried out during Autumn 1997 in the same setting as the previous

experiment. The subjects used were participating in the next session of the same team-based

Software Engineering course for third year undergraduates, and had identical experience to

their counterparts in the first experiment. Again, the practical aspects of the experiment

formed part of their continual assessment for this course, increasing subject motivation.

A total of 49 students participated this time, split into twoapproximately equal sections.

Section 1 had 24 subjects and Section 2 had 25 subjects. The split was achieved in an identical

manner to that for Experiment 1. Section 1 consisted of eightgroups of three students, while

Section 2 contained seven groups of three students and one group of four students.

The same materials used for the first experiment were used in this experiment, presented

in an identical manner. Again, the practical element of the course ran over ten weeks, with

six weeks devoted to training in software inspection and using ASSIST, also providing an

opportunity for the subjects to refresh their C++ knowledge. When each training program had

been inspected, subjects were given a list of defects in thatprogram. An extended version

of the tool tutorial used in the first experiment was created,giving more information on how

best to use ASSIST to find defects, and tackling the use of the new features. Four weeks were

then used to run the experiment. The exact timetable is givenin Appendix D.1. Each practical

session was run twice, once for each section of the class. Both sessions occurred consecutively

on the same afternoon of each week.

Instrumentation of the experiment was also identical. Eachsubject used the individual

defect report form (Appendix D.3) during paper-based inspection, with the scribe making use

www.manaraa.com

SECTION 7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 124

Program analyse.cc graph.cc
Section 1 2 1 2
Method Tool Paper Paper Tool
Subjects 23 25 24 25
Mean 6.52 6.68 5.92 5.88
St. Dev. 1.83 1.77 1.53 1.33
St. Error 0.38 0.35 0.31 0.27
F Ratio 0.09 0.01
F Prob. 0.76 0.93

Table 7.1: Analysis of variance of individual defect scores.

of the master defect report form (Appendix D.4) for the groupmeeting. ASSIST was used to

keep both individual and master defect lists during tool-based inspection. The data collected

was similar to that of the first experiment: the total number of correct defects found, the

number of false positives submitted (both for each individual and for each group), meeting

loss and meeting gain for each group, and frequency of detection for each defect. Since this

experiment is identical in all respects to the previous experiment, the threats to validity remain

the same and are not repeated here.

7.1.3 Results and Analysis

Defect Detection

The raw data from this experiment can be found in Appendix E.1.2. Table 7.1 summarises

the data and the analysis of variance of the individual phases of both inspections. The table

shows the method used by each section of subjects for each program. The number of subjects

participating in each phase, the mean number of defects found, the standard deviations and

standards errors are shown for each treatment. Note that onesubject from Section 1 failed to

participate in the individual inspection ofanalyse.cc . TheF ratios and probabilities for

the comparisons of paper and tool are also shown.

For analyse.cc , there is very little difference in performance, confirmed by the anal-

ysis of variance. Forgraph.cc , the difference in performance is even smaller. Again, this

is confirmed by the analysis of variance. For both programs the null hypothesis relating to

individual performance cannot be rejected. The advanced features provided by ASSIST give

no increase in performance over paper-based inspection. However, compared to the previous

experiment there is much less of a difference between methods when applied tograph.cc .

The defect detection data for groups is summarised in Table 7.2. Paper-based inspection

www.manaraa.com

SECTION 7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 125

Program analyse.cc graph.cc
Section 1 2 1 2
Method Tool Paper Paper Tool
Groups 8 8 8 8
Mean 9.50 10.25 8.88 8.63
St. Dev. 1.69 0.89 1.25 0.74
St. Error 0.60 0.31 0.44 0.26
F Ratio 1.24 0.24
F Prob. 0.28 0.63

Table 7.2: Analysis of variance of group defect scores.

Effect F Ratio F Prob.
Order �0.01 0.96
Program 4.97 0.03
Order�Program 0.22 0.64

Table 7.3: Analysis of variance of method order and program.

appears to outperform tool-based inspection onanalyse.cc , but this difference is not sta-

tistically significant. The difference is probably due to a less favourable allocation of subjects

to groups, with group members having less distinct subsets of defects. Another factor is meet-

ing gain, which is higher for those performing a paper-basedmeeting (see later). The results

for graph.cc show very little difference, with no statistical significance. In both cases the

null hypothesis concerning group performance cannot be rejected.

All defect detection data passed the Levene test for homogeneity of variances. As a safe-

guard, all four sets of data were subjected to the Kruskall-Wallis non-parametric test, giving

results similar to the parametric tests.

Table 7.3 shows the results of the analysis for effects stemming from the order in which

methods were used and differences in the two programs. Thereis no significant difference

between subjects performing tool-based inspection first compared to those who performed

paper-based inspection first. As with the first experiment, however, there is a significant dif-

ference in the difficulty of each program. The post-experiment questionnaires showed that

subjects in this experiment also regardedgraph.cc as more complex thananalyse.cc .

Unlike Experiment 1, however, there is less of a performancedeficit between methods when

inspectinggraph.cc . This contradicts the previous suggestion that the tool maybecome

less efficient as the material under inspection becomes morecomplex. This may be due to the

www.manaraa.com

SECTION 7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 126

Defect

12
11
10
9
8
7
6
5
4
3
2
1

D
et

ec
tio

n
R

at
e

(%
)

100

80

60

40

20

0

Paper

Tool

Figure 7.1: Summary defect detection data foranalyse.cc (individuals).

extra facilities provided by the second version of ASSIST, but it is difficult to say for certain.

An experiment comparing the basic version of ASSIST with theenhanced version may be able

to determine if this is indeed the case. Finally, analysis for any effect due to the combination

of order of method and program was performed, but no significant result was found.

The individual detection frequencies of each defect were analysed in the same way as

the first experiment. Figure 7.1 summarises frequency of detection of each defect during the

individual inspection ofanalyse.cc . The defects with the greatest differences in detection

frequency are 1 and 5. Defect 1 (an array indexing error) was found by more subjects using

paper-based inspection than by those performing tool-based, mirroring a similar result from

Experiment 1. Defect 5 has a large difference in favour of thetool, which does not correspond

to any similar result from the last experiment. This defect concerns a missing cast of a variable.

A checklist item exists to cover both types of error, and in both cases ASSIST provides explicit

cross-references between the checklist items and possibleoccurrences in the code. Hence, it

is difficult to claim that the facilities of ASSIST are responsible for the increase in detection

frequency for defect 5, when they should at least prevent thetool from performing worse

www.manaraa.com

SECTION 7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 127

Defect

12
11
10
9
8
7
6
5
4
3
2
1

D
et

ec
tio

n
R

at
e

(%
)

100

80

60

40

20

0

Paper

Tool

Figure 7.2: Summary defect detection data foranalyse.cc (groups).

on defect 1. Defect 1, however, may be considered as requiring more thought: a thorough

understanding of the code is necessary to detect it. The facilities of ASSIST, on the other

hand, lead the inspector straight to defect 5 with little need for understanding.

Figure 7.2 shows the frequency of detection for theanalyse.cc group meeting. Com-

pared with the first experiment, there are more variations between methods, but these varia-

tions are smaller. There are no clear correspondences between the results of the two experi-

ments. Differences for two defects stand out: 8 and 12. Thereare no parallels with Experiment

1. Defect 8 is a calculation error, while defect 12 is a loop error. Both were found by more

paper-based groups than tool-based, but there is no correspondence with the results from the

individual phase. Instead, these variations are due to the allocation of subjects to groups. A

different group allocation could have reduced the disparity, and could also have increased it

(meeting gains and losses have no effect on these particulardefects).

The defect detection frequencies for the individual inspection of graph.cc are shown

in Figure 7.3. Overall, the profiles for each method are very similar, with the exception of

defect 10, which has an above average advantage in favour of the tool. This defect concerns

www.manaraa.com

SECTION 7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 128

Defect

12
11
10
9
8
7
6
5
4
3
2
1

D
et

ec
tio

n
R

at
e

(%
)

100

80

60

40

20

0

Paper

Tool

Figure 7.3: Summary defect detection data forgraph.cc (individuals).

an incorrect initialisation, for which there is an explicitchecklist item. In the case of the tool,

each variable declaration has an explicit reference to the checklist item, which may account

for the difference. This theory is supported by the fact thatno such difference occurred in the

previous experiment, where the tool did not support cross-references between the code and

checklist. While the large difference observed in favour ofpaper-based inspection for defect

3 in the first experiment has been reduced, there is still a slight difference. Frustratingly, this

defect is even easier to find with the second version of the tool: clicking on a function name

gives a list of lines where that function is used. Non-use of afunction results in an empty

list. Finding this defect cannot be made any simpler! The obvious conclusion is that subjects

need more time to become familiar with all aspects of the tooland how they are used to find

defects.

Finally, the defect detection frequency of the group meeting with graph.cc is shown

in Figure 7.4. Two large differences occur, one for defect 8 and another for defect 12. As

with the group results foranalyse.cc , there is no correspondence with the results from

the individual phase, but defect 8 had a large difference in the group phase of the previous

www.manaraa.com

SECTION 7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 129

Defect

12
11
10
9
8
7
6
5
4
3
2
1

D
et

ec
tio

n
R

at
e

(%
)

100

80

60

40

20

0

Paper

Tool

Figure 7.4: Summary defect detection data forgraph.cc (groups).

experiment. As with the previous experiment, however, thisdifference is due to the allocation

of subjects to groups. This is also true for defect 12.

False Positives

The number of false positives found by each subject was collected, to try to determine

if tool-supported inspection reduces the amount reported.This might be the case if subjects

used the on-line C++ reference to check features of C++ whichthey were unsure of. The

analysis of variance of false positives from individual inspection is presented in Table 7.4. For

analyse.cc there is a significant difference at the 5% level, with tool-supported inspection

producing fewer false positives. This trend is not continued with graph.cc , indeed it is

reversed, although the difference is not significant. From these results it could be hypothesised

that subjects in Section 1 were less prone to false positives, although there is no clear reason

why this should be so.

Table 7.5 shows the results for false positives reported by groups. For both programs there

is no significant differences in the numbers reported, although groups in Section 1 consistently

www.manaraa.com

SECTION 7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 130

Program analyse.cc graph.cc
Section 1 2 1 2
Method Tool Paper Paper Tool
Subjects 23 25 24 25
Mean 4.13 6.20 2.79 3.36
St. Dev. 2.90 2.77 1.44 2.00
St. Error 0.60 0.55 0.29 0.40
F Ratio 6.40 1.29
F Prob. 0.02 0.26

Table 7.4: Analysis of variance of individual false positives.

Program analyse.cc graph.cc
Section 1 2 1 2
Method Tool Paper Paper Tool
Groups 8 8 8 8
Mean 3.88 5.00 2.38 2.88
St. Dev. 1.55 2.14 0.92 1.46
St. Error 0.55 0.76 0.32 0.52
F Ratio 1.45 0.68
F Prob. 0.25 0.42

Table 7.5: Analysis of variance of group false positives.

produce fewer false positives than their counterparts, as could be predicted from the results

for individuals.

As with the first experiment, there was no obvious patterns inthe types of false positives

produced by each method. Again, some were obviouslydefectswhich had occurred in training

material which subjects had memorised and submitted because similar code was found in the

experiment programs.

Meeting Gains and Losses

Finally, meeting gains and losses are examined. As with the previous experiment, it was

hypothesised there would be no difference between tool and paper-based methods for both

gains and losses. Even though the version of ASSIST used by the subjects had the list auto-

collation facility, it was disabled for the experiment. Evaluation of this facility can be found in

Section 7.2. Table 7.6 shows the analysis of variance for meeting gains, while Table 7.7 shows

the analysis of variance for meeting losses for each inspection. As with the first experiment,

www.manaraa.com

SECTION 7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 131

Program analyse.cc graph.cc
Section 1 2 1 2
Method Tool Paper Paper Tool
Groups 8 8 8 8
Mean 0.25 0.63 1.25 0.38
St. Dev. 0.46 0.74 1.16 0.52
St. Error 0.16 0.26 0.41 0.18
F Ratio 1.46 3.78
F Prob. 0.25 0.07

Table 7.6: Analysis of variance of meeting gains.

Program analyse.cc graph.cc
Section 1 2 1 2
Method Tool Paper Paper Tool
Groups 8 8 8 8
Mean 0.25 0.25 0.38 0.38
St. Dev. 0.46 0.46 0.52 0.52
St. Error 0.16 0.16 0.18 0.18
F Ratio 0 0
F Prob. 1.00 1.00

Table 7.7: Analysis of variance of meeting losses.

there was no statistically significant difference between methods, despite paper-based inspec-

tion of graph.cc appearing to produce larger meeting gains than tool-based.Although this

difference is not significant, there is evidence in the questionnaires completed by subjects

(presented next) that tool-based inspection provided lessopportunity for the group to engage

in additional defect detection.

When individual defects are considered, there are three points of interest. Defect 5 of

analyse.cc provided the largest meeting gain for that program. Only onegain was due to

tool-based inspection; the other four belonged to paper-based groups. This defect was found

by four individual tool users, but no paper-based subjects.So despite the tool apparently en-

abling users to find this defect more easily, this is not translated into the meeting, indicating a

lack of defect detection during tool-based meetings. Paper-based meetings, however, allowed

subjects to find more instances of this defect, even though noindividual found it. Considering

graph.cc , one meeting loss (concerning defect 4) and one meeting gain(concerning defect

12) are of interest. Defect 4 was lost by three groups (two paper, one tool). This is one of

the least well-reported defects, It is likely that subjectswho found this defect on their own

www.manaraa.com

SECTION 7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 132

were dissuaded from reporting it by other group members. Defect 12 was gained by three

tool-based groups and three paper-based groups, far more than any other. This defect means

that the program prints the graph upside-down. While quite adifficult defect to find, it is very

memorable. Hence, it is suspected that collusion between subjects resulted in the spread of

this defect among other groups. Unfortunately, since a weekelapsed between the individual

phase and the group phase, such collusion is practically inevitable, especially when subjects

are motivated to gain the highest marks possible.

Debriefing Questionnaires

The four questionnaires distributed during the first experiment were also used during this ex-

periment (with minor updates). Again, Questionnaire 1 (91.8% response rate) was given after

the first full individual practice with ASSIST, while Questionnaire 2 (97.9% response rate)

was given after the first full group practice session. Questionnaires 3 (93.9% response rate)

and 4 (95.9%) were distributed after the first and second phases of the experiment respectively.

The full text of the questionnaires can be found in Appendix D.11.

Questionnaire 1 With respect to ease of navigation around the document underinspection,

no subjects found it very difficult, 2.3% of subjects said they found it difficult, 33.3% said they

found it average, 55.5% found it easy and 8.9% said they foundit very easy. These results

compare favourably with those from the previous experiment(3.4%, 20.7%, 24.1%, 37.9%

and 13.8% for the respective categories). When asked whether the number of windows used

by ASSIST had any effect on their inspection efficiency, 20% of subjects said it increased their

efficiency, 44.4% said it had no effect and 35.6% thought their efficiency was reduced. Again

this compares well with the previous experiment (13.8%, 31%and 55.2%). Taken together,

these results suggest an increase in the general usability of ASSIST compared to the previous

version.

An increase in acceptance of tool-based inspection was seenwhen subjects were asked

which mode of inspection they thought more efficient. 24.4% of subjects thought tool-based

less efficient, 33.3% thought it equally efficient and 42.2% thought it more efficient. The

corresponding results from the first experiment were 55.2%,26.6% and 17.2% respectively,

giving a large swing in opinion. Although there is no quantifiable increase in performance

from subjects, it is clear that the improved version of the tool is more acceptable.

Questionnaire 2 When asked to rate the usability of the defect proposal system used at the

meeting, 4.2% of respondents found it very difficult to use, 4.2% found it difficult, 37.5%

www.manaraa.com

SECTION 7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 133

found it to be average, 35.4% found it easy to use and 18.8% found it very easy to use. These

figures are roughly comparable with those from the previous experiment (0%, 14.3%, 38.1%,

28.6% and 19% respectively), which is unsurprising since the defect proposal mechanism was

unchanged from the first version of ASSIST. More surprising was the response to the question

concerning the usefulness of the voting mechanism. 12.5% ofrespondents thought it hindered

the resolution of issues, 64.6% thought it had no effect and 22.9% thought it helped. The

corresponding figures from Experiment 1 were 14.3%, 33.3% and 52.4%. Around the same

proportion of respondents thought it hindered issue resolution, but far fewer people thought it

helped resolve issues.

Subjects rated the effect ASSIST had on their group meeting.14.6% of subjects thought it

had a large negative effect, 22.9% felt it had a negative effect, 18.8% considered it to have no

effect, 35.4% felt it had a positive effect and 8.3% thought it had a large positive effect, The

corresponding figures from the previous experiment are 4.8%, 19%, 38.1%, 38.1% and 0%,

showing no real trend in terms of change of opinion, other than fewer people having a neu-

tral opinion. When asked to compare the efficiency of tool-based and paper-based meetings,

33.3% thought tool-based less efficient, 27.1% thought it equally efficient and 39.6% thought

it more efficient. When compared to the figures from the first experiment (38.1% 47.6% and

14.3%), there is a definite positive swing in favour of tool-based meetings. The reason for this

change in opinion is probably due to the facilities designedfor individual inspection (the active

checklist, cross-referencing, etc.) also being found to beuseful during the group meeting.

Questionnaire 3 When questioned about their understanding of theanalyse.cc code,

8.7% of respondents reported understanding 41-60%, 32.6% understood 61-80% of it, and

58.7% reported understanding 81-100% of it. The corresponding figures for the first exper-

iment were 5%, 25% and 70%, showing a slight overall decreasein understanding of the

program. 10.9% of subjects thought there was not enough timeto inspect the code, 82.6%

thought there was just enough time and 6.5% thought there wastoo much time. These are

very similar to the figures from the first experiment (5%, 87.5% and 7.5%).

When asked if the group meeting changed their understandingof the code, no subjects

said their understanding was confounded, 39.1% reported nochange in understanding, and

60.9% reported an increase in understanding. Compared withthe previous experiment (2.5%,

35% and 62.5%), these figures are very similar. This reinforces the view that the inspection

meeting helps consolidate understanding of the product amongst group members. Meeting

gains were reported to be slightly lower than those in Experiment 1. 17.4% reported no gains,

39.1% reported one or two gains, 32.6% reported gains of three to five defects and 10.9%

www.manaraa.com

SECTION 7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 134

reported a gain of more than five defects. The respective figures for the first experiment were

7.5%, 40%, 47.5% and 5%. Meeting losses, on the other hand, were thought by subjects to

be greater. 23.9% of respondents thought no losses had occurred, 23.9% thought one or two

losses had occurred, 43.5% thought three to five defects had been lost and 8.7% thought more

than five losses had occurred. The figures for Experiment 1 were 27.5%, 35%, 27.5% and

10% respectively.

In terms of their group's performance, 2.2% of respondents thought their group had found

41-60% of all the defects in the code, 34.8% thought 61-80% ofthe defects had been found

and 63% thought 81-100% had been found. These figures are verysimilar to those from the

first experiment (2.5%, 30% and 67.5%).

88% of tool users responded to the question concerning the overall usability of ASSIST.

18.2% thought it extremely usable, 50% thought it fairly usable, 18.2% thought it average,

13.6% thought it fairly unusable (no respondents classed ittotally unusable). Compared with

the first experiment, where the figures were 10%, 50%, 35% and 5% respectively, there are

less subjects with a neutral opinion. The changes in opinionare evenly split between finding

ASSIST extremely usable and finding it fairly unusable.

Questionnaire 4 Asked about their understanding ofgraph.cc , 4.3% of subjects under-

stood 41-60% of the program, 57.4% understood 61-80% of the program and 38.3% under-

stood 81-100% of it. Subjects seemed to think they understood the program more than the

subjects in the previous experiment, where the corresponding figures were 20%, 37.5% and

40% (with 2.5% of subjects only understanding 21-40% of the program). Despite this, subjects

in the last experiment slightly outperformed subjects in the current experiment. Concerning

the time given to inspect the program, 23.4% of respondents thought insufficient time was

given, 74.5% thought that just enough time was given, and only 2.1% thought that too much

time was available. Compared with Experiment 1, where the corresponding figures were 35%,

62.5% and 2.5%, slightly more people thought the time given was sufficient to complete the

inspection task. Comparing the complexity of the two programs, 53.2% of subjects thought

graph.cc much more complex thananalyse.cc , 34.1% thought it slightly more com-

plex, 2.1% thought it to be of similar complexity and 10.6% perceived it slightly less complex.

This is similar to the results for Experiment 1 (49%, 44% and 7% respectively, with no subjects

finding graph.cc less complex), although a number of subjects in the second experiment

foundgraph.cc less complex than their counterparts in the first experiment.

Concerning the group meeting, 6.4% of respondents indicated their understanding of the

program was confounded, 34% reported no change in understanding and 59.6% indicated an

www.manaraa.com

SECTION 7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 135

increase in understanding. Compared to Experiment 1, fewerpeople reported an increase in

understanding (0%, 25% and 75%). Subjects reported more meeting gains than their counter-

parts in Experiment 1. A gain of zero was reported by 12.8% of subjects, 44.6% reported a

gain of one or two defects, 29.8% reported a gain of three to five defects and 12.8% reported

a gain of more than five defects. The corresponding figures forthe previous experiment were

5%, 60%, 22.5% and 12.5%. On the other hand, meeting losses were perceived to be virtually

identical. Zero losses were reported by 70.3% of respondents, 19.1% reported a loss of one or

two, 8.5% reported a loss of three to five and 2.1% reported a loss of more than five, compared

to 72.5%, 17.5%, 10%, and 0% from the previous experiment.

100% of tool users responded to the question concerning the usability of ASSIST for

inspection. 16.6% thought it extremely usable 45.9% thought it fairly usable, 33.3% thought

it average and 4.2% found it fairly unusable (no subjects thought it totally unusable). This

compares favourably with the results of the previous experiment, where the corresponding

figures were 4.8%, 33.3%, 23.8%, 33.3% and 4.8%. The advancedfeatures in the second

version of ASSIST appear to have increased its acceptance here.

Subjects were asked to rate their understanding of softwareinspection. No subjects rated

their understanding as complete, 51.1% thought they understood it well and 48.9% believed

they understood it reasonably well. Compared with Experiment 1, where the corresponding

figures were 7.5%, 32.5% and 55% (with 5% of subjects slightlyunsure), there is less of a

spread of answers, but no real trend. Asked if their knowledge of C++ was adequate for the

tasks set, 17% thought it inadequate and 83% thought it adequate, being almost identical to

the first experiment, with 20% and 80% respectively.

When subjects were asked to compare their use of the checklist with each method, 38.3%

thought they used it more with paper-based inspection, 46.8% used it the same with both

methods and 14.9% used it more with ASSIST. Although more subjects made use of their

checklist with ASSIST compared with Experiment 1 (where thecorresponding figures are

37.5%, 52.5% and 10%), it is not a great increase. This is slightly disappointing, since one

of the major features of the second version of ASSIST was the active checklist mechanism,

designed to increase the use of the checklist. As with the first experiment, the lack of screen

space probably forces users to discard the checklist windowin preference to the code and

specification.

In terms of preference of screen-based documents versus paper, 17% of subjects preferred

screen-based documents, 42.6% expressed no preference and40.4% preferred paper docu-

ments. Compared with the first experiment (with figures of 15%, 20% and 65%), more people

have no preference, at the expense of paper documents. This could indicate that the second

www.manaraa.com

SECTION 7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 136

version of ASSIST is more usable, with more people happy to use either type of document

rather than being averse to screen-based.

Finally, subjects were asked to compare their performance using tool-based and paper-

based inspection. With individual inspection, 14.9% of subjects thought they performed bet-

ter with paper, 57.5% thought they performed equally well with both methods, and 27.6%

felt they performed better using the tool. Like the preference for document type, more people

are equally amenable to both methods compared to the previous experiment (where the cor-

responding figures were 39%, 39% and 22%). When considering the group meeting, 21.3%

of subjects felt they performed better with paper, 63.8% felt they performed equally well with

both methods, and 14.9% felt they performed better using ASSIST. There is a slight drop

in preference for ASSIST compared to the previous experiment (19.5%, 61% and 19.5%),

although not by much, and there is no clear trend.

The qualitative statements of preference were generally similar to those from the first

experiment. Those who preferred paper-based inspection liked to be able to write their own

notes directly on the code and found it easier to organise a number of sheets of paper on

the desk than a number of windows on-screen. In general, theythought paper to be more

natural (although one user who preferred ASSIST noted that reading code on-screen was more

natural!). Some subjects indicated they performed more additional defect detection at a paper-

based group meeting than when using the tool, and that sitting at a computer inhibited group

discussion.

Subjects with a preference for ASSIST found the cross-referencing facilities to be useful

when finding dead code and for tracing function and variable usage. It also helped find ap-

propriate checklist items. The on-line C++ reference was thought to help save time, obviating

the need to find and search a C++ textbook. Defect list manipulation was regarded as easier,

especially during the group meeting where the scribe does not have to write out each defect

again. The voting mechanism also had advocates.

Subjects with no preference pointed out advantages and disadvantages of both methods.

Some felt that while the facilities of ASSIST were useful during individual inspection, the use

of ASSIST hindered the group meeting, since group members were spaced further apart. This

was accentuated by the layout of the computer laboratory: longs rows of machines side-by-

side. Users found it difficult to look at the screen and at their colleagues. A circular layout

for each group would be more appropriate. Alternatively, a process consisting of a tool-based

individual phase followed by a face-to-face meeting could be used.

www.manaraa.com

SECTION 7.1: COMPARINGENHANCED TOOL-BASED AND PAPER-BASED SOFTWARE INSPECTION 137

7.1.4 Conclusions

The results from this experiment fail to show an increase in the performance of subjects us-

ing enhanced tool-based inspection compared with those performing paper-based inspection.

Although statistically significant results were not found,responses to questionnaires indicated

greater user acceptance of the enhanced version of the tool over the basic version. Compared

with Experiment 1, more subjects perceived tool support to be more efficient than paper-based

inspection, both for individual preparation and the group meeting. Document navigation was

found to be easier, and the number of windows used by ASSIST was less of an issue, perhaps

indicating that the cross-referencing mechanism was helping users. Some individual defects

were found by more tool users than paper-based inspectors, showing the usefulness of the

checklist linked to document features. Other defects were still found more easily on paper.

More research has to be carried out to discover which particular defect types can be found

more easily on paper, and hence explore mechanisms for supporting their detection on-line.

Regarding the inspection meeting, less defect detection seemed to occur at tool-based meet-

ings than paper-based meetings. Subjects appeared to use the tool simply as a mechanism for

combining defect lists. This certainly needs to be addressed, either by training or by improving

the facilities offered by the tool.

As with the Experiment 1, this experiment was limited by available resources. The use of

student subjects and short pieces of code limit the extent towhich these results can be gen-

eralised, although a realistic inspection process and inspection rate were used. Further work

is required in replicating this experiment both in similar environments and in an industrial

setting. For example, although the training tutorial was modified to help subjects find the best

way of using the tool, the training itself was still brief, which undoubtedly had an adverse ef-

fect on their performance with the tool. Prospective subjects must preferably be experienced

in inspection and the use of whichever tool is to be investigated. Some features of the tool may

have had a positive effect, while other factors produced a negative effect. Isolating features

and experimenting with them individually may provide more information. Only such repeated

experimentation will provide a definitive answer to the question of the relative effectiveness

of paper-based and tool-based inspection.

www.manaraa.com

SECTION 7.2: AUTOMATIC DEFECTL IST COLLATION 138

7.2 Automatic Defect List Collation

7.2.1 Introduction

Automatic defect list collation, introduced in Section 6.4, is designed to increase the efficiency

of inspection by merging defect lists and removing duplicates without human intervention.

Several factors can be set by the user to influence the resultsof the collation. These are

the relative importance of the three facets used to compare defects (position, content and

classification) and the threshold value above which items are considered to be duplicates. To

find the range within which these factors are most usefully set, the defect lists produced by

subjects in both comparison experiments were used as sourcematerial.

7.2.2 Method

The individual defect lists produced by subjects using ASSIST when inspecting the two ex-

periment programsanalyse.cc andgraph.cc were used to perform this evaluation. 22

lists were available from the first experiment withanalyse.cc , while 21 lists were avail-

able from the first experiment withgraph.cc . The second experiment provided 23 and

25 lists respectively. The items in each individual list were tagged with a number indicating

the defect (according to the defect lists in Appendix D), or removed if the defect was a false

positive. Auto-collation was then applied to groups of three or four lists, as determined by

the group allocation from the appropriate experiment, using a number of factor settings. The

factor settings used were� Content (importance of the contents when checking for duplicate items): 0.05 - 0.95, in

steps of 0.05.� Position (importance of the position when checking for duplicate items): 1 minus the

current Content setting.� Classification (importance of the classification when considering duplicates): always

set to 0, since subjects were not asked to classify their defects.� Threshold (value which the similarity score must reach for two items to be considered

duplicates): 0.05 – 0.95, in steps of 0.05.

For each setting of the content factor, the position factor was set appropriately and auto-

collation applied for each threshold value.

For each group of lists the optimal defect list which could beproduced was calculated,

consisting of the set of all defects found in all lists minus duplicates. The quality of the output

www.manaraa.com

SECTION 7.2: AUTOMATIC DEFECTL IST COLLATION 139

1.0
1.0

%

C

o

r

r

e

c

t

20

40

.8
.8

60

80

100

.6
.6

Threshold
Content

.4
.4

.2
.2

Figure 7.5: Average percentage of correct defects in collated lists for each value of content
and threshold (Experiment 1 data).

from auto-collation can then be measured as the percentage of the optimal defect list retained

(hereafter known as the percentage of correct defects). Theworst case list for each group

was calculated as the concatenation of all lists. Performance of duplicate removal can then

be measured as the number of duplicates in each auto-collated list, expressed as a percentage

of the total possible duplicates in the list. The data for both programs was grouped together,

however the data for both experiments was treated separately. This was because the defect

positions for the first experiment consist only of line numbers, while those in the second

experiment consist of line numbers and character positions, due to the different browsers used

to display the code.

7.2.3 Results

Figure 7.5 shows the performance of auto-collation in termsof the percentage of correct de-

fects in the generated list, applied to defect lists from Experiment 1. Overall, the performance

is very stable, with the graph having three distinctive areas. With low thresholds (<=0.25)

most items are discarded, as expected, since items easily pass the similarity test. With high

www.manaraa.com

SECTION 7.2: AUTOMATIC DEFECTL IST COLLATION 140

1.0
1.0

%

D

u

p

l

i

c

a

t

e

s
 20

40

.8
.8

60

80

100

.6
.6

Threshold
Content

.4
.4

.2
.2

Figure 7.6: Average percentage of duplicates in collated lists for each value of content and
threshold (Experiment 1 data).

threshold values (>=0.6), most items are kept, since the similarity test is harder to pass. In

between these threshold values, there is steady increase inthe percentage of correct defects,

with the rate of this increase rising with larger content factors. Note that the lowest value for

each setting of the content factor is always just above zero,since one defect must be put in

each list to begin the auto-collation.

The average percentage of duplicates left in each list for various values of content and

threshold is shown Figure 7.6. This graph shows a similar trend to Figure 7.5, although the

threshold values corresponding to the three distinctive areas are higher than their counter-

parts, at around 0.45 and 0.65. The content factor setting has an effect here similar to that

in Figure 7.5: as it increases so too does the rate of increasein the percentage of duplicates

remaining.

To find the optimal settings for the content and threshold factors, the percentage of correct

defects in the list must be compared with the percentage of duplicates remaining. The optimal

settings occur when all the correct defects are present, while as many duplicates as possible

are removed. Figures 7.7, 7.8 and 7.9 show the performance interms of correct defects and

www.manaraa.com

SECTION 7.2: AUTOMATIC DEFECTL IST COLLATION 141

Threshold

1.0
.8
.6
.4
.2
0.0

P
er

ce
nt

ag
e

100

80

60

40

20

0

% Duplicates

% Correct

Figure 7.7: Average percentage of defects remaining and average percentage of duplicates in
collated defect lists for a contents factor of 0.05 (Experiment 1 data).

Threshold

1.0
.8
.6
.4
.2
0.0

P
er

ce
nt

ag
e

100

80

60

40

20

0

% Duplicates

% Correct

Figure 7.8: Average percentage of defects remaining and average percentage of duplicates in
collated defect lists for a contents factor of 0.5 (Experiment 1 data).

www.manaraa.com

SECTION 7.2: AUTOMATIC DEFECTL IST COLLATION 142

Threshold

1.0
.8
.6
.4
.2
0.0

P
er

ce
nt

ag
e

100

80

60

40

20

0

% Duplicates

% Correct

Figure 7.9: Average percentage of defects remaining and average percentage of duplicates in
collated defect lists for a contents factor of 0.95 (Experiment 1 data).

duplicates for varying threshold factors for content factors of 0.05, 0.5 and 0.95, respectively.

For a content factor of 0.05 (Figure 7.7), 100% of defects occur at a threshold of 0.7, but so

also do 100% of duplicates. The threshold value of 0.65 is interesting, since less than 10% of

duplicates occur, but only around 95% of correct defects occur. This presents an interesting

dilemma: is it more efficient to remove 90% of duplicates, even if it means losing one or

two real defects? When the content factor is set to 0.5 (Figure 7.8), the 100% region for

defects occurs at a threshold of 0.6. At this threshold around 65% of duplicates occur. At

a content factor of 0.95 (Figure 7.9), 100% of defects occur at a threshold of 0.55. At the

same threshold only 65% of duplicates remain. Overall, setting the threshold to around 0.6

along with a contents factor of at least 0.5 appear to give thebest results, removing about a

third of duplicates, with no loss of defects. If the loss of one or two defects is acceptable

then the contents factor can be be reduced and the number of duplicates removed increased

significantly.

The graphs of performance for the data from Experiment 2 are very similar to their Exper-

iment 1 counterparts. Figure 7.10 shows the average percentage of correct defects in each list

versus the content and threshold settings. Again, three distinct regions appear in the graph.

The lower region, with threshold being less than 0.2, is where virtually all defects are dis-

carded. The upper region, above a threshold of 0.6, is where all defects are kept. The middle

region provides a steady increase in the number of defects retained, with the rate of increase

rising as the value of the content factor rises. Figure 7.11 shows the average percentage of

duplicates for the data from Experiment 2. Once again, the graph has a similar form, with the

www.manaraa.com

SECTION 7.2: AUTOMATIC DEFECTL IST COLLATION 143

1.0
1.0

%

C

o

r

r

e

c

t

20

40

.8
.8

60

80

100

.6
.6

Threshold
Content

.4
.4

.2
.2

Figure 7.10: Average percentage of correct defects in collated lists for each value of content
and threshold (Experiment 2 data).

boundaries occurring at threshold values of 0.35 and 0.6.

Figures 7.12, 7.13 and 7.14 show the average percentage of defects remaining and the

average percentage of duplicates for contents factors of 0.05, 0.5 and 0.95 respectively. These

graphs follow their counterparts for the Experiment 1 data very closely. Considering Fig-

ure 7.12, if the criteria applied is that 100% of correct defects must occur then these settings

are obviously not useful, since 100% of duplicates occur forany threshold setting where 100%

of defects occur. If, however, the condition is relaxed slightly, with around 99% correct be-

ing acceptable, then the threshold value of 0.65 allows rejection of almost 60% of duplicates.

Since the 99% value is an average, in most cases 100% of all defects are being found with

just a single instance of perhaps one defect being lost. In comparison with the same values for

the Experiment 1 data, slightly fewer defects are lost, although many more duplicates remain.

In Figure 7.13, when the 100% criterion for correct defects is fulfilled, less than 5% of du-

plicates have been removed. Relaxing the criterion slightly gives just over 20% of duplicates

removed at a threshold of 0.6. This is a slightly worse resultthan for the Experiment 1 data,

both for correct defects and duplicates remaining. Figure 7.14 follows the pattern observed so

www.manaraa.com

SECTION 7.2: AUTOMATIC DEFECTL IST COLLATION 144

1.0
1.0

%

D

u

p

l

i

c

a

t

e

s
 20

40

.8
.8

60

80

100

.6
.6

Threshold
Content

.4
.4

.2
.2

Figure 7.11: Average percentage of duplicates in collated lists for each value of content and
threshold (Experiment 2 data).

Threshold

1.0
.8
.6
.4
.2
0.0

P
er

ce
nt

ag
e

100

80

60

40

20

0

% Duplicates

% Correct

Figure 7.12: Average percentage of defects remaining and average percentage of duplicates in
collated defect lists for a contents factor of 0.05 (Experiment 2 data).

www.manaraa.com

SECTION 7.2: AUTOMATIC DEFECTL IST COLLATION 145

Threshold

1.0
.8
.6
.4
.2
0.0

P
er

ce
nt

ag
e

100

80

60

40

20

0

% Duplicates

% Correct

Figure 7.13: Average percentage of defects remaining and average percentage of duplicates in
collated defect lists for a contents factor of 0.5 (Experiment 2 data).

Threshold

1.0
.8
.6
.4
.2
0.0

P
er

ce
nt

ag
e

100

80

60

40

20

0

% Duplicates

% Correct

Figure 7.14: Average percentage of defects remaining and average percentage of duplicates in
collated defect lists for a contents factor of 0.95 (Experiment 2 data).

www.manaraa.com

SECTION 7.2: AUTOMATIC DEFECTL IST COLLATION 146

far. At a threshold value of 0.55, it provides slightly worseresults than the Experiment 1 data

in terms of correct defects and duplicates remaining. Again, for acceptable duplicate removal

performance, a small loss of real defects has to occur.

One reason why the data for Experiment 2 provides slightly worse results than that from

Experiment 1 is the difference in the way in which defects positionsare represented. In Exper-

iment 1 only line numbers are used, while both line number andcharacter positions are used

in Experiment 2. This more accurate positioning system exaggerates small differences in de-

fect positions. For example, when using line numbers only, two defects on the same line have

identical positions. When using both line number and character position, two defects on the

same line may have positions such as 32.0 and 32.4. Some subjects may consider the defect

to occur at the start of the line (even if there is blank space at the start of the line), while others

may mark its position exactly. Instructing subjects on a uniform method of deciding defect

positions would help reduce this variability. The effect ofthe positioning strategy should be

reduced as the contents factor is increased, since the valueof the position factors decreases at

the same time.

One factor which may generally have had an adverse effect on the results of the auto-

collation experiments was the variability in spelling among subjects. Misspelling of long

words such as ' initialisation' was commonplace. Such misspellings reduce the effectiveness

of word matching between items, stop list matching and stemming. The result is a reduction

in the probability of two items being declared duplicates, thereby reducing the effectiveness

of auto-collation. Although misspellings could have been fixed before the experiments were

carried out, this would not have reflected real usage. The obvious solution to this problem is

provision of a spelling checker within the tool. Subjects also tended to use varying terminol-

ogy. In an industrial setting terminology would probably bemore consistent, which would

also improve performance.

Another factor which may have an effect is the type of defect.Some defects can be re-

ported more accurately than others, and are less likely to vary between subjects. For example,

the use of the wrong operator can be easily described in termsof position and contents. Miss-

ing functionality, on the other hand, is subject to more variability in description and perceived

position.

7.2.4 Conclusions

With the strict criterion of absolutely no loss of defects, auto-collation can reliably remove

10%-35% of duplicates. If the criterion is relaxed slightly, with one or two losses being

acceptable, the rate of removal can be as high as 60-90%. The question of whether the defect

www.manaraa.com

SECTION 7.2: AUTOMATIC DEFECTL IST COLLATION 147

loss is acceptable to reach such removal rates is a difficult one to answer, and depends on the

context in which the system is being used and the relative costs and benefits. The performance

of the auto-collation system would almost certainly be improved by correcting misspellings

in defects and more consistent use of terminology.

www.manaraa.com

Chapter 8

Conclusions

8.1 Summary

Software inspection is widely regarded as an effective defect detection technique. Computer

support for software inspection has been suggested as a means of further increasing its effi-

ciency and effectiveness. This has resulted in the development of a number of prototype tools.

Unfortunately, these systems suffer from a number of shortcomings.

This thesis has investigated the requirements of software inspection support systems. Ex-

isting support tools were critically reviewed and the majorweaknesses were identified. Two

such weaknesses were found. The first concerns process and document independent support.

Virtually all existing tools support only a single inspection process, while there are a number

of variations which may require support. Existing tools arealso limited to inspection of a sin-

gle document type. Support for multiple documents types is essential if computer supported

inspection is to be integrated with existing development environments. The second concerns

enhancing performance during inspection. Existing tools use a simple static representation of

the document which the inspector may annotate. In fact, there is scope for providing facilities

to enhance the inspection process.

To tackle the first concern, a language to allow modelling of inspection processes was

defined. The language, IPDL, was derived by studying the eight processes reviewed in Chap-

ter 2. IPDL was implemented in a prototype inspection support tool known as ASSIST. The

tool can execute any process written in IPDL, ensuring that the process is followed precisely

and that the correct documents are available at each phase. The first version of the tool also

provided the all basic facilities required to support inspection, including a number of browsers,

an annotation mechanism, and a voting system to help resolveissues at the inspection meeting.

www.manaraa.com

SECTION 8.2: CONTRIBUTIONS AND RESULTS 149

The tool was also designed to allow new browsers to be added asrequired, allowing support

for multiple document types.

Having implemented a tool providing the basic set of facilities required to support an in-

spection, an evaluation was performed to compare the effectiveness of paper-based inspection

with tool-based. Questionnaires from the experiment provided useful feedback on the usabil-

ity of ASSIST. The experiment also suggested features whichASSIST could provide to ease

the task of the inspector. A number of features were then chosen and implemented. These

included automatic cross-referencing and active checklists, which were used to create a C++

inspection environment. A means of automatically collating multiple defect lists into a single

master list, with non-identical duplicates being removed,was also designed.

The new version of ASSIST was then used in a second evaluation, comparing the enhanced

version of ASSIST with paper-based inspection. This was identical in execution to the first

comparison experiment. An experiment was also performed totest the effectiveness of the

auto-collation mechanism.

8.2 Contributions and Results

Several major contributions to computer supported software inspection have been made. The

first concerns IPDL, a language which can be used to describe many inspection processes.

Process descriptions can be used to unambiguously communicate that process, or as input

to an inspection support tool to provide support for that process. The language is of low

complexity, enabling processes to be quickly and easily written. Process descriptions are

short, and the English-like syntax of IPDL provides very readable processes.

This thesis has also introduced ASSIST, a prototype inspection support tool used as a

vehicle to implement this research. Table 8.1 compares ASSIST with the other on-line in-

spection tools described in Chapter 3. As can be seen, the only feature not implemented by

ASSIST concerns analysis of documents to automatically finddefects. In other regards, AS-

SIST provides the most comprehensive set of features of any inspection support system. In

addition, ASSIST implements IPDL, allowing support for multiple inspection processes. The

architecture of ASSIST also allows the support of many document types.

The first reported comparisons of paper-based and tool-based inspection are presented

in this thesis. The first compared a basic version of ASSIST with paper-based inspection,

and could detect no significant difference in the performance of subjects using each method.

Hence, it was concluded that the concept of tool-based inspection was not fundamentally

www.manaraa.com

S
E

C
T

IO
N

8
.2

:
C

O
N

T
R

IB
U

T
IO

N
S

A
N

D
R

E
S

U
LT

S
150

ASSIST ICICLE CSI InspeQ Scrutiny TAMMi DCI CSRS CAIS AISA NI InspectA hyperCode WiP
Linked Annotations � � � � � � � � � � �
Defect Classification � � � � � � � � � �
Cross-referencing � �
Automated Analysis �
Checklists � � � � � � �
Supporting Material � � � � � �
Distributed Meetings � � � �
Decision Support � � � � � �
Data Collection � � � � � � �

Table 8.1: Comparison of ASSIST with other on-line inspection tools.

www.manaraa.com

SECTION 8.3: FURTHERWORK 151

flawed, and could be explored further. Feedback from the experiment also provided informa-

tion on ways in which the tool could be improved, and tasks which subjects found difficult.

The second experiment compared an enhanced version of ASSIST with paper-based inspec-

tion. Again, no significant difference was found. Although this result was disappointing,

feedback from subjects indicated that the usability of ASSIST had been increased.

8.3 Further Work

The research presented in this thesis can be extended in several ways. To begin with, IPDL is

currently implemented as a text-only language. Although ASSIST implements a helper which

will produce a skeleton process definition, there is scope for providing an easier means of

producing definitions. For example, IPDL could be partiallyor fully implemented as a graph-

ical language. This is most beneficial when considering the order and type of process phases.

With an appropriate editor, symbols representing each phase type could quickly and easily be

assembled in the correct order. Documents and participantscould also be handled graphically

as named objects. The checklist definition language would also benefit from graphical editing,

easing the creation and modification of checklists.

Evaluation of the research undertaken has been a major themein this thesis. In this respect,

there is still more research which should be performed. The experiments comparing paper-

based and tool-based inspection should be repeated to gain confidence in their results. To

this end, a package containing all materials required to replicate these experiments has been

created and is freely available to interested researchers.This could also be used to perform

similar experiments. Similarly, ASSIST itself is also freely available. Other researchers could

make use of ASSIST as a platform to investigate computer supported software inspection,

extending it as required.

Although the experiments could be replicated without change, there are a number of re-

spects in which they could be improved. To begin with, the useof student subjects limits the

extent to which the results may be generalised. The use of industrial participants would greatly

enhance the external validity. Using industrial code samples would also increase external va-

lidity. Some procedural aspects of the experiments could also be improved. For example, the

enhanced version of ASSIST may not have provided an increasein inspection efficiency due

to the abbreviated training given to subjects. Performing the experiments with experienced

users of the tool would increase validity. Features of ASSIST could be evaluated individually,

since it may be that a gain from one feature is being offset by aloss from another. For ex-

ample, active checklists are designed to increase checklist usage. An experiment comparing

www.manaraa.com

SECTION 8.4: CONCLUDING REMARKS 152

checklist usage may provide more insight into their value.

IPDL is based on existing paper-based processes. As previously stated, it may be the case

that the introduction of tool support alters the manner in which these processes are performed.

This effect may vary depending on the particular facilitiesoffered by an individual tool, along

with the familiarity of users with that tool. A simple tool will encourage less change in the

method of inspection than a feature-rich tool. An expert user will have developed an individual

manner of using the tool, and will be capable of using more features. Hence, these type of

effects should be investigated. There is also an opportunity to investigate processes which are

only feasible with the aid of tool support. Asynchronous inspection is such a process which

has already been investigated. Such investigation may leadto refinement and extension of

IPDL to model such tool-dependent processes. IPDL processes are also static, and ASSIST

does not allow their modification once underway. Another avenue of research could consider

the area of dynamic process change, allowing the inspectionprocess to be modified part-way

through execution.

The auto-collation experiments could also be repeated in several ways. To begin with, the

use of other defect lists would help provide confidence in itsperformance. The same defect

lists could also be used, this time with spelling errors corrected, to test the hypothesis that such

spelling errors had an adverse effect on the auto-collationmechanism. Finally, the defects in

the lists used were not classified. Lists of classified defects could be used to investigate the

effect of classification.

Appendix A describes two related areas of research considered for this thesis but not

pursued. One concerns methods of enhancing the defect detection capability of participants,

with specific reference to object-oriented systems. This research is necessary since features

of the object-oriented paradigm can hinder the inspection task. The second concerns the

collection and analysis of inspection data. Several uses ofthis data are explored, including

general inspection process improvement, checklist formation and improvement and estimating

defects remaining after inspection.

8.4 Concluding Remarks

From the research performed, it is clear that computer supported software inspection is a

valuable line of research. When tool-based inspection was compared with paper-based, no

difference in inspector performance could be detected. This provides a baseline for exploring

more advanced tool support, with enhanced facilities to help inspectors find defects. When

coupled with the less quantifiable advantages of tool support – the ability to easily collect data,

www.manaraa.com

SECTION 8.4: CONCLUDING REMARKS 153

process rigour, the use of electronic versions of documents, support for distributed inspection,

etc. – the result indicates that a move to computer supportedinspection could, in general, be

beneficial.

The research methodology employed proved to be ideal. To begin with, existing tools were

investigated and their weaknesses identified. These weaknesses were used to help create the

specification for ASSIST. Existing inspection processes were used to help design IPDL. The

first version of ASSIST was then implemented and evaluated. The results of this evaluation

were used to design improvements for the second version. A second evaluation was then

performed. This cycle of design/evaluation could have beenrepeated as required. There is

one caveat: feedback from subjects during the second experiment was less useful than that

from the first. The limited experience of subjects may have been a factor here. Hence, the

design/evaluation cycle would be more effective if continued with software professionals.

There is much scope for further research in computer supported software inspection. The

full potential of inspection may not yet have been reached, and innovative research in this area

may be the means of achieving even greater results than the many positive experience reports

already found in the literature. As one of the most successful defect finding techniques in use,

it deserves much more research to explore its full potential.

www.manaraa.com

Bibliography

[1] T. K. Abdel-Hamid and S. E. Madnick. Lessons learned frommodelling the dynamics

of software development.Communications of the ACM, 32(12):1426–1438, December

1989.

[2] J. E. Arnold and S. S. Popovich. Integrating, customising and extending environments

with a message-based architecture. Technical Report CUCS-008-95, Department of

Computer Science, Columbia University, New York, 1995.

[3] J. T. Baldwin. An abbreviated C++ code inspection checklist. Available on the WWW,

URL: http://www.ics.hawaii.edu/ johnson/FTR/Bib/Baldwin92.html, 1992.

[4] S. Bandinelli, A. Fuggetta, and C. Ghezzi. Software process model evolution in

SPADE. IEEE Transactions on Software Engineering, 19(12):1128–1144, December

1993.

[5] S. Bandinelli, A. Fuggetta, C. Ghezzi, and L. Lavazza. SPADE: An environment for

software process analysis, design and enactment. In A. Finkelstein, J. Kramer, and

B. Nuseibeh, editors,Software Process Modelling and Technology, chapter 9, pages

223–247. Research Studies Press, Ltd., 1994.

[6] H. J. Barnard and R. B. Collicott. COMPAS: A development process support system.

AT&T Technical Journal, 62(2):52–64, March/April 1990.

[7] J. Barnard and A. Price. Managing code inspection information. IEEE Software,

11(2):56–69, March 1994.

[8] V. R. Basili and R. W. Selby. Comparing the effectivenessof software testing strategies.

IEEE Transactions on Software Engineering, 13(12):1278–1296, December 1987.

[9] Bell Communications Research.ICICLE User's Guide, January 1993.

www.manaraa.com

BIBLIOGRAPHY 155

[10] C. A. Boneau. The effects of violations of assumptions underlying thet test. Psycho-

logical Bulletin, 57(1):49–64, 1960.

[11] G. Booch. Object-Oriented Analysis and Design with Applications. Benjamin Cum-

mings, second edition, 1994.

[12] L. R. Brothers, V. Sembugamoorthy, and A. E. Irgon. Knowledge-based code inspection

with ICICLE. In Innovative Applications of Artificial Intelligence 4: Proceedings of

IAAI-92, 1992.

[13] L. R. Brothers, V. Sembugamoorthy, and M. Muller. ICICLE: Groupware for code

inspections. InProceedings of the 1990 ACM Conference on Computer Supported

Cooperative Work, pages 169–181, October 1990.

[14] N. Brown. Industrial-strength management strategies. IEEE Software, 13(4):94–103,

July 1996.

[15] Bull HN Information Systems, Inc., U.S. Applied Research Laboratory.Scrutiny User's

Guide, May 1994.

[16] Bull, S.A. Inspection Process Assistant: User Guide V3.0, September 1997.

[17] A. Burr and M. Owen.StatisticalMethods for Software Quality. International Thomson

Computer Press, 1996.

[18] T. Cai, P. A. Gloor, and S. Nog. DartFlow: A workflow management system on the

Web using transportable agents. Technical Report PCS-TR96-283, Dartmouth College,

1996.

[19] J. K. Chaar, M. J. Halliday, I. S. Bhandari, and R. Chillarege. In-process evalua-

tion for software inspection and test.IEEE Transactions on Software Engineering,

19(11):1055–1070, November 1993.

[20] Y. Chernak. A statistical approach to the inspection checklist formal synthesis and im-

provement.IEEE Transactions on Software Engineering, 22(12):866–874, December

1996.

[21] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus, B. K. Ray, and

M-Y. Wong. Orthogonal defect classification: A concept for in-process measurements.

IEEE Transactions on Software Engineering, 18(11):943–956, November 1992.

www.manaraa.com

BIBLIOGRAPHY 156

[22] A. M. Christie. A graphical process definition languageand its application to a main-

tenance project.Information and Software Technology, 35(6/7):364–374, June/July

1993.

[23] R. Conradi, M. Hagaseth, J-O. Larsen, M. N. Nguyên, B. P. Munch, P. H. Westby,

W. Zhu, M. L. Jaccheri, and C. Liu. EPOS: Object-oriented cooperative process mod-

elling. In A. Finkelstein, J. Kramer, and B. Nuseibeh, editors,Software Process Mod-

elling and Technology, chapter 3, pages 33–70. Research Studies Press, Ltd., 1994.

[24] R. T. Crocker and A. von Mayrhauser. Maintenance support needs for object-oriented

software. InProceedings of COMPSAC '93, pages 63–69, 1993.

[25] C. B. Darling. Embrace change with workflow tools.Datamation, 42(16):102–111,

October 1996.

[26] A. Davis.cppp - a C++ parser. Available from the Brown Computer Science Software

Catalog, URL:http://www.cs.brown.edu/software/catalog.html .

[27] D. B. Davis. Software that makes your work flow.Datamation, 38:75–78, 15th April

1991.

[28] H.M. Deitel and P.J. Deitel.C: How to Program. Prentice-Hall International, second

edition, 1994.

[29] A. Dillon. Reading from paper versus screens: a critical review of the empirical litera-

ture. Ergonomics, 35(10):1297–1326, October 1992.

[30] B. S. Doherty and S. Sahibuddin. Software quality through distributed code inspection.

In C. Tasso, R. A. Adeyi, and M. Pighin, editors,Software Quality Engineering, pages

159–168. Computational Mechanics Publications, 1997.

[31] E. P. Doolan. Experience with Fagan's inspection method. Software–Practice and

Experience, 22(2):173–182, February 1992.

[32] R. G. Ebenau. Predictive quality control with softwareinspections.CrossTalk, 7(6):9–

16, June 1994.

[33] R. G. Ebenau and S. H. Strauss.Software Inspection Process. McGraw-Hill, 1994.

[34] A. L. Edwards.Statistical Methods. Holt, Rinehart and Winston, Inc, second edition,

1967.

www.manaraa.com

BIBLIOGRAPHY 157

[35] S. G. Eick, C. R. Loader, M. D. Long, L. G. Votta, and S. A. Vander Weil. Estimating

software fault content before coding. InProceedings of the Fourteenth International

Conference on Software Engineering, pages 59–65, May 1992.

[36] S. G. Eick, J. L. Steffen, and E. E. Sumner Jr. Seesoft - a tool for visualizing line

oriented software statistics.IEEE Transactions on Software Engineering, 18(11):957–

968, November 1992.

[37] M. E. Fagan. Design and code inspections to reduce errors in program development.

IBM Systems Journal, 15(3):182–211, 1976.

[38] M. E. Fagan. Advances in software inspection.IEEE Transactions on Software Engi-

neering, 12(7):744–751, July 1986.

[39] International Institute for Applied Systems Analysis. Library search stop list. URL:

http://www.iiasa.ac.at/docs/R Library/libsrchs.html .

[40] D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of workflow manage-

ment: from process modelling to workflow automation infrastructure.Distributed and

Parallel Databases, 3(2):119–153, April 1995.

[41] T. Gilb and D. Graham.Software Inspection. Addison-Wesley, 1993.

[42] J. W. Gintell. A brief history of Scrutiny, February 1997. Personal communication.

[43] J. W. Gintell, J. Arnold, M. Houde, J. Kruszelnicki, R. McKenney, and G. Memmi.

Scrutiny: A collaborative inspection and review system. InProceedings of the Fourth

European Software Engineering Conference, September 1993.

[44] J. W. Gintell, M. B. Houde, and R. F. McKenney. Lessons learned by building and using

Scrutiny, a collaborative software inspection system. InProceedings of the Seventh

International Workshop on Computer Aided Software Engineering, July 1995.

[45] R. Gribben. Software snags hold back air-traffic control launch. Daily Telegraph, 9th

April 1996.

[46] L. Harjumaa and I. Tervonen. A WWW-based tool for software inspection. InPro-

ceedings of HICSS-98, volume III, pages 379–388, 1998.

[47] D. Harman. Automatic indexing. In R. Fidel, T. B. Hahn, E. M. Rasmussen, and P. J.

Smith, editors,Challenges in Indexing Electronic Text and Images, chapter 13, pages

247–264. Learned Information, Inc., 1994.

www.manaraa.com

BIBLIOGRAPHY 158

[48] D. Heimbigner. The ProcessWall: a process state serverapproach to process program-

ming. ACM SIGSOFT Software Engineering Notes, 17(5):159–168, December 1992.

[49] K. E. Huff and V. R. Lesser. A plan-based intelligent assistant that supports the soft-

ware development process.ACM SIGSOFT Software EngineeringNotes, 13(5):97–106,

November 1988.

[50] W. S. Humphrey. Managing the Software Process, chapter 10, pages 171–190.

Addison-Wesley, 1989.

[51] W. S. Humphrey.A Discipline for Software Engineering. Addison-Wesley, 1995.

[52] J. B. Iniesta. A tool and a set of metrics to support technical reviews. In2nd Interna-

tional Conference on Software Quality Management, volume 1, pages 579–594, 1994.

[53] ISO. Information Processing Systems - Open Systems Interconnection - LOTOS, A

Formal Description Technique based on the Temporal Ordering of Observational Be-

haviour. International Organisation for Standardisation, ISO 8807, August 1988.

[54] M. L. Jaccheri and R.Conradi. Techniques for process model evolution in EPOS.IEEE

Transactions on Software Engineering, 19(12):1145–1156, December 1993.

[55] P. M. Johnson. An instrumented approach to improving software quality through formal

technical review. InProceedings of the 16th International Conference on Software

Engineering, May 1994.

[56] P. M. Johnson. Supporting technology transfer of formal technical review through a

computer supported collaborative review system. InProceedings of the 4th Interna-

tional Conference on Software Quality, October 1994.

[57] P. M. Johnson and D. Tjahjono. CSRS users guide. Technical Report ICS-TR-93-16,

Collaborative Software Development Laboratory, Department of Information and and

Computer Sciences, University of Hawaii, 1993.

[58] C. Jones. Gaps in the object-oriented paradigm.IEEE Computer, 27(6):90–91, June

1994.

[59] C. L. Jones. A process-integrated approach to defect prevention.IBM Systems Journal,

24(2):150–167, 1985.

www.manaraa.com

BIBLIOGRAPHY 159

[60] G. E. Kaiser, N. S. Barghouti, and M. H. Sokolsky. Preliminary experience with process

modelling in the Marvel software development environment kernel. InProceedings of

the 23rd Hawaii Conference on System Sciences, pages 131–140, January 1990.

[61] G. E. Kaiser, P. H. Feller, and S. S. Popovich. Intelligent assistance for software devel-

opment and maintenance.IEEE Software, 5(3):40–49, May 1988.

[62] E. Kamsties and C. M. Lott. An empirical evaluation of three defect-detection tech-

niques. Technical Report ISERN-95-02, International Software Engineering Research

Network, May 1995.

[63] S. Kaplan, W. J. Tolone, D. P. Bogia, and C. Bignoli. Flexible, active support for

collaborative work with ConversationBuilder. InProceedings of the ACM Conference

on Computer Supported Cooperative Work, 1992.

[64] G. Kappel, B. Pröll, S. Rausch-Scott, and W. Retschitzegger. TriGSflow active object-

oriented workflow management. InProceedings of the 28th Hawaii International Con-

ference on System Sciences, pages 772–736, January 1995.

[65] J. C. Knight and E. A. Meyers. Phased inspections and their implementation.Software

Engineering Notes, 16(3):29–35, July 1991.

[66] J. C. Knight and E. A. Meyers. An improved inspection technique.Communications of

the ACM, 36(11):51–61, November 1993.

[67] M. M. Lehman. Software engineering, the software process and their support.Software

Engineering Journal, 6(5):243–258, September 1991.

[68] M. Lutz. Programming Python. O' Reilly & Associates, first edition, 1996.

[69] F. Macdonald. ASSIST V1.1 User Manual. Technical Report EFoCS-22-96, Depart-

ment of Computer Science, University of Strathclyde, February 1997.

[70] F. Macdonald. ASSIST V2.1 User Manual. Technical Report EFoCS-28-98, Depart-

ment of Computer Science, University of Strathclyde, March1998.

[71] F. Macdonald and J. Miller. Modelling software inspection methods for the application

of tool support. Technical Report EFoCS-16-95 [RR/95/196], Department of Computer

Science, University of Strathclyde, December 1995.

www.manaraa.com

BIBLIOGRAPHY 160

[72] F. Macdonald and J. Miller. ASSISTing with software inspection. InProceedings

of the 1st International Software Quality Week/Europe. Software Research Institute,

November 1997.

[73] F. Macdonald and J. Miller. Automated generic support for software inspection. InPro-

ceedings of the 10th International Software Quality Week. Software Research Institute,

May 1997.

[74] F. Macdonald and J. Miller. A software inspection process definition language and

prototype support tool.Software Testing, Verification and Reliability, 7(2):99–128,

June 1997.

[75] F. Macdonald and J. Miller. ASSIST - a tool to support software inspection. Submitted

to the Journal of Information and Software Technology, 1998.

[76] F. Macdonald and J. Miller. A comparison of computer support systems for software

inspection. Submitted to Automated Software Engineering:An International Journal,

1998.

[77] F. Macdonald and J. Miller. A comparison of tool-based and paper-based software

inspection. Empirical Software Engineering: An Internatinal Journal, 3(3), Autumn

1998.

[78] F. Macdonald, J. Miller, A. Brooks, M. Roper, and M. Wood. A review of tool sup-

port for software inspection. InProceedings of the Seventh International Workshop on

Computer Aided Software Engineering, pages 340–349, July 1995.

[79] F. Macdonald, J. Miller, A. Brooks, M. Roper, and M. Wood. Applying inspection to

object-oriented code.Software Testing, Verification and Reliability, 6(2):61–82, June

1996.

[80] F. Macdonald, J. Miller, A. Brooks, M. Roper, and M. Wood. Automating the soft-

ware inspection process.Automated Software Engineering: An International Journal,

3(3/4):193–218, August 1996.

[81] B. Marick. A question catalog for code inspections. Available via anonymous FTP

from cs.uiuc.edu as /pub/testing/inspect.ps, 1992.

[82] J. Martin and W.-T. Tsai. N-Fold inspection: A requirements analysis technique.Com-

munications of the ACM, 33(2):225–232, February 1990.

www.manaraa.com

BIBLIOGRAPHY 161

[83] V. Mashayekhi. Distribution and Asynchrony in Software Engineering. PhD thesis,

University of Minnesota, March 1995.

[84] V. Mashayekhi, J. M. Drake, W.-T. Tsai, and J. Reidl. Distributed, collaborative soft-

ware inspection.IEEE Software, 10(5):66–75, September 1993.

[85] V. Mashayekhi, C. Feulner, and J. Reidl. CAIS: Collaborative Asynchronous Inspec-

tion of Software. InProceedings of the Second ACM SIGSOFT Symposium on the

Foundations of Software Engineering, December 1994.

[86] I. R. McChesney. Towards a classification scheme for software process modelling ap-

proaches.Information and Software Technology, 37(7):363–374, July 1995.

[87] E. A. Meyers and J. C. Knight. An improved software inspection technique and an

empirical evaluation of its effectiveness. Technical Report TR-92-15, Department of

Computer Science, University of Virginia, May 1992.

[88] J. Miller and F. Macdonald. ASSISTing management decisions in software inspection

processes. InProceedings the 13th IEEE Conference on Automated SoftwareEngineer-

ing, October 1998.

[89] J. Miller and F. Macdonald. An incremental approach to tool development and evalua-

tion. Submitted to the Journal of Systems and Software, 1998.

[90] J. Miller, M. Roper, and M. Wood. Further experiences with scenarios and checklists.

Journal of Empirical Software Engineering, 3(1):37–64, 1998.

[91] J. A. Miller, D. Palaniswami, A. P. Sheth, K. J. Kochut, and H. Singh. WebWork:

METEOR2' s Web-based workflow management system.Journal of Intelligent Infor-

mation Systems, 10(2):1–30, 1998.

[92] J. A. Miller, A. P. Sheth, K. J. Kochut, and D. Palaniswami. The future of Web-based

workflows. InProceedings of the International Workshop on Reserahc Directions in

Process Technology, July 1997.

[93] P. Murphy and J. Miller. A process for asynchronous software inspection. InPro-

ceedings of The 8th International Workshop on Software Technology and Engineering

Practice, pages 96–104, July 1997.

[94] D. L. Parnas, J. Madey, and M. Iglewski. Precise documentation of well-structured

programs. IEEE Transactions on Software Engineering, 20(12):948–976, December

1994.

www.manaraa.com

BIBLIOGRAPHY 162

[95] D. L. Parnas and D. M. Weiss. Active design reviews: Principles and practices. In

Proceedings of the Eighth International Conference on Software Engineering, pages

132–136, August 1985.

[96] W. De Pauw, R. Helm, D. Kimelman, and J. Vlissides. Visualizing the behaviour of

object-oriented systems. InProceedings of the 8th International Conference on Object-

Oriented Programming Systems, Languages and Applications, pages 326–337, 1993.

[97] J. M. Perpich, D. E. Perry, A. A. Porter, L. G. Votta, and M. W. Wade. Anywhere,

anytime code inspections: Using the web to remove bottlenecks in large-scale soft-

ware development. InProceedings of the 19th International Conference on Software

Engineering, pages 14–21, 1997.

[98] C. Ponder and W. Bush. Polymorphism considered harmful. ACM SIGSOFT Software

Engineering Notes, 19(2):35–37, April 1994.

[99] A. A. Porter, L. G. Votta, and V. R. Basili. Comparing detection methods for software

requirements inspections: A replicated experiment.IEEE Transactions on Software

Engineering, 21(6):563–575, June 1995.

[100] M. F. Porter. An algorithm for suffix stripping.Program, 14(3):130–137, 1980.

[101] M. Putaala and I. Tervonen. Inspecting Postscript documents in an object-oriented

environment. In5th European Conference on Software Quality, 1997.

[102] J. Reidl, V. Mashayekhi, J. Schnepf, M. Claypool, and D. Frankowski. Suitesound - a

system for distributed collaborative multimedia.IEEE Transactions on Knowledge and

Data Engineering, 5(4):600–610, 1993.

[103] G. W. Russell. Experience with inspection in ultralarge-scale developments.IEEE

Software, 8(1):25–31, January 1991.

[104] V. Sembugamoorthy and L. R. Brothers. ICICLE: Intelligent Code Inspection in a C

Language Environment. InProceedings of the 14th Annual Computer Software and

Applications Conference, pages 146–154, October 1990.

[105] M. E. Shaw.Group Dynamics: The Psychology of Small Group Behaviour. McGraw-

Hill, 1971.

[106] E. Soloway, J. Pinto, S. Letovsky, D. Littman, and R. Lampert. Designing documenta-

tion to compensate for delocalized plans.Communications of the ACM, 31(11):1259–

1267, November 1988.

www.manaraa.com

BIBLIOGRAPHY 163

[107] P. Sparaco. Board faults Ariane-5 software.Aviation Week and Space Technology,

145(5):33–34, 1996.

[108] M. Stein, J. Riedl, S. J. Harner, and V. Mashayekhi. A case study of distributed, asyn-

chronous software inspection. InProceedings of the 19th International Conference on

Software Engineering, pages 107–117, 1997.

[109] S. M. Sutton, Jr., D. Heimbigner, and L. J. Osterweil. APPL/A: A language for software

process programming.ACM Transactions on Software Engineering and Methodology,

4(3):221–286, July 1995.

[110] M. Suzuki and T. Katayama. Metaoperations in the process model HFSP for the dy-

namics and flexibility of software processes. InProceedings of the First International

Conference on the Software Process, pages 202–217, 1991.

[111] K. D. Swenson. A visual language to describe collaborative work. In Proceedings of

the 1993 IEEE Symposium on Visual Languages, August 1993.

[112] K. D. Swenson, R. J. Maxwell, T. Matsumoto, B. Saghari,and K. Irwin. A business

process environment supporting collaborative planning.Journal of Collaborative Com-

puting, 1(1):119–153, Spring 1994.

[113] I. Tervonen. Consistent support for software designers and inspectors.Software Quality

Journal, 5:221–229, 1996.

[114] I. Tervonen. Support for quality-based design and inspection.IEEE Software, 13(1):44–

54, January 1996.

[115] C. Thompson and J. Riedl. Collaborative asynchronousinspection of software using

Lotus Notes. Technical Report TR 95-047, Computer Science Department, University

of Minnesota, 1995.

[116] D. Tjahjono. Comparing the cost effectiveness of group synchronous review method

and individual asynchronous review method using CSRS: Results of pilot study. Tech-

nical Report ICS-TR-95-07, University of Hawaii, January 1995.

[117] D. Tjahjono. Exploring the Effectiveness of Formal Technical Review Factors with

CSRS, a Collaborative Software Review System. PhD thesis, Department of Information

and Computer Sciences, University of Hawaii, June 1996.

www.manaraa.com

BIBLIOGRAPHY 164

[118] L. G. Votta. Does every inspection need a meeting? InProceedings of the First ACM

SIGSOFT Symposium on the Foundations of Software Engineering, pages 107–114,

December 1993.

[119] E. F. Weller. Lessons from three years of inspection data. IEEE Software, 10(5):38–45,

September 1993.

[120] S. A. Vander Wiel and L. G. Votta. Assessing software designs using capture-recapture

methods.IEEE Transactions on Software Engineering, 19(11):1045–1054, November

1993.

[121] N. Wilde, P. Matthews, and R. Huitt. Maintaining object-oriented software.IEEE

Software, 10(1):75–80, January 1993.

[122] M. Wood, M. Roper, A. Brooks, and J. Miller. Comparing and combining software de-

fect detection techniques: a replicated empirical study. In M. Jazayeri and H. Schauer,

editors,Proceedings of The Sixth European Software Engineering Conference / Fifth

ACM SIGSOFT Symposium on the Foundations of Software Engineering, pages 262–

277, September 1997.

[123] K. Yasumoto, T. Higashino, and K. Taniguchi. Softwareprocess description using LO-

TOS and its enaction. InProceedings of the 16th International Conference on Software

Engineering, pages 169–178, May 1994.

[124] E. Yourdon.Structured Walkthroughs. Yourdon Press, fourth edition, 1989.

www.manaraa.com

Appendix A

Future Directions in Computer

Supported Software Inspection

Providing computer support for software inspection is an open-ended task. This appendix

details some avenues of research considered for this thesis, but not pursued. There are two

main themes of research which require much consideration. The first concerns facilities to

enhance the defect detection process, allowing inspectorsto find more defects with less effort.

One of the most important areas here is considered: the support of object-oriented software.

The second theme concerns the collection of data from the inspection to predict and control

the process. Several areas within this theme are described.

A.1 Applying Inspection to Object-Oriented Code

The last decade or so has seen an explosion in the use of object-oriented techniques, with

languages such as C++ and now Java becoming incredibly popular. The object-oriented

paradigm is claimed to provide a number of benefits [11]. These include improved modu-

larity, data hiding and encapsulation via the class mechanism, which results in low coupling

and high cohesion. Reuse via inheritance and generic classes is another quoted benefit, and

reduced maintenance costs are also claimed. Given that inspection is supposedly the most

cost-effective means of finding defects, and the popularityof object-oriented programming

languages, it is surprising that there is no published experience of inspecting object-oriented

code, as indicated by Jones [58] and supported by a search of the literature.

www.manaraa.com

APPENDIXA: A PPLYING INSPECTION TOOBJECT-ORIENTED CODE 166

In fact the very features of object-oriented languages which are believed to deliver benefits

also make the code more difficult to inspect. A similar effecthas been found in when testing

object-oriented software. The problems are compounded by the static nature of inspection:

the effect of many object-oriented constructs can only be easily seen when the program is ex-

ecuted. Similar problems have been reported concerning maintenance of object-oriented code

[121]. Like inspection, maintenance requires understanding of the code. Unlike inspection,

maintenance is by definition performed on a complete (and hence theoretically executable)

system.

A typical object-oriented system can consist of many classes each of which may contain

many small methods. Each of these methods provides only a little functionality (for examples

of this, see Wildeet al. [121]). Therefore to understand more than just trivial parts of the

system, large numbers of these methods must be cognitively grouped together and chains of

method invocations followed. This is similar to the “delocalised plans” proposed by Soloway

et al. [106], which occur when conceptually related code is spread over spatially distributed

parts of the program.

Inheritance also causes difficulty in understanding code due to the distribution of be-

haviour over several classes. With single inheritance, when an inherited method is called

the inspector must traverse the inheritance hierarchy to find its definition. In deep hierarchies

with many inherited classes the definition may take some timeto locate, with the inspector

moving further and further from the original code. Multipleinheritance causes similar prob-

lems, but these are exacerbated by having a number of paths tofollow when searching for a

method or feature definition.

Polymorphism is the ability to take more than one form. In object-oriented programming,

it generally denotes the ability of a declaration to refer tomore than one class of object.

Polymorphism goes hand in hand with dynamic binding, which allows the function associated

with such a reference to be inferred at run time. This contrasts with static binding, where the

exact function call is known when the executable is produced. The concept of polymorphism

is very powerful, but this power comes with a price. Ponder and Bush [98] have written about

the problems that polymorphism causes for program understanding due to dependence on the

dynamic data state of the program. The problem is especiallyacute when combined with

inheritance. Essentially, the specific methods called whenthe program is executed depend on

the state of data within the program and cannot be easily inferred from a static code listing.

Genericity is used to define a related family of classes. The class is defined with one

or more type parameters which can then be used as normal typeswithin the class definition.

When the class is instantiated with the appropriate type, all instances of the argument are

www.manaraa.com

APPENDIXA: A PPLYING INSPECTION TOOBJECT-ORIENTED CODE 167

replaced by the new type to produce a new class. Generic classes are difficult to inspect

because the behaviour of the class depends on its instantiation.

So far it has been assumed that the entire system is capable ofbeing inspected at once.

In reality, most systems will be far too complex to be inspected in a single step, and will be

partitioned into smaller sections according to the appropriate inspection rate. For a simple

object-based system, the problem is no worse than for modular procedural code. For a system

with a large inheritance hierarchy, the problem is much moredifficult. There are many de-

pendencies which must be resolved, and if the system is arbitrarily split then inspectors may

be left with references to code which they have no access to. When inheritance is involved

there is a problem similar to that found in testing, where although it is tempting to inspect a

class in isolation, it must actually be inspected in the context of its parent classes because of

the possibility of hidden interactions. On the other hand single methods may be too small a

unit to inspect, with very little semantic information to allow an accurate characterisation of

the behaviour of the system.

Two techniques which can make code more amenable to inspection are better program-

ming styles, such as limiting the use of inheritance, and better documentation, such as that

proposed by Solowayet al. [106] or Parnaset al. [94]. These are not considered further here.

Instead, the opportunities for tool support for existing code are investigated.

Existing inspection tools treat code as a static document. From the above discussion it is

clear that this is not sufficient, since the dynamic behaviour of the system is far more important

with object-oriented code. The static nature of inspectionshould not change when it is applied

to object-oriented code, however. Exploration of the dynamic properties of an object-oriented

system should not require that the code be executable, otherwise the nature of the inspection

itself has been altered and moved towards testing. The solution may come from intelligent

browsers which allow the inspector to explore possible execution paths without requiring the

entire system to be finished and executable. For example, given a polymorphic function call,

the browser could list all possible functions which may be called in the subset of the system

which is being inspected. The inspector is presented with a more active document which

allows the dynamic properties of the program to be explored.

Tools designed to support maintenance have some value for inspection. One example

is Valhalla, a prototype object-oriented development environment described by Wildeet al.

[121]. This system provides object animation capabilities, allowing the viewing of messages

passed between objects. This can aid understanding of the dynamic properties of the system.

Instead of analysing static pages of text, the inspection would then consist of analysing these

animations. Among the tools described by Crocker and Mayrhauser [24] are several which

www.manaraa.com

APPENDIXA: A PPLYING INSPECTION TOOBJECT-ORIENTED CODE 168

would be useful for inspection. Theinheritance hierarchy generatorgenerates a graph of the

inheritance relationship in the system, which can then be studied to enhance understanding of

the system. Acode browsercan be used to display the program and, when used in conjunction

with thecode slicer, allows the view of the program to be limited by certain criteria, such as

occurrences of a certain variable or method call.

Given that a major problem in inspecting object-oriented code is tracing method calls and

references over several classes, it may be useful to have some form of reduced representation,

providing an overall view of the code being inspected. Such arepresentation would be similar

to that used by Seesoft, as described by Eicket al. [36]. Seesoft is a tool designed for visu-

alising line-oriented software statistics. The main window consists of a number of columns,

each of which represents a source code file. Within these columns, a horizontal line is used

to represent a line of code within the file. These lines are coloured according to the value of

some attribute, e.g. age. A separate scale is used to displaythe entire value range for this

attribute. The user can click on values in this scale, or the columns and lines themselves to

toggle each value on and off. This allows the display of code with just a certain value or a

range of values, and allows the user to find useful patterns inthe code. This type of tool could

be extended to assist inspection of object-oriented code asfollows. While inspecting code in

a reading window the reduced representation would highlight the current line of code. If this

line was a method invocation, the definition of that method would also be highlighted. The

inspector could then immediately move to that definition, and so on. The history of such a

progression may be stored and when the inspector comes to a suitable understanding of some

method, it would be possible to quickly backtrack to the previous method, where this under-

standing could be applied. This process would continue until the original starting point was

reached. By speeding the traversal between methods, it is easier for an inspector to gain an

understanding of the code, forming a mental picture of the system with the reduced representa-

tion. This system could also be to help decide which code should be included in an inspection.

By tracing method invocations, the classes required to perform the inspection could quickly

be found.

Other visualisation systems designed for object-orientedcode may provide help with in-

spection. For example, De Pauwet al. [96] describe a language independent visualisation

system which uses a preprocessor to instrument programs with code which generates events.

These events can be received by a visualisation applicationwhich can use the data to update

one or more views of the program, such as an inter-class call matrix, showing patterns of com-

munication between each class. Although intended for use indebugging and code tuning and

relying on having the entire system available and running, the principles could be applied to

www.manaraa.com

APPENDIXA: DATA COLLECTION AND ANALYSIS 169

smaller sections of code. Visualisation could allow the inspection team to provide summary

information on which methods and classes are used by each class. They can then use this

information to partition code for inspection.

There is much research ongoing in program understanding andvisualisation tools for

object-oriented software. Software inspection is an idealplatform for evaluating this research,

since a fundamental task during inspection is understanding code. Defect detection efficiency

of the inspection can indicate the usefulness of a certain method or tool. Note that a fuller

discussion of all the above issues can be found in [79].

A.2 Data Collection and Analysis

Gathering data concerning the inspection process is essential to improve and fine-tune the

process [41]. While collecting such data manually is time-consuming and error-prone, auto-

matic collection can occur transparently, with far greateraccuracy. All effort can therefore be

expended on the main task of inspection: finding defects. Implementing such data collection

facilities is also vital when empirically investigating the inspection process. Data collected

can provide insights into which aspects of the tool and process are working well, and it may

be possible to measure improvements. IPDL already providesa basic facility to express data

collection, although user-controllable data collection is not available in its implementation in

ASSIST.

The data collected must be used in some meaningful way to justify its collection. Tool

support provides an opportunity to automatically analyse such data and provide instant feed-

back on the inspection. It also allows non-traditional measures to be collected and to be used

in ways specific to tool-based inspection. This section describes scope for data collection and

the uses of such data.

A.2.1 Process Measurement

Gilb and Graham [41] define over fifty measures which should becollected. Measures defined

by others, such as Ebenau and Strauss [33], are simply subsets of those provided by Gilb and

Graham, perhaps using differing terminology. They can be divided into three different cate-

gories: size measures, duration measures and rate measures. These are described separately,

along with representative examples and how they may be collected. Note that the names of

these measures are those used by Gilb and Graham and do not necessarily reflect terminology

used in other literature, although they are still valid measures in all inspection processes.

www.manaraa.com

APPENDIXA: DATA COLLECTION AND ANALYSIS 170

Size Measures

Size measures are the simplest to collect, involving simpledirect measurement of such vari-

ables as document lengths and defect counts.

number of checkers- the number of inspectors actually searching for defects during the

inspection. While this may appear to be a simple measure to collect, it is complicated by the

fact that there may be one or more participants in the inspection who does not perform defect

detection, e.g. the author.

items-noted- a generic count of all issues and defects raised by an individual inspector.

This is simply the count of items in an inspector's defect list. If defect classification is used,

the count can be subdivided according to type, class and severity.

pages-studied- the number of pages which have been inspected during individual prepa-

ration (where a page is a well-defined entity, e.g. a specific word count or line count). In its

simplest form it is the length of the document under inspection, which is easy to automatically

collect. A tool-supported system could also collect the exact amount of the document viewed.

For example, the text browser in ASSIST has the idea of a “current focus”, i.e. an area of the

document currently under scrutiny. The sum of all parts of the document which have been the

focus can be considered to be the amount inspected.

Duration Measures

Duration measures concern the amount of time required to perform certain activities.

checking-time- total time spent by all inspectors in individualpreparation. This is another

measure which is easy to define but more difficult to collect. With paper-based inspection,

each inspector can make an estimate of their time, although this estimate is rather error-prone

(either intentionally or unintentionally). With a tool-based inspection, it is theoretically easy

to collect: the system simply measures how long the inspector uses the tool. In practice,

however, an inspector may start up the tool then become sidetracked on another task, either

on the computer or away from the computer. The result is an artificially inflated time. This

can be partially overcome by monitoring the position of the mouse pointer and only counting

time when the mouse pointer is within windows belonging to the inspection tool.

logging-meeting-duration - the time spent in the group meeting. This can be split into

two subcomponents: thelogging duration (time spent reporting issues) and thediscussion-

duration (time spent discussing issues). The purpose of keeping these subcomponents sepa-

rate is to provide a more exact estimate of the time spent in inspection activities. A tool-based

inspection could easily support the collection of these components by providing the moderator

www.manaraa.com

APPENDIXA: DATA COLLECTION AND ANALYSIS 171

with a control to indicate when the meeting goes from issue reporting to issue discussion, and

vice versa.

Rate Measures

Rates are not measured directly. Instead they are calculated from various size and duration

measures.

logging-rate - the number of items logged per minute during the group meeting. This is

simply the total number of items logged divided by the logging-meeting-duration, and can be

easily calculated by a support tool.

defect-density - the number of defects per page in the product. This is calculated by

dividing the total number of defects found in the product by the size of the product. Again,

this is easily calculated by the tool

efficiency - defects found per hour of time spent detecting and correcting defects. This

is the total number of defects found divided by the total timespent detecting defects and

removing them. This also easily calculated by the tool provided all time invested is logged.

A.2.2 General Process Feedback

In its most basic form, the data gathered can provide simple process feedback. A database of

information from previous inspections would be stored by the tool, which could be queried on

parameters such as the inspection process used, number of inspectors, product type inspected,

and so on. One use of this data is to determine the parameters for the most cost-effective

inspection of each product type, in terms of the process used, number of inspectors, etc.

Historical data for the appropriate inspection type can be compared with data from the

current inspection. If the data from the current inspectionappears to fall outwith the bounds

considered “normal” for that inspection type, further action could be taken. For example, the

number of defects found can be compared against the historical average, allowing the mod-

erator to estimate whether the inspection has been sufficiently successful or if a re-inspection

should be held. The defect profile (i.e. the relative mix of defect types found) could be studied

to check for abnormalities [19]. Other measures, such as defect detection rate and time spent

in inspection, can be considered in a similar manner.

A more formal approach to the above can be found in Statistical Process Control [17]. SPC

is based around a control chart which allows process variations to be monitored. The chart

plots the value of the attribute under consideration over time, the mean value of the attribute

and an upper and lower control limit. The format of a control chart is shown in Figure A.1.

www.manaraa.com

APPENDIXA: DATA COLLECTION AND ANALYSIS 172

U
-

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Inspections

LCL

UCL

(d
ef

ec
ts

 p
er

 1
00

0
lin

es
)

D
ef

ec
t D

en
si

ty

Figure A.1: The format of a control chart. The data presentedis hypothetical.

The mean is defined as: �� = Pnt=1 defectstPnt=1 part sizet
Since the part size (i.e. document size) varies, Ebenau [32]suggests simplified upper and

lower control limits, which are held constant over a set of analysed inspections. The upper

control limit is calculated as:UCL = ��+ 3s ��average work product size
The lower control limit is:LCL = �� � 3s ��maximumwork product size
or 0, whichever is greater. Rather than use the average work product size, Ebenau recom-

mends that the maximum size is used to “increase the sensitivity of the control chart to poorly

inspected products”. If the value of the measure falls outwith these control limits, it may in-

dicate the need for further investigation. This is performed using charts of dispersion, where

other measures are investigated to determine whether they fall outside process norms. Ebenau

[32] recommends that document size and inspection rates should be investigated if the defect

density lies outside control limits. This can be used to determine if the inspection has been

www.manaraa.com

APPENDIXA: DATA COLLECTION AND ANALYSIS 173

performed correctly. An inspection support tool can be usedto maintain and display these

charts, and to even automatically flag inspections where measures fall outside their control

limits.

A.2.3 Checklist Formation and Improvement

Checklists are an important aspect of the inspection process. A good checklist consists of

hints that help inspectors quickly and easily find defects. Checklists must be dynamic. As

new items are discovered (e.g. from previous inspection experience), they must be added to

the checklist. As old items become obsolete they must be removed. The length of the checklist

frequently becomes an issue, however. On one hand, the checklist should be as comprehensive

as possible, to help find the maximum number of defects. On theother hand, the size of the

checklist may hinder the inspector, with far too many items to check, or too many irrelevant

items. Gilb and Graham [41], therefore, recommend that a checklist should not exceed one

page, and should reflect the latest experience in the document type under review.

One approach to tackling this problem has already been described in this thesis. The C++

inspection environment described in Section 6.3 provides links between features in the code

under inspection and the checklist in use. The checklist cantherefore be longer and more

comprehensive, with the system presenting only links to those items which are relevant. With

this method, the inspection is driven by the product rather than the checklist.

Returning to a checklist-driven inspection, Chernak [20] describes a method for the statis-

tical checklist formation and improvement, based on the analysis of defect data. Defects are

classified using Orthogonal Defect Classification [21]. According to this system, a defect has

two attributes. Chernak uses thedefect typeas an indication of where to look for that defect,

while thedefect triggergives an indication of how to detect the defect. Multiple triggers can

be associated with each type, corresponding to different defect types occurring in a single

document feature. When existing defect data is classified according to this scheme, the defect

types and triggers which cover the majority of defects can beextracted and used to prepare a

checklist. In a tool-supported inspection environment, this could be accomplished automat-

ically by allowing users to classify defects as they are found, as is possible in ASSIST. One

drawback is that new checklist items could not automatically be generated and would have to

be added manually.

An alternative approach in a checklist-driven inspection is to monitor checklist usage.

The active checklists described in Section 6.2 allow inspectors to provide an answer to each

checklist item. Monitoring these answers would allow the frequency of use of each checklist

item to be found. Items which are used infrequently can either be automatically removed or

www.manaraa.com

APPENDIXA: DATA COLLECTION AND ANALYSIS 174

flagged for attention. The item can then be studied to determine why it is infrequently used.

For example, it may be genuinely irrelevant or it may simply be badly written. Alternatively,

the checklist can be prioritised, with less frequently useditems assigned lower priorities. The

inspector can then start with high priority items and move tolower priority items as time

permits. As with the defect monitoring system described above, this system can only remove

infrequently used items. New items still have to be generated and added manually.

In summary, while checklists are a vital part of the inspection process, a checklist which is

too long is unmanageable and will be ignored. Hence, the checklist must either be shortened

or relevant items brought to the inspectors attention. Toolsupport can help with both of these

solutions.

A.2.4 Estimating Defects Remaining

Despite its effectiveness, an inspection is unlikely to findall defects in a product. Hence, it

would be useful to estimate how many defects remain in the document. Ecological capture-

recapture methods, used for estimating animal populations, have been suggested as a means

to determine this, e.g. [35, 120]. When applied to wildlife,a number of animals belonging to

the population under consideration are trapped and marked,then released back into the wild.

After some time (to allow marked and unmarked animals to mix)a second trapping occurs.

The ratio of marked to unmarked animals in this trapping can then be used to estimate the total

population.

In the context of software inspection, each inspector locates a number of defects in the

document, corresponding to a single trapping. The overlap between inspectors can provide an

estimate of the total number of defects in the document. A number of different models can be

used, allowing for differences in the difficulty of finding each defect and in inspector ability.

Computer support can apply capture-recapture methods to inspectors' defect lists to esti-

mate the number of defects remaining, requiring only a slight change to the inspectionprocess.

This would consist of an extra phase after the inspection meeting, where inspectors tag each

defect in their list to show which defect in the master list itcorresponds to. The system can

then use this information to produce the estimate. A number of models may be used, with the

moderator being presented with a summary of estimates, on which the decision whether or not

to re-inspect can be made. The tagging process can also be used by the system to gather data

on the false positive/real defect ratio and meeting gains.

www.manaraa.com

APPENDIXA: CONCLUSIONS 175

A.2.5 Inspector Experience and Behaviour

The final use of data gathered during inspections concerns individual inspectors. The use of

performance data as a means of evaluating individuals is usually forbidden during inspection,

however, other data can be collected and used for more constructive purposes.

Data on inspector experience can be gathered by the tool. Such experience includes the

number of inspections performed, the document types inspected, roles played, and so on. This

experience data can then be used by moderators to decide on appropriate participants for each

inspection. For example, several experienced inspectors may be teamed with an inexperienced

inspector for educational purposes. On the other hand, a critical document may require the

participation of the most experienced inspectors. A tool supported environment could make

suggestions about appropriate inspectors based on the typeand criticality of the inspection

about to be undertaken.

An inspector's behaviour during the inspection may also be recorded. This is important

for three reasons. Firstly, data such as time spent in inspection must be collected to measure

the inspection process, as discussed above. Secondly, it isuseful in terms of process enforce-

ment. Monitoring inspector behaviour can help decide whether the inspection task is being

being tackled in a uniform and correct way. For example, checklist usage may be monitored

to ensure they are being uniformly applied. If participantshave different responsibilities it is

helpful to know that they are following these responsibilities and their efforts are not over-

lapping. Thirdly, data on how inspectors perform inspection may be useful as a means of

understanding what makes a good inspection. Some strategies employed by inspectors will be

more effective than others. If these strategies can be captured and shared with others, the over-

all inspection effectiveness can be increased. For example, a particular reading strategy for

some documents may enhance defect detection. Tool supported inspection provides an oppor-

tunity for collecting fine-grain data on inspector behaviour which simply cannot be collected

with paper-based inspection.

A.3 Conclusions

Two main areas of research in tool support for software inspection have been identified. One

concerns methods for enhancing the defect detection capability of inspectors. Support of the

object-oriented paradigm is one important area here, with much scope for the application of

visualisation, maintenance and program understanding tools. This type of feature must be

properly evaluated in an appropriate setting to gauge its usefulness.

www.manaraa.com

APPENDIXA: CONCLUSIONS 176

The second major area concerns the collection and analysis of inspection data. Tool sup-

port allows many traditional inspection measures to be automatically collected and analysed.

In addition, non-traditional measures, e.g. checklist usage, can also be captured and used to

monitor and improve the process, providing even greater feedback. As with features intended

to enhance defect detection, data collection facilities require testing with large amounts of real

data to have confidence in their usefulness.

www.manaraa.com

Appendix B

ASSIST V2.1 User Manual

B.1 Introduction

Asynchronous/Synchronous Software Inspection Support Tool (ASSIST) is a generic tool de-

signed to allow the enforcement and support of any inspection process. This is achieved with

a custom-designed process modelling language (InspectionProcess Definition Language, or

IPDL), and a flexible document type system. ASSIST is based ona client/server architec-

ture, where the server is used as a central repository of documents and other data. ASSIST

supports both individual and group-based phases of inspection. Group-based phases can be

performed synchronously or asynchronously, with the choice of same-place or different-place

synchronous meetings. This section provides an introduction to installing, starting and using

ASSIST.

B.1.1 Requirements

This software requires Python 1.5, available fromhttp://www.python.org and Tcl/Tk

8.0. Python must be compiled with support for Tk and dbm. ASSIST has been tested on

Solaris 2.5.1.

B.1.2 Installation

Start by usinguncompress andtar to uncompress and extract the fileassist.tar.Z .

A number of configuration options will have to be set for your system. These are detailed on

a per-file basis.

www.manaraa.com

APPENDIXB: INTRODUCTION 178

assist/assist server

Edit the following environment variables:� PYTHON - your Python interpreter (full path).� ASSIST HOME - the location of the ASSIST directory (ending inassist , as this is

the directory created when you untar the file)� PYTHON LIBS - the location of the standard Python libraries.

This file should be placed in an appropriatebin directory.

assist/assist

Edit the following environment variables:� PYTHON - your Python interpreter (full path).� ASSIST HOME - the location of the ASSIST directory (ending inassist , as this is

the directory created when you untar the file)� PYTHON LIBS - the location of the standard Python libraries.� ASSIST RX HOST - the name of the machine on which the server is running.

This file should be placed in an appropriatebin directory.

assist/lib/assist defs.py

ASSIST can make use of Netscape and Ghostview to view HTML andPostScript documents.

This file defines where these executables can be found with thefollowing lines:

NETSCAPE = '/usr/X/local/netscape'

GHOSTVIEW = '/usr/local/gnu/bin/ghostview'

The paths should be changed to those appropriate for your system, or to any other HTML and

PostScript viewers you may have.

The tools to support distributed inspection require several definitions. These are the TTL

value, the multicast address to use and the multicast port touse. They are defined with the

following lines:

www.manaraa.com

APPENDIXB: INTRODUCTION 179

MULTICAST_TTL = 2

MULTICAST_ADDRESS = '224.0.1.0'

MULTICAST_PORT = 5000

The address and port can usually be left as is, however they may require changing if permanent

conflicts arise. The TTL value must be changed if you require to hold distributed inspections

between non-local machines.

Finally, the executables to be used must be defined. The following lines perform this

function:

WB_PATH = '/usr/local/mbone/bin/wb'

NV_PATH = '/usr/local/mbone/bin/nv'

VAT_PATH = '/usr/local/mbone/bin/vat'

These paths should be changed as appropriate for your system.

B.1.3 Starting the Server

The server is started by typing

assist_server

at the prompt. After a few seconds, two windows will appear, as shown in Figure B.1. The

main window has two panels. The left hand side is an information window in which messages

pertaining to the state of the server appear. These mainly indicate client connects/disconnects.

The right hand side contains a list of clients currently connected. There are only two controls

on the server. TheRemove Userbutton disconnects a client. To use this, simply select the

name of the required client then click the button. This should only be used if the machine on

which that client is running has crashed, leaving the serverin an inconsistent state. TheClose

button closes down the server, but only if all clients have been disconnected. TheRemove

User button may be used to clear any clients remaining, if required. The second window

display status messages from the Discourse server.

B.1.4 Starting the Client

Provided you have been entered into the personnel database,ASSIST may be started by typing

assist

www.manaraa.com

APPENDIXB: INTRODUCTION 180

Figure B.1: The ASSIST server.

at the prompt. After a few seconds the main ASSIST window willappear, as shown in Fig-

ure B.2. It consists of a list of pending inspections and a number of menus. The functionality

available via these menus will depend on the role that has been defined for you within ASSIST.

For example, an inspector simply has the facility to continue an existing inspection, while a

moderator will have the facility to start a new inspection. The following menus are available:� File

– About Provides copyright and author information on ASSIST.

– Quit Quits ASSIST.� Inspection

– New- Starts a new inspection, allowing you to associate personnel and documents

with the inspection. See Section B.2.5.

– Continue - Continues an inspection from where you last left off. You must select

an inspection from the list before you click the button. Alternatively, you can

www.manaraa.com

APPENDIXB: PREPARING FOR ANINSPECTION 181

Figure B.2: The main ASSIST window.

double-click directly on the name of the inspection you wishto continue. See

Section B.3.� Databases

– Document- Allows you to browse and edit the database containing the documents

available to ASSIST. See Section B.2.2.

– Personnel- Allows you to browse and edit the personnel database, wheredetails

of personnel available to perform inspections are stored. See Section B.2.3.

– Process- Allows you to enter a new inspection process, or to edit an existing one.

See Section B.2.4.

B.2 Preparing for an Inspection

B.2.1 Introduction

Before you can use ASSIST to carry out inspections, there areseveral tasks which must first

be undertaken. First of all, documents which are going to be inspected, along with documents

used to support the inspection must be registered with ASSIST, which will then store copies of

these in its own database. Secondly, personnel capable of carrying out the inspection task must

be registered with the system. Finally, ASSIST must have your required inspection process

entered and compiled. Although ASSIST provides some processes to get you started, it is

inevitable that these will not completely match your needs.They can be copied and edited as

required.

www.manaraa.com

APPENDIXB: PREPARING FOR ANINSPECTION 182

Figure B.3: The main document window.

B.2.2 The Document Database

A fundamental action is the registering of documents with the ASSIST system. This includes

all products to be inspected, standards that may be used, detection aids which may be avail-

able, and so on. ASSIST will then make copies of these documents and allow them to be

accessed from any client. Selecting theDocumentoption from theDatabasesmenu reveals

the document control window (Figure B.3).

The window consists of a number of buttons for selecting the required document type.

For each document type, the available documents are listed.Documents may be of one of the

following fundamental types:� Product - A document undergoing inspection.� Source- A document used to produce the document undergoing inspection, for exam-

ple, the design document for a section of code.� Criteria - This document type is a list of criteria which must be satisfied. All criteria

documents must be in a specific format which ASSIST can interpret. The format is

described in Section B.6.� Standard - The product will usually have to conform to a set of standards for that doc-

ument type. These standards are used for compliance checking during the inspection.

Other standards include the procedures to be used at each stage of the inspection, lists

of terminology and so on.� Report - A report simply details the outcome of a phase, or of an entire inspection. It is

usually completed by the moderator. Like criteria, reportsmust be in a specific format

www.manaraa.com

APPENDIXB: PREPARING FOR ANINSPECTION 183

Figure B.4: The document edit window.

which ASSIST can interpret, described in Section B.6.� Plan - The definitive description of the inspection process and the people who will be

involved in it. Plans must also be in a specific format for ASSIST. See Section B.6 for

more details.� Detection Aid - A document which assists the inspector with finding errors,such as

checklists.

The following items are available in theDocumentmenu:� New - Allows you to enter the details of a new document. The operation of this window

is described below.� Edit - Edits the current document, indicated by the current selection in the document

list. A shortcut for this action is double-clicking on the appropriate document in the

document list.� Delete- Deletes the current document, indicated by the current selection in the docu-

ment list.Warning : there is no ' undo' option to restore document details removed by

accidental deletion.� Save- Opens up a window allowing a copy of the document to be saved on your own

file system.� CloseCloses the document database window.

Both theNew andEdit commands bring up the same window (Figure B.4). The only

difference is that theEdit option preloads the data entry fields with the values for the current

document, which can then be edited, while theNew option ensures that all fields are blank.

The fields and associated controls are as follows:

www.manaraa.com

APPENDIXB: PREPARING FOR ANINSPECTION 184

Figure B.5: The main personnel window.� Name -The name by which the document is known within ASSIST. This should be

fairly descriptive (e.g. ' ASSIST Server Design')� Path - Clicking on theSelect Pathbutton brings up a dialogue box allowing the se-

lection of the physical document to be associated with this entry. When the document

details are completed, this document is copied across to theserver.� Type - Indicates the fundamental type of the document. Use theSelect Typemenu to

select the appropriate type.� Content Type - Indicates the type of the contents of the document. The default is

ASCII, and more can be added by the user (see Section B.8). UsetheSelect Content

Type menu to select the appropriate content type.� Date added- The date indicates when this document was added to the database. This

field is not editable; it is automatically filled when a new document is added, or an

existing document updated.� OK - Submits the new or updated details to the server, and closesthe window.� Cancel- Closes the window, ignoring any changes or additions made.

B.2.3 The Personnel Database

Before an inspector can use ASSIST, that person must be registered with the system. This

is achieved with the personnel database function (only available to administrators). Selecting

thePersonneloption in theDatabasesmenu reveals the window shown in Figure B.5.

The following actions are available under thePersonmenu:� New - Allows you to enter the details of a new person. The operation of the window for

this facility is described below.

www.manaraa.com

APPENDIXB: PREPARING FOR ANINSPECTION 185

Figure B.6: The personnel edit window.� Edit - Edits the details of the current person, indicated by the current selection in the

personnel list. A shortcut for this action is double-clicking on the appropriate person in

the personnel list.� Delete - Deletes the current person, indicated by the current selection in the person-

nel list. Warning : there is no `undo' option to restore personnel details removed by

accidental deletion.� Close- Closes the personnel database window.

Both theNew andEdit commands bring up the same window (Figure B.6). The only

difference is that theEdit option preloads the data entry fields with the values for the current

person, which can then be edited, while theNew option ensures that all fields are blank. The

fields are as follows:� User name- The person's UNIX login name. If users from more than one UNIX system

are expected to use ASSIST (e.g. over a WAN), it is the administrators responsibility to

ensure that login names do not clash.� Name- The person's real name.� Email - The person's e-mail address (used for sending notifications from ASSIST).� Moderator - This checkbutton indicates the person's ability to moderate an inspection.� Administrator - This checkbutton indicates the person's ability to perform administra-

tive tasks, such as adding new personnel to the system.

www.manaraa.com

APPENDIXB: PREPARING FOR ANINSPECTION 186

Figure B.7: The new process window, with a process loaded.

B.2.4 The Process Database

Another requirement before starting an inspection is having an inspection process for ASSIST

to enforce. Although ASSIST comes with several well-known inspection variants, it is highly

likely that some variations of these processes, and even completely new processes, will be

required. Selecting theProcessitem from theDatabasesmenu gives access to the facilities

for creating and compiling a new inspection process. This section presents ASSIST's facilities

for entering and compiling processes. For more details on writing new IPDL processes, see

Section B.4 and Section B.5.

The New Inspection Process Window

This window (Figure B.7) allows you to enter a new inspectionprocess, or to edit an existing

process, which can then be compiled ready for use. The main feature of this window is a

simple text editor for entering processes. The remaining features are available from the file

menu:

www.manaraa.com

APPENDIXB: PREPARING FOR ANINSPECTION 187� New - Clears the current process, allowing a new process to be entered from scratch.

This is the default state when the window is first opened.� Load - Loads an existing process, either from the server, or from alocal file. The

process can then be edited or refined as required. The title ofthe window changes to

reflect the process name and where it was loaded from.� Save- Saves the current process under the current name. This option is only available if

the process has previously been saved usingSave As, or if the process has been loaded

from the server or from a file.� Save As- Allows the current process to be saved under a new name. Thisis the only

save option available for a newly entered process. You can choose between saving the

process on the server, or to a local file. After this operation, the title of the window

changes to reflect the process name and where it was saved to.� Compile - Only if a process is successfully compiled will it become available for use,

and an edited process must be compiled for the changes to become available. The

compile option is only available when the process has been loaded from or saved to the

server. Processes loaded from local files cannot be compileduntil they are saved on the

server.� Delete- Brings up a requester allowing a process on the server to be deleted. Processes

can be deleted by double-clicking on the name, or by single-clicking on the name then

selecting theOK button.� IPDL Helper - Starts a helper application to provide a skeleton process description.

See Section B.2.4 for more details.� Close- Close the new process window, without saving the current process.

The IPDL Helper

The IPDL Helper is designed to ease the task of creating a new inspection process by creating

a skeleton process which can be fleshed out. By entering the documents for this inspection,

the participants who will take part, and the number of phasesrequired for the inspection, the

helper will generate a partial process, leaving blanks where specific details should be filled in.

Figure B.8 shows the IPDL helper window. The window is divided into three main sections.

From top to bottom these areDocuments, Participants andProcess.

www.manaraa.com

APPENDIXB: PREPARING FOR ANINSPECTION 188

Figure B.8: The IPDL helper window.

TheDocumentssection allows you to enter the names of all documents which will used

and created during the inspection. To add a document, enter the name in theDocument Name

box and select the document type from the row of types, then click on Add. To remove an

unwanted document, select the document from the appropriate list (with a single mouse click),

then click onRemove.

TheParticipants section allows you to enter the details of the participants taking part in

this inspection. For each participant required, enter the name in theParticipant Name box,

select the appropriate role for that person from the four available, then click onAdd. The

participant name and role will then appear in the list at the left hand side of the window. To

remove a participant, select the name in the list then click on Remove.

TheProcesssection allows you to enter some details of the process you require. A funda-

mental decision to be made is the number of independent foldsfor this inspection. A straight-

forward inspection will consist of only one, while a more rigorous inspection will involve

more. Enter the number of folds in the box labelledNumber of folds. For each fold, you

www.manaraa.com

APPENDIXB: PREPARING FOR ANINSPECTION 189

should then enter the number of meetings. Type each number into the box labelledNumber

of meetings, then click onAdd to add it to the list of meeting counts at the left hand side.

Meeting counts can be removed from the list by selecting the appropriate number and clicking

on Remove. Finally, the optional phases of entry, planning, overview, rework, follow-up and

exit can be added by selecting the appropriate checkbutton.

When each item has been completed to your satisfaction, clicking onGeneratecreates a

skeleton process which is loaded into the new process window. Clicking onClosecloses the

IPDL Helper.

B.2.5 Starting a New Inspection

Assuming you've created and compiled your required inspection process, you can now actu-

ally instantiate and run that process:� Select theNew option from theInspection menu in the main ASSIST window (Fig-

ure B.2).� Select the required process from the list presented.� Enter a name for this inspection. Since this is the name by which the inspection will

be known to its participants it should therefore be fairly precise (and almost certainly

unique).

After a few moments, a screen will open allowing you to selectthe participants and doc-

uments for this inspection (Figure B.9). TheInspectionmenu in the top left hand corner has

two items: Start takes the current details and starts the new inspection, while Abort closes

the window without starting the inspection.

The window contains two scrolling lists of items which have to be completed to start the

inspection: Documents and Participants. For each item in the documents section, clicking

on Selectbrings up a list of available documents which are of the same type as the named

document (as declared in the process definition for this inspection). One of these may then be

selected and will be appear in the box below the document name. For reports, plans, criteria

and detection aids only one document may be chosen. For the remaining document types,

multiple documents can be chosen. Names can be removed by clicking onRemove, when a

list of the documents selected will appear, allowing one to be chosen and removed. For each

name in the participants section, a person registered with ASSIST may be selected and added

in the same way as for a document. In this case, only one personcan be selected for each part

in the inspection. The list of people available for each partwill depend on the qualifications

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 190

Figure B.9: The new inspection window, where documents and participants for the inspection
are chosen.

required for each part, in that people who have not qualified as moderators will not be available

when the part requires implementing the role of moderator orcoordinator. TheRemovebutton

simply erases the person associated with the part.

When the required details have been entered and are correct,use theStart item in the

Inspection menu to start the inspection. ASSIST will check that no duplicate participants

have been entered, although duplicate documents are permissible.

B.3 Executing An Inspection

When an new inspection has been started, its name will appearin the pending inspection list

of every inspector involved. To join that inspection double-click on its title. The main ASSIST

window is then replaced by theExecutewindow shown in Figure B.10. If your participation

is not required for this phase a message will appear informing you of this and you will not be

able to join the inspection.

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 191

Status indicator Documents availableParticipants

Current fold (if any) Current Phase Participant responsibility

Figure B.10: The main execute window showing the people taking part in this phase and the
documents available for use.

B.3.1 The Execute Window

The execute window contains two menus. TheInspection menu contains two entries. The

Finished item is used by each participant to indicate that they have completed this phase. The

Closebutton closes the execute window, saving the participant'sstate in the inspection. The

Moderator menu appears only for the moderator of this inspection. It contains five entries.

Previous Phasereturns the inspection to the previous phase.Next Phasemoves the inspection

on to the next phase in succession.Skip Phaseskips the next phase in succession, moving to

the phase after the next. This item is only available during aconsolidation type phase

(see Section B.3.3).Restart Inspectionreturns the inspection to the first phase, whileAbort

Inspection is used to completely abort the current inspection, deleting all data. Each of these

controls brings up a confirmation dialogue box before the action is carried out. Also at the top

of this window is an indicator showing the time remaining forthis inspection session, should

such a limit be defined for the process being used.

The execute window also contains four lists. TheParticipants list contains the names

of all participants involved in the current phase of the inspection. The name of the part they

play in this inspection is followed by their user name in brackets. This is followed by a status

indicator. A “C” indicates that person is currently connected to ASSIST and taking part in this

inspection. If an “F” is showing, it indicates that the person has finished their work for this

stage and used theFinished item in theInspection menu. This information should be used

by the moderator to decide when to move on to the next phase.

The remaining three lists contain the names of all documentsavailable during this phase.

By double-clicking on the document name, the appropriate browser will be opened with the

document.Targets indicates documents which are the target of the phase.Read indicates

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 192

Menus Readable lists Writable lists

Current list Summary of current list Number of items

Figure B.11: The main list browser window.

documents which the participant may read but not alter.Write indicates documents which

this participant may alter, such as lists and plans.

Finally, there are three further items along the bottom of the execute window.Fold in-

dicates the current fold, and is only used during an N-Fold inspection.Phaseindicates the

current inspection phase. This contains both the user defined name of the phase and its type.

Responsibilitycontains the name of any responsibility assigned to the participant.

The above description applies to a traditional single-foldinspection. The execute window

which appears during an N-Fold inspection has further controls for the coordinator of that

inspection. These are described in Section B.3.3.

B.3.2 Document Browsers

The List Browser

The List Browser is the ASSIST tool for handling list-type documents. Each inspector may

have access to multiple lists, and the list browser may be used to add items to each list, re-

move them, move items between lists, and so on. The facilities of the browser may also be

accessed from any active browser supplied with ASSIST (suchas the text browser described

in Section B.3.2). Lists are either readable or writable. Only writable lists may be edited. Fig-

ure B.11 shows the list browser for an inspector with six lists: five readable and one writable.

There are five main items in this window. TheRead lists summary indicates all readable

lists available to the inspector. TheWrite lists summary shows those lists which the inspector

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 193

can browse and edit. Double clicking on a name in either of these lists opens that list into

the list summary area on the right. Each item within the listsis summarised into one line

consisting of the file where the item occurs, the position of the item within that file, the title

of the item, and the number of votes for and against the item. If an item has been voted on, a

“V” will appear at the end of the item. The list currently openis indicated in theList item in

the top right hand corner of the window, with the number of items in the list indicated by the

Items entry.

Figure B.12: The show item window.

Three menus appear in the top left-hand corner of the window.The File menu has two

items: Close, which closes the browser, andPrint which prints the currently selected list.

The print facility uses the standardlpr command and prints to the line printer by default.

Section B.8.1 describes how this may be altered.

The Item menu has entries relating to item manipulation. Almost all of these commands

only work when an item has been selected (with single mouse click) in the summary window.

Commands such asEdit andCut will only work on writable lists. Two of these commands

open a window like that shown in Figure B.12. The various fields of this window are as

follows:� Title - The title of the item.� Document- The document in which this item occurs.� Position- The position within the file where the item occurs.� A free-form text description of the item.� Classification buttons, which are used to set up to three classification terms for this

defect. The classification scheme used depends on the process being executed. See

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 194

Section B.8.4 for details on providing your own classification scheme.

TheItem menu in this window has four entries:� New - Creates a new item as an annotation on the current item.� Propose/Vote- During a synchronous collection meeting, theProposeoption is avail-

able to allow participants to discuss items. During asynchronous collection meetings,

theVote option is available to allow participants to vote on items.� Show Source- Sends a message to the appropriate browser to move the focusposition

to that of the current item.� Next - If the current item has any annotations associated with it,their titles appear in

this submenu. Selecting a title from this submenu opens a window containing that item.

Considering the main List Browser window, the commands available from theItem menu

are:� Show- Opens a window like that in Figure B.12 allowing the detailsof the item to be

examined and edited. This can also be achieved by double-clicking on the relevant item

in the summary window. If the item is from a writable list, it will be editable. Click

onOK to save any changes and close the window, orCancelto ignore the changes and

close the window. Note that the document name can never be edited.� New - Opens a window like that in Figure B.12 allowing details of anew item to be

added. Click onOK to add the item, orCancel to forget about the new item. If a new

item is requested from a browser, the document name and position fields will already

have been filled and cannot be edited.� Cut - Removes the current item from the list and stores it internally for later retrieval in

aPasteoperation.� Copy - Copies the current item from the list and stores it internally for later retrieval in

aPasteoperation.� Paste- Provided an item has been cut or copied, this allows it to be pasted into the

current list.� Show Source- Sends a message to the appropriate browser to move the focusto the

position of the current item, allowing the position of itemswithin the appropriate file to

be easily found.

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 195� Propose/Vote- During a synchronous collection meeting, theProposeoption is avail-

able to allow participants to discuss items. During asynchronous collection meetings,

theVote option is available to allow participants to vote on items.

ASSIST implements a voting mechanism to allow inspectors todecide on the validity

of a item during a collection meeting. Voting can take place either synchronously or asyn-

chronously.

Figure B.13: The item proposal window.

Synchronous voting is achieved with theProposeitem in theItem menu. When an item is

proposed, a proposal window like that in Figure B.13 appearson all inspectors screens. This

window is similar to the edit window, but has additional controls for voting, and counts of the

number of votes cast. There are two buttons which may be used to cast votes on the item:� Accept - indicates agreement with the item.� Reject - indicates disagreement with the item.

When a vote has been cast, the vote counts are updated and the voting buttons become

inactive for that inspector. If all votes have been cast (i.e. all currently connected participants

have voted), the result is displayed in the bottom left hand corner. The proposal window may

then be closed. Where the item is accepted, the scribe will have to choose a destination list.

This list is usually some master list output from the meeting. After the list is chosen and the

item added, the meeting can move on to the next issue. The scribe also has the option of

editing the item, and can make use of theUpdate button to ensure that all participants see

any proposed changed to the item before they vote on it. When avote is underway, the scribe

is usually not able to close the propose window until the voteis complete. In exceptional

circumstances, the scribe may hold down<shift > and click onCloseto force the window

to close. Note that if a vote is tied, ASSIST currently forcesthe item to be accepted.

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 196

Asynchronous voting is achieved with theVote item in theItem menu. This brings up a

voting window similar to that in Figure B.13, and voting is carried out as above. Although

votes are propagated as above, there is no requirement for every participant to vote simultane-

ously, and the item does not require a scribe to choose a destination item list. The scribe must

manually copy items when consensus has been reached.

Figure B.14: The Auto Collate control window.

TheLists menu contains one item:Auto Collate. This function allows several lists to be

combined into one with ASSIST removing duplicate entries. These duplicates need not be

exact; ASSIST scores list items on position, content and classification. If two items match

with a score above a user-defined threshold, one of the items will be discarded. Auto-collation

starts by asking you to select a number of source item lists. These are the lists which you wish

to merge together. The requester displays all lists available. Click on the name of each list you

wish to include, holding down<shift > to select multiple lists, then click onOK . You can

select a single destination list by clicking on its name thenonOK . The control window shown

in Figure B.14 then appears, allowing you to set various factors affecting the auto-collation

process. TheContents, ClassificationandPosition values indicate the relative importance

of the appropriate part of the item when calculating the similarity between two items. The

total of all these factors must sum to 1, hence increasing (decreasing) one factor decreases

(increases) the others.Acceptance Thresholdis the value of similarity that two items must

have to be declared duplicates. The higher the threshold value, the more similar two items

must be to be declared duplicates. However, too high a threshold will result in no matches

being made. Clicking onOK starts the auto-collation process. Status messages appearin the

control window to indicate progress. When auto-collation is complete, the control window

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 197

disappears.

The Text Browser

focus
Current

Annotation controls

Menus

Title of current annotation

Position and coverage indicators

Figure B.15: The text browser.

The text browser (Figure B.15) is a text-only document viewer with fine-grain annotation

facilities. The browser is based on the idea of a current focus, i.e. an area of text which is

currently under scrutiny. The focus may consist of any contiguous area of text. The current

focus can be annotated, or existing annotations can be read or edited. When a synchronous

group meeting is being held, the current focus is controlledby the reader, and as the reader

moves the focus so too does the focus of all other participants. The current focus is indicated

by reverse video. The focus is set by holding down the left (select) mouse button and dragging

over the required area of text. The selected area of text is now the focus and appears in

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 198

reverse video. Annotations referring to any part of the selected area then become available for

manipulation, or annotations referring to the whole area can be added.

Annotations are indicated on the text in one of two ways. If your display is monochrome,

text which has been annotated appears underlined. If you have a colour display, annotated text

appears as black characters on a red background. The intensity of the background indicates

the number of annotations for the text: the brighter the red,the more annotations there are, up

to a maximum of eight different shades.

The browser also introduces the concept of coverage, i.e. the amount of the document

which has been inspected. An area of text which has been the focus is considered to have been

inspected, and therefore counts towards the coverage total. This total is shown in the top left

corner of the window, along with the current line number. Inspected text is shown in a reduced

weight font.

Clicking the middle menu button over the main window brings up a menu containing any

references that may exist for the word under the mouse pointer. Each entry contains the name

of the document in which it occurs, the position within that document, and the actual word ref-

erenced. The text browser makes use of a stemming algorithm.For example,calculation

would also referencecalculates andcalculated , hence the appearance of the refer-

enced word in the menu entry. The word under the pointer also appears at the top of the menu,

and its reference appears in reverse video within the menu. Selecting a reference will have

one of two effects. If the reference is within this document the focus will be moved to the

appropriate place. If the reference is in another document,the appropriate browser will be

opened and brought to the front with the focus set to the reference.

Clicking the right menu button over the main window brings upa menu of annotations

referring to the text under the mouse pointer. Each entry contains the title of the annotation and

its owner. Selecting an entry brings up a window containing the details of that annotation. The

annotation can be edited if it is contained within a list which can be edited. The annotations

available depend on the annotation level set in theAnnotations menu (see later).

Six menus appear in the top left-hand corner of the window. The File menu has one item

(Close) which closes the browser. TheFocusmenu has two items.Jump brings up a requester

allowing you to type in a specific area of text to move to. This area of text is specified in the

form a.b-c.d , wherea is the starting line number,b is the character position on that line,

c is the ending line number andd is the character position on that line. On clicking theOK

button, the focus will move to that part of the text.Uncover resets the document coverage to

zero.

The Window menu allows you to alter the view of the document between one or two

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 199

windows. The two window view allows you to compare differentparts of the document at

the same time, and may either be split horizontally or vertically. Use theSplit Horizontal

option in theWindow menu to split the view into two windows, one above the other. Note

that while each window can be positioned independently, only the upper window makes use

of the focus and allows annotations to be created and examined. Use theSplit Vertical option

to split the view into two side-by-side windows. Again, while each view may be positioned

independently, only the left-hand window makes use of the focus and allows annotation. Use

theJoin option to return to a single window view. During each of theseoperations, the win-

dows are positioned to show the current focus.Create Separatecreates a completely separate

window containing the text.

TheFind menu provides access to a simple search mechanism.� Find Forward - brings up a dialogue box allowing you to enter an expressionto be

searched for. The search proceeds forwards from the currentposition of the cursor.� Find Backward - brings up a dialogue box allowing you to enter an expressionto be

searched for. The search proceeds backwards from the current position of the cursor.� Find Again - repeats the last find operation in the same direction as before, starting

from the position at which the the last find stopped.

TheAnnotations menu has an entry for each annotation which refers to the current po-

sition of the cursor. Choosing an annotation from this menusbrings up a window containing

the details of the annotation and allowing it to be edited (ifit belongs to an editable list). The

menu also has another option allowing the annotation level to be set. This option has three

choices.All allows the browser to display all annotations referring to this document.Own

restricts annotations to those belonging to the user.Noneprevents any annotations from being

displayed.

TheReferencesmenu has an entry for each reference for the current positionof the cursor.

This menu operates in the same way as that described above forthe middle mouse button.

The strip of controls along the bottom of the window provide quick access to the annota-

tion functions available from the List Browser. See SectionB.3.2 for a detailed guide to using

the list browser.� Cycle - is used to select between annotations if there is more than one for the current

focus. TheCyclebutton is labelled with a circular arrow.� New - presents a window allowing you to enter a new annotation forthe current focus.

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 200� Delete- removes the currently selected annotation.� Show - displays the details of the current annotation, if one exists, also allowing the

annotation to be edited.� Propose/Vote- During a synchronous collection meeting, this button appears asPro-

pose, allowing you to propose the current annotation to the wholemeeting. During

an asynchronous collection, the button appears asVote, allowing you to cast an asyn-

chronous vote on the item.

The Code Browser

Annotation

Current
focus

indicator

Title of current annotation Annotation controlsFocus controls

Menus Position and coverage indicators

Figure B.16: The code browser.

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 201

The code browser (Figure B.16) is a text-only source code viewer with annotation facilities.

Like the text browser, this browser is also based on the idea of a current focus. This time

the focus consists of a single line of code. The current focuscan be annotated, or existing

annotations can be read or edited. When a synchronous group meeting is being held, the

current focus is controlled by the reader, and as the reader moves the focus so too does the

focus of all other participants. The current focus is indicated by reverse video. The focus can

be set in a number of ways. The up/down cursor keys move the focus up or down one line.

Holding down the<shift> key at the same time moves the focus ten lines in either direction.

The focus can also be directly set by clicking on a line. Othercontrols are available for moving

the focus backwards and forwards (see later).

This browser also has the concept of coverage. A line which has been the focus is consid-

ered to have been inspected, and therefore counts towards the coverage total. Inspected lines

are shown in italics. The browser also performs line numbering, which appears to the left

hand side of the main text window. Line numbers appear in reverse video when that line has

one or more annotations associated with it. Unlike the text browser, there is no indication of

annotations on the text itself.

Six menus appear in the top left-hand corner of the window. The File menu has one item

(Close) which closes the browser.

TheFocusmenu has controls to allowing the current focus to be moved.� Start - moves the focus to the first line of the document.� FastRewind- moves the focus ten lines backwards.� Rewind - moves the focus to the previous line of the document.� Forward - moves the focus to the next line of the document.� FastForward - moves the focus ten lines forward.� End - moves the focus to the last line of the document.� Jump - brings up a requester allowing you to type in a line number. On clicking the

OK button, the focus will move to that line.� Uncover- resets the document coverage to zero.

The Annotation menu has controls for manipulating annotations. Most of these com-

mands interact directly with the list browser. See Section B.3.2 for a detailed guide to using

the list browser.

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 202� View - displays the details of the current annotation, if one exists. This can also be

achieved by double-clicking on the appropriate line.� New - presents a window allowing you to enter a new annotation forthe current line.� Delete- removes the current annotation.� Edit - allows you to edit the details of the current annotation.� Propose/Vote- During a synchronous collection meeting, this option appears asPro-

pose, allowing you to propose the current annotation to the wholemeeting. During

an asynchronous collection, the option appears asVote, allowing you to cast an asyn-

chronous vote on the item.� Cycle - is used to select between annotations if there is more than one for this line.

TheWindow, Find andAnnotations menus work in an almost identical manner to those

in the text browser. The only difference worth noting is thatannotations can only refer to

single lines. Annotation at a lower level is not available.

In the top right hand corner you can find an indication of the current line number (Line)

and the amount of the document which has been covered, in terms of text examined as a

proportion of the total amount of text in the document (Coverage).

The strip of controls along the bottom of the window provide quick access to the most

used menu functions. The focus controls duplicate the first six entries in theFocusmenu

(from left to right:Start, FastRewind, Rewind, Forward , FastForward andEnd).

The annotation controls duplicate theCycle, View, New, Delete, Edit andPropose/Vote

items of theAnnotation menu (note that theCycle button is labelled with a circular arrow).

The central text gadget displays the title of the current annotation, if any.

The C++ Browser

The C++ browser is identical to the text browser in all but onerespect. Instead of simple

keyword cross-referencing, it provides C++ specific cross-referencing, such as links between

function declaration and usage. To gain the maximum benefit from C++ cross-referencing,

the C++ checklist (document type:detection aid , content type:checklist) and C++

Reference (document type:standard , content type:Help) supplied with ASSIST should

be made available during the inspection. The C++ browser will then make use of these to

provide context specific checklist items and help.

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 203

The Simple Browser

Figure B.17: The simple browser.

The simple browser, shown in Figure B.17 allows ASCII documents to be viewed. There

are no annotation or focus controls, although find, window-splitting and cross-referencing

facilities identical to those in the text browser are available via the menus. The middle mouse

button can also be used to follow cross-references. UseClosein theFile menu to close the

browser.

The C/C++ Library Function Browser

The library function browser is available forstandard -type documents, where the content

type isCLibraryFunctions . It assumes the document consists of a number of descrip-

tions of functions, each separated by a blank line. Each description should consist of a single

line denoting the function header, followed by a blank line and ending with a paragraph ex-

plaining the function.

The top part of the window contains four menus, plus an indication of the current function

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 204

Function header

Function descriptionTransport controls

Menus Current function

Figure B.18: The C/C++ library function browser.

being viewed, along with the total number of functions available. A single line of text is used

to display the header of the current function, while a multi-line text box is used to display the

description of the function.

The bottom of the window contains transport controls allowing you to scroll through all

the functions available. From left to right these are, start, previous, next and end. These

controls are duplicated in theFunction menu.

The Find menu allows you to search for words within a function entry. Its operation

is identical to that in the text browser (Section B.3.2), buta successful find jumps to the

appropriate function. Both the header and the description are used in the find.

The Referencesmenu works in a manner identical to that of the text browser (Sec-

tion B.3.2). References generated for library functions consist only of the function name.

TheReferencemenu shows references for the name of the current function. References are

also available via the middle mouse button. Finally, theCloseoption in theFile menu is used

to close the browser.

The Help Browser

The help browser (Figure B.19) implements a subset of HTML tags, allowing structured doc-

uments to be browsed. The document is organised into major sections, each of which may

have a number of subsections, which may in turn have a number of subsections, and so on up

to a maximum of six levels. A subsection consists of a title, the contents and a list of related

subsections (underSee Also). Each (sub)section is displayed on its own, with links to lower

subsections appearing at the bottom of the page. Links underSee Alsoand further subsections

appear underlined, and the links can be followed by clickingon them. Other navigation facil-

ities are available, and are described later. When the browser first appears, a contents page is

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 205

Figure B.19: The help browser.

shown, containing links to every (sub)section within the document.

Four menus can be found in the top left corner of the window. The File contains one

item,Close, which closes the browser. TheFind menu allows you to search for words in the

document. Its operation is similar to that in the text browser (Section B.3.2), except that a

successful find takes you to the page in the document where theword occurs. TheReferences

menu contains a list of references for the current page. Its use is identical to that of the text

browser. The middle mouse button can also be used to access references for the current page.

TheHistory menu contains a trace of up to 25 pages of the document last visited. The

most recently visited page appears as the top entry, the least recent page appears as the final

entry. Selecting one of these entries takes you directly to that page. An asterisk indicates the

current page. Whenever a new page is visited, it is added after the current page in the history

list. If the current page is somewhere in the middle of the history list, the most recent pages

up to the current page are deleted and the new page added.

A number of shortcut buttons can be found in the top right of the window.Back takes you

to the last page visited (as shown in the history list).Forward takes you to the next page in

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 206

the history list.Contents takes you to the contents page for this document.Previous takes

you to the previous logical page in the document.Up takes you one level up in the document

(e.g. from section 1.4 to 1).Next takes you to the next logical page in the document. The file

format of help documents is described in Section B.6.2.

The Checklist Browser

Figure B.20: The checklist browser.

If a document is of typedetection aid and is given the content typechecklist , the

Checklist Browser will be used to view it. A typical example is shown in Figure B.20. The

window consists of a scrollable list of checklist items which may be answered. Each item

may be one of five types, each of which is described in Section B.6.1. Answering a checklist

item may involve supplying the correct answer for the given item, or it may simply require an

answer to be given. See Section B.6.1 for details on the format of checklist documents.

One item at a time may be the focus of the browser. This item is displayed in reverse

video. Clicking on an item forces it to become the current focus. Alternatively, the transport

controls in the top left of the window can be used to move the focus from one item to the next.

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 207

From left to right these are: move to first item, move back ten items, move back one item,

move forward one item, move forward ten items, and move to last item.

TheFile menu contains two entries. TheCheck entry forces the answer to each item to

be checked against the required answer, if any. A message will appear informing you whether

all items have been completed or not. ThePrint option prints out the checklist. TheClose

option in theFile menu may be used to close the browser.

TheReferencemenu contains any references for the item which is the current focus. This

menu works in the same manner as that in the Text Browser (Section B.3.2). References for

each item can also be found by clicking the middle mouse button over that item.

The Criteria Browser

The criteria browser works in an identical fashion to the checklist browser described in Sec-

tion B.3.2. See Section B.6.1 for details on the format of criteria lists.

The Plan Browser

The plan browser works in an identical fashion to the checklist browser described in Sec-

tion B.3.2. See Section B.6.1 for details on the format of plans.

The Report Browser

The report browser works in an identical fashion to the checklist browser described in Sec-

tion B.3.2. See Section B.6.1 for details on the format of reports.

Other Browsers

As distributed, ASSIST can also make use of Netscape and Ghostview to allow HTML and

PostScript documents to be viewed. ASSIST also allows new browsers to be easily added.

See Section B.8 for more information.

B.3.3 Process Phases

Entry and Exit

The purpose of the entry and exit phases is to ensure that somecriteria are met before the start

of the inspection and before the end of the inspection. Only output documents are defined for

these phases, typically being a criteria list. Double-clicking on each output document opens

the appropriate browser to allow the document to be completed. Next Phasein theModerator

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 208

menu can then be used to move to the next phase. In the case of anexit phase, the inspection

will then be complete.

Planning

Planning allows the moderator to decide on the final details of an inspection, such as the time

for meetings to occur. This plan is then available to all participants throughout the entire

inspection. The plan browser (Section B.3.2) allows the moderator to enter the final details.

When the plan is complete,Next Phasein theModerator menu can then be used to move to

the next phase.

Overview

During the overview phase, a participant (usually the author of the material under inspection)

guides the inspectors through the material they will be inspecting, giving background infor-

mation and general guidance. With ASSIST, this stage may be held in a local environment,

or may be distributed (indicated by thelocation statement in the process definition). A

distributed overview will be supported by the standard ASSIST tools (see Section B.3.3).

Detection

Detection is the term used for the period of inspection wheredefects are found and catalogued.

The detection stage in ASSIST can be arbitrarily complex, consisting of a number of separate

detections (called folds), each of which can contain a number of sequential phases. Each of

these phases may in turn be split into a number of parallel phases involving a subset of all

inspection participants.

Single Meetings A single meeting may have one of three purposes: examination, detection

or collection. Examination is concerned with becoming familiar with the target documents.

Detection phases are designed for active defect hunting. Collection meetings are designed

to merge the efforts of individual inspectors together. Meetings may be either synchronous

or asynchronous. During a synchronous meeting, all participants are required to attend at

the same time. During an asynchronous meeting, participants may “attend” (i.e., perform the

required activity) at their own discretion.

Synchronous meetings may be held locally (i.e., all participants in the one location), or

participants may be geographically distributed. ASSIST provides several communications fa-

cilities if a synchronous meeting is being held in a distributed fashion. There are four possible

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 209

Folds

Figure B.21: The coordinator's view of an N-Fold inspection.

communications channels allowing participants to share text, audio, video and diagrams.Dis-

courseprovides a textual discussion medium. The window is dividedinto two parts. The

upper part shows text broadcast by meeting participants, prepended by the name of the par-

ticipant who broadcast the text. The lower part allows you tobroadcast your text by simply

typing it and pressing<return >. The toolvat is used to provide audio conferencing, while

nv provides video andwb provides a shared whiteboard. See Section B.8 for details ofhow

their use with ASSIST can be controlled. Full details on the use of these tools can be found in

their respective manual pages.

During any meeting, the execute window provides each participant with documents which

that participant can access. Double-clicking on the document name opens the appropriate

browser. See Section B.3.2 for details of the browsers available.

Multiple Meetings A multiple meeting is simply a phase with multiple single meetings

which take place in parallel. Each of these phases take placein the way described above, with

the same facilities available.

Consolidation The consolidation phase allows the person in charge of the inspection to

check the progress of the inspection and decide whether a further meeting may occur. During

this phase, theSkip Phaseitem in theModerator menu becomes active. If the moderator

decides that the extra phase is not required,Skip Phasemay be used to skip the next phase

and move directly to the following phase. If the next phase isrequired, theNext Phaseitem

can be used as normal. The other facilities available duringconsolidation are identical to the

basic meeting facilities, allowing the defined documents tobe viewed, reports completed, and

so on.

N-Fold Inspections During an N-Fold inspection there may be two or more independent

detection stages. Each stage is controlled by a moderator, while a coordinator is in overall

www.manaraa.com

APPENDIXB: EXECUTING AN INSPECTION 210

charge of the inspection. In an N-Fold inspection, the execute window for the coordinator

looks like that in Figure B.21. An extra panel appears on the left hand side showing the status

of each fold of the inspection. The name of each fold is followed by a status indicator which

shows an “F” when the fold is complete.

During the organisation and completion phases of an inspection, the coordinator has the

phase controls normally associated with the moderator (Previous PhaseandNext Phase),

along with theRestart Inspection andAbort Inspection controls, all in theCoordinator

menu. When the inspection moves into the detection stage, the phase controls are disabled for

the coordinator, and theEnd N-Fold control (in theCoordinator menu) becomes active. This

control is used when each fold is indicated as being complete(“F” appears beside that phase),

allowing the inspection to move to collation. At this point,the phase controls are re-enabled,

and theEnd N-Fold control disabled.

Moderators still have thePrevious Phase, Next PhaseandSkip Phasecontrols, as in a

single fold inspection, but these are only active during theN-Fold part of the inspection, and

only apply to that fold.

Finally, theFold item in the execute window becomes active during the detection stage

for all participants except the coordinator. This shows thename of the fold in which you are

involved.

An N-Fold inspection will finish with one or more collation meetings, allowing the results

of individual folds to be collated. The collation phase provides similar controls to that of

detection meetings. A scribe must be defined in the process description: that person will be

able to edit output documents, such as collated defect listsand reports. The coordinator is also

usually invited to these meetings, and may be given the role of scribe.

Rework

This phase allows a participant to modify the documents under inspection to account for the

findings of the inspection. The phase definition allows a single participant to be defined,

usually the author. During this phase, target documents become editable. All other facilities

work as normal. An additional facility is provided by the list browser. When an item is

opened, a button allows the author to mark the item as implemented. UseNext Phasein the

Moderator menu to move on to the next phase.

www.manaraa.com

APPENDIXB: WRITING IPDL PROCESSES 211

Follow-up

During follow-up, a participant, usually the person in charge of the inspection, must examine

the edited target documents to ensure they have been properly amended. The phase definition

allows target and input documents to be specified; these are usually the edited products and

appropriate lists of changes to be made. The facilities offered during this phase allow the par-

ticipant to examine these documents. There may also be a number of reports to be completed.

The report browser is available for that purpose.

Inspection Finish

When the final phase of the inspection has been completed, selectingNext Phasefrom the

Moderator menu takes the inspection into the finished state, where the inspection is removed

from the pending lists of all inspectors. If a target document has been edited during rework,

use the document database to retrieve the edited version.

B.4 Writing IPDL Processes

The full definition of IPDL can be found in Section B.5. This section provides a tutorial

introduction to defining a new inspection process.

B.4.1 Process Outline

An IPDL definition of an inspection is similar to a program written in a procedural program-

ming language. Each inspection description consists of a set of declarations (for participants

and documents), and a description of the process to be followed. The declarations, process

and the entire description are delimited by keywords, and the whole process may be named.

The outline is then:

inspection 'Example Inspection'

declarations

<...declarations go here...>

end

process

www.manaraa.com

APPENDIXB: WRITING IPDL PROCESSES 212

<...process description goes here...>

end

end

Note that IPDL makes no use of punctuation characters such as“;” and whitespace is not

significant. However, it is advisable to use whitespace to promote the readability of your

process descriptions. Note also that the name is an arbitrary string surrounded by single

quotes. This applies to any other place in IPDL where a stringis required.

B.4.2 Declarations

Declarations are used to introduce the documents and participants associated with the process.

Responsibilities,consistingof sets of documents, may also be associated with each participant.

Document declarations consist of a list of document names and their types, surrounded by

the keywordsdocuments andend . Documents can be one of nine types:� product - A document undergoing inspection.� source - A document used to produce the document undergoing inspection, for ex-

ample, the design document for a section of code.� criteria - This document type is a list of criteria which must be satisfied. These

documents must be in a specific format which ASSIST can interpret. The format is

described in Section B.6.� standard - The product will usually have to conform to a set of standards for that

document type. These standards are used for compliance checking during the inspec-

tion.� report - A report simply details the outcome of a phase, or of an entire inspection. It

is usually completed by the moderator.� plan - The definitive description of the inspection process and the people who will be

involved in it.� detection aid - A document which assists the inspector with finding errors,such

as checklists.� list - A list of comments or annotations, including defect lists.

www.manaraa.com

APPENDIXB: WRITING IPDL PROCESSES 213

A typical document declaration list would be:

documents

Code product

Design source

Individual Defects list

Moderator_Defects list

Maintenance_Defects list

Standards_Defects list

Maintenance_Checklist detection_aid

Maintenance_Requirements source

Coding_Standard source

end

Note that names are can be of arbitrary length and can consistof any alphanumeric characters,

along with the underscore, and must not contain whitespace.When the inspection is instanti-

ated and run, each of these document declarations will have areal document associated with

it.

Responsibilities define a specific area of concern for an inspector. Each responsibility

consists of a list of documents associated with that responsibility. The entire responsibility

section is surrounded by the expected keywords:

responsibilities

Maintenance requires

Maintenance_Requirements

Maintenance_Checklist

end

Standards requires

Coding_Standard

end

end

Each document within the responsibilities must have been previously declared.

The participants description is simply a list of people involved and the names of their roles.

Note that the participant list isnota list of the real people involved; it simply lists the names

of the `characters' in the inspection and the roles they willplay. Each definition consists of

the participant name, the keywordis and the participants role. IPDL defines four possible

roles:

www.manaraa.com

APPENDIXB: WRITING IPDL PROCESSES 214� coordinator - person in overall charge of an N-Fold inspection.� moderator - person in overall charge of a single-fold inspection.� author - the author of the document under inspection.� inspector - has the responsibility for finding defects.

The role may be followed by list and responsibility declarations, indicating the list documents

belonging to that person and the responsibilities of that person, respectively. These must be

previously defined. For example:

participants

Moderator is moderator

lists Moderator_defects

end

Inspector_Maintenance is inspector

lists Maintenance_defects

responsibility Maintenance

end

Inspector_Standards is inspector

lists Standards_defects

responsibility Standards

end

end

Putting the above examples together gives a complete declarations section for an IPDL

definition:

inspection 'Example Inspection'

declarations

documents

Code product

Design source

Individual Defects list

Moderator_Defects list

Maintenance_Defects list

Standards_Defects list

Maintenance_Checklist detection_aid

www.manaraa.com

APPENDIXB: WRITING IPDL PROCESSES 215

Maintenance_Requirements source

Coding_Standard source

end # Documents

responsibilities

Maintenance requires

Maintenance_Requirements

Maintenance_Checklist

end

Standards requires

Coding_Standard

end

end # Responsibilities

participants

Moderator is moderator

lists Moderator_defects

end

Inspector_Maintenance is inspector

lists Maintenance_defects

responsibility Maintenance

end

Inspector_Standards is inspector

lists Standards_defects

responsibility Standards

end

end # Participants

end # Declarations

process

....

end

end # Example Inspection

This example further demonstrates how the declarations section appears within the entire def-

inition. It also introduces the comment character “#”. Anything appearing between this char-

acter and the next newline is entirely ignored.

www.manaraa.com

APPENDIXB: WRITING IPDL PROCESSES 216

B.4.3 Process Definition

The heart of IPDL lies in defining the inspection process itself. The process consists of three

main stages: organisation, detection and completion. Eachof these stages is tackled in turn in

the following sections.

Organisation

The organisation stage may have up to three phases: entry, planning and overview. The phases

must be defined in that order. A typical definition of entry is:

entry 'Entry'

participant Moderator

outputs Entry_criteria

end

This names the phase “Entry” and states that the single participant ofModerator should

be present. The phase also produces a single document calledEntry criteria . Both the

participant and document must be defined in the declarationssection. Only a single participant

may be specified, using the keywordparticipant , but multiple output documents may be

specified (keywordoutputs). Output documents must be either plans, reports, criterialists,

detection aids or lists, and this applies in any phase where output documents are required. The

definition is delimited by the keywordsentry andend .

Planning has a similar format, but both multiple participants and documents may be spec-

ified:

planning 'Planning'

participants Moderator

outputs Master_Plan

end

Overview is slightly more complex. Firstly, the location ofthe phase must be stated, ei-

ther local or distributed . Along with the participants list (keywordparticipants

- note the plural), apresentermust also be specified. This is the person who presents the

overview material. Finally, three types of documents may bespecified:targets (the docu-

ment(s) under inspection),inputs (documents which are present at the phase but not edited)

andoutputs (documents produced or edited during the phase). Target andinput documents

may be of any type, while output documents have been previously defined. A typical example

of an overview phase is:

www.manaraa.com

APPENDIXB: WRITING IPDL PROCESSES 217

overview 'Overview'

location local

participants

Moderator

Author

Inspector1

Inspector2

Inspector3

presenter Author

targets Code

end

Detection

Detection is the most complex part of the process. It can consist of a single sequential stage,

or a number of parallel “folds”. The simplest case of a singlesequential detection stage is

tackled first.

A single detection stage consists of one or more meeting phases, each of which may be

followed by a consolidation step. A consolidation step consists of a consolidation meeting

and an optional meeting; the consolidation meeting is used to decide if the extra meeting is

required. An example of this is:

meeting 'Collection'

objective collection

timing synchronous

location local

visibility public

participants

Moderator

Producer

Reviewer1

Reviewer2

roles

Reviewer1 is reader

Reviewer2 is scribe

targets Code

www.manaraa.com

APPENDIXB: WRITING IPDL PROCESSES 218

inputs Design

outputs Master_Defects

end

consolidation 'Consolidation'

participant

Moderator

targets Code

inputs

Master_Defects

Design

outputs

Unresolved_Defects

Consolidation_report

end

meeting 'Group Review Meeting'

objective collection

timing synchronous

location local

visibility public

participants

Moderator

Producer

Reviewer1

Reviewer2

roles

Reviewer1 is reader

Reviewer2 is scribe

targets Code

inputs

Unresolved_Defects

Design

end

The meeting definition introduces several new items. The keyword objective deter-

mines the objective of the meeting: either examination, detection or collection. A meeting

www.manaraa.com

APPENDIXB: WRITING IPDL PROCESSES 219

may be eithersynchronous or asynchronous , indicated by thetiming clause. Dur-

ing a synchronous meeting, all participants must be presentat one time, while an asynchronous

meeting allows participants to attend at their own discretion. Thelocation may belocal

or distributed , as for an overview phase. Thevisibility keyword indicates the visi-

bility of individual participants' data, i.e. their documents defined under thelists subclause

in the participant definition section. If this ispublic , all of these documents are available

to all participants. If the keywordprivate is used, all such documents remain private to

their owners. Participant definitions follow those alreadyseen, with the further option of

defining two extra roles:reader andscribe . The reader has overall control of the focus

of an asynchronous meeting, while the scribe is tasked with completing documents. Finally,

document definitions follow the same pattern as previously shown. Consolidation meetings

have a similar structure to simple meetings, with the participants and documents present being

defined.

As an alternative to a single meeting, two or more meetings tobe held in parallel may be

defined:

parallel 'Parallel'

<...meeting definition 1...>

<...meeting definition 2...>

...

<...meeting definition n...>

end

Each meeting definition is simply a single meeting as previously shown. A given participant

should not appear in more than one meeting definition of a parallel phase. This is not enforced

by ASSIST, but is an obvious constraint that should be applied.

N Fold Detection Instead of a simple sequential detection stage, there may bea number

of complete stages held concurrently, known as an N-Fold inspection. Each fold is a single

detection phase surrounded by the keywordsfold andend . The concurrent stages must be

followed by at least one collation phase, where the results of the folds are brought together.

The entire N-Fold stage is surrounded by the keywordsn fold andend :

www.manaraa.com

APPENDIXB: WRITING IPDL PROCESSES 220

n_fold

fold 'Fold 1'

<...detection definition...>

end

fold 'Fold 2'

<...detection definition...>

end

....

collation 'Collation'

timing synchronous

location local

participants

Coordinator

Moderator1

Moderator2

Author

roles

Moderator1 is reader

Moderator2 is scribe

targets Code

inputs

Team_A_Defects

Team_B_Defects

outputs Master_Defect_List

end

end

The example shows a typical collation phase, with timing, location, participants, roles and

documents clauses like those of simple meetings. An N-Fold inspection must have a single

www.manaraa.com

APPENDIXB: WRITING IPDL PROCESSES 221

participant defined to be acoordinator , who is the person in overall charge of the inspec-

tion. Each fold must have a single moderator.

Completion

Completion consists of three possible phases: rework, follow-up and exit. The phases must

be defined in that order. Rework must have a single participant defined, along with targets,

inputs and possible outputs. For example:

rework 'Rework'

participant Author

targets Code

inputs

Defects

Design

end

Follow-up has much the same format, however targets, inputsand outputs must all be speci-

fied, along with a single participant.

follow_up 'Follow-up'

participant Moderator

targets Code

inputs

Defects

Design

outputs Follow_up_Report

end

Exit takes a form similar to that of entry. For example:

exit 'Exit'

participant Moderator

outputs Exit_criteria

end

B.4.4 Putting It All Together

The above demonstrate individual aspects of IPDL. To see howthe declarations and process

parts fit together, please refer to the supplied process definitions. Further help on writing

www.manaraa.com

APPENDIXB: IPDL REFERENCE 222

softwareinspection ::= inspection inspectionname
declarations
process
end

inspectionname ::= string
declarations ::= declarations

documentdeclarations
responsibilitydeclarationsopt
participantdeclarations
classificationdeclarationopt
end

process ::= process
organisationprocess
detectionprocess
completionprocess
end

organisationprocess ::= entryopt planningopt overviewopt
detectionprocess ::= [detectionjn fold]
completionprocess ::= reworkopt follow upopt exitopt metricsopt
string ::= “ ' ” character+ “ ' ”
character ::= Any printable character or white space.

Figure B.22: Initial process definitions.

new processes can be found by reading the language reference(Section B.5) and the supplied

process definitions.

B.5 IPDL Reference

The following sections describe the grammar of the inspection description language. It is

described using a Backus-Naur style of notation. In this notation, a phrase in italics is non-

terminal, while words intypewriter style indicate language keywords. The `::=' operator

is used to show expansion of non-terminal clauses. A plus indicates one or more instances of

a given clause, whileopt indicates that the clause is optional. Finally, square brackets indicate

alternatives, with the alternatives separated by verticalbars.

B.5.1 Structure of Process Description

The description of a software inspection consists of two parts. The first part contains decla-

rations listing the participants and their roles, along with the documents which will be used

and created during the process. The second part describes the process itself, split into three

stages. There should also be a facility for naming the inspection. The initial definition of the

inspection is that given in Figure B.22. The keywordsinspection andend are used to

www.manaraa.com

APPENDIXB: IPDL REFERENCE 223

documentdeclarations ::= documents documentdefinition+ end
documentdefinition ::= documentname documenttype
documentname ::= identifier
identifier ::= non whitespacecharacter+
non whitespacecharacter ::= Any printable character which is not white space.
documenttype ::= [product jreport jsource jstandard j

list jcriteria jplan jdetection aid]

Figure B.23: Document definitions.

targets ::= targets documentname+
inputs ::= inputs documentname+
outputs ::= outputs documentname+
Figure B.24: Document inclusion clauses.

delimit the description.inspection nameis simply an arbitrary string surrounded by quotes.

The declaration section consists of inspection documents,responsibilities, participants and

classification scheme. Each of these is described in the following sections. The inspection

process itself mirrors the process described earlier, consisting of the three major phases of

organisation, detection and completion. The initial definitions of these are also presented and

each will be described in more detail later.

B.5.2 Inspection Document, Participant and Responsibility Declarations

The first section within the declaration part of the description describes all documents which

are available and created during the entire inspection, andis defined in Figure B.23. This

section simply defines names for each of the documents to be used within the inspection.

When the inspection is instantiated and run, part of the planning task is to associate the real

inspection documents with each document defined. The formatof such documents as criteria

lists and reports is therefore left to the implementation.

The definition of each phase of the inspection will require the documents present and

created during that phase to be defined. This will be achievedby the use of several clauses,

defined in Figure B.24. Any document name appearing in these clauses must be declared

within the document declaration section. The first of these introducestargetdocuments, which

may be of any type described above and are the actual documents being inspected. There is

no constraint on the type since it is not unreasonable to allow standards, checklists and other

supporting material to be inspected at the same time as the product. Theinputs keyword

indicates documents which are made available to this phase,and may also include documents

of any type. Theoutputs keyword indicates the documents created or edited during the

www.manaraa.com

APPENDIXB: IPDL REFERENCE 224

responsibilitydeclarations ::= responsibilities responsibilitydefinition+ end
responsibilitydefinition ::= responsibilitynamerequires fdocumentname+gopt end
responsibilityname ::= identifier

Figure B.25: Responsibility definitions.

participant declarations ::= participants participantdefinition+ end
participant definition ::= participantnameis

role
participant listsopt
responsibilityassignmentopt
end

participant name ::= identifier
participant lists ::= lists documentname+
responsibilityassignment ::= responsibility responsibilityname+
role ::= [coordinator jmoderator jauthor jinspector]

Figure B.26: Participant definitions.

phase, which may either be reports, plans, criteria lists, detection aids or lists. During each

phase, participants will only have access to documents defined for that phase using these

clauses.

The next part of the description is concerned with describing the participants involved

with the process and the responsibilities which they may be assigned. A common inspection

practice is to assign reviewers responsibility for certaindefect types, thus hopefully improving

the coverage and effectiveness of the inspection. This responsibility usually comes in the form

of a checklist or other defect finding aid. Figure B.25 shows how a responsibility may be in

terms of documents. Each responsibility has a name and a listof documents associated with

it. These will usually be checklists or other detection aids, but may also include standards

or any other document type. These documents should be made available to the appropriate

participant by the support tool.

The definitions for inspection participants are shown in Figure B.26. There will usually

be several constraints on the selection of participants. Typically, there must either be one

moderator,or one coordinator and several moderators, depending on the type of inspection.

This constraint is not part of the language because it may unnecessarily limit its flexibility.

Instead, it is left to the implementation to enforce such restrictions as required. Zero or more

authors may be declared, to allow maximum flexibility. Any number of inspectors may also

be declared. Thelists subclause indicates the document which this participant will use to

record defects, change requests or other such items previously discussed when considering the

list document type. Finally, the responsibility names usedmust be previously declared in the

www.manaraa.com

APPENDIXB: IPDL REFERENCE 225

classificationdeclaration ::= classification classificationname
classificationname ::= string

Figure B.27: Item classification clauses.

responsibility declaration section above. Note that any single person may have more than one

role or responsibility. During each phase, any participantwith no defined responsibility will

only be given access to documents defined in that phase, i.e. those generally available. One

such possible document is a general checklist used by everyone.

The participants description is simply a list of people involved and the names of their

roles. Note that the participant list isnot a list of the real people involved; it simply lists the

names of the `characters' in the inspection and the roles they will play. For example, a Fagan

inspection may have:

Moderator is moderator

indicating that the person called Moderator is executing the moderator's duties. Contrast

this with a Gilb and Graham-type inspection, where the person carrying out the task of the

moderator is known as the leader:

Leader is moderator

This convention allows the naming of roles in any way required, allowing us to use terms

which coincide with any inspection practice. This also allows many people to take the same

role, for example to have multiple inspectors, each with a unique responsibility:

Inspector_MF is inspector

lists MF_defects

responsibility Missing_Functionality

end

Inspector_AM is inspector

lists AM_defects

responsibility Ambiguity

end

Figure B.27 shows the item classification clauses. These areused to optionally specify

the classification scheme to be used for list items. The name of the classification scheme used

must be known to ASSIST (e.g. `Fagan'). Classification namesare not part of the language

definition. See Section B.8.4 for details on adding new classification schemes to ASSIST.

www.manaraa.com

APPENDIXB: IPDL REFERENCE 226

participant ::= participant participant name
participants ::= participants participant name+

Figure B.28: Participant inclusion clauses.

entry ::= entry phasename
participant
targetsopt
inputsopt
outputs
end

phasename ::= string

Figure B.29: Entry phase definition.

Finally, for each phase of the inspection the participants required to be present must be

indicated. This is achieved with the two definitions shown inFigure B.28. The first definition

indicates that only one participant should be present, while the second indicates the possibility

of more then one person taking part. The use of these definitions will be shown along with

each phase, but any participant name used within these clauses must have previously been

declared in the participants declaration section.

B.5.3 The Organisation Process

The organisation stage may have three phases: entry, planning and overview. Figure B.22

shows the order in which these phases must occur, and indicates that the entry and overview

phases are optional. Each of these phases is defined in turn, starting with the entry phase,

shown in Figure B.29. This defines a name for the entry phase and indicates that only a

single participant is required during this phase, usually either the moderator or the coordinator,

depending on the type of inspection. At least one output document must be defined, usually

a criteria list. A report detailing the outcome of the phase is also usually defined. Other

documents may also be present using the targets and inputs keywords

The next phase defined is planning, shown in Figure B.30. Again, this phase may be

planning ::= planning phasename
participants
targetsopt
inputsopt
outputs
end

Figure B.30: Planning phase definition.

www.manaraa.com

APPENDIXB: IPDL REFERENCE 227

overview ::= overview phasename
location [local jdistributed]
participants
presenter participantname
targets
inputsopt
outputsopt
end

Figure B.31: Overview phase definition.

detection ::= [meetingphase consolidationstepopt]+
meetingphase ::= [multi meeting jsingle meeting]
multi meeting ::= parallel phasename

singlemeeting
singlemeeting+
end

consolidationstep ::= consolidation meetingphase

Figure B.32: Detection stage definition

named according to the method being described. Although planning will generally involve a

single moderator, multiple participants must be allowed for, especially in the case of an N-Fold

inspection, where the cooperation of several moderators and a coordinator may be required to

form the inspection plan. In this case, the coordinator should have overall control over the

planning stage, while the other participants can provide input. With multiple participants

there must be either a single moderator or a single coordinator. Again, this constraint is left to

the implementation. At least one output must be defined (usually a plan), but others outputs,

along with targets and inputs, may be defined.

The final organisation activity is overview, shown in FigureB.31. This phase requires the

definition of the participants involved, the format of the meeting, either local (same place) or

distributed (different place). The presenter is the personwho carries out the briefing; this is

usually the author. The overview phase is optional.

B.5.4 The Detection Process

Detection activities consist of either a single detection activity or an N-Fold activity. This is

shown in Figure B.22. A single detection activity was definedto consist of at least one meeting

phase, possibly interspersed with consolidation steps. Atthis point the possibility of having

several parallel meetings is also introduced to provide extra flexibility. This allows subsets of

the team to meet separately. Consolidation steps consist ofa consolidation meeting, where it

is decided if a further meeting is required, and the meeting itself. The definition ofdetection

www.manaraa.com

APPENDIXB: IPDL REFERENCE 228

singlemeeting ::= meeting phasename
objective [examination jdetection jcollection]
timing [synchronous jasynchronous]
location [local jdistributed]
visibility [public jprivate]
durationopt
participants
rolesopt
targets
inputsopt
outputsopt
end

duration ::= duration integer

Figure B.33: Meeting phase definition.

roles ::= roles role assignment+
role assignment ::= participantnameis meetingrole
meetingrole ::= [reader jscribe]

Figure B.34: Role definition.

is shown in Figure B.32.

A meeting is defined to be a phase with one or more participantswho may meet syn-

chronously or asynchronously, and whose discussion may be private or public. The meeting

may have one of three objectives: examination, defect detection, or defect collection. The as-

signment of roles during the meeting must also be allowed. Finally, the documents produced

and used in the meeting must be defined. The definition of a meeting is shown in Figure B.33.

The definition starts with the keywordmeeting , followed by the meeting name. The

objective, timing, location and visibility are then set, along with the maximum duration of the

meeting in minutes. The implementation should use the duration to help guide the moderator

during the meeting. This is followed by a list of all meeting participants, as defined earlier.

The roles of reader and scribe may be assigned. If no reader isspecified, then it is assumed

that any participant can guide the meeting (such as in a Humphrey-type inspection where the

document is not paraphrased). If the scribe is not specified then the moderator should be given

that role by default. The roles are followed by target documents, inputs from previous phases

(such as lists) and outputs generated during this meeting (such as reports). All documents are

optional except for target documents. The role assignment section is defined in Figure B.34.

Only the roles ofReader andScribe are defined.

The consolidation phase may follow any meeting, and is used to decide on the need for

a further meeting to resolve any remaining issues. The definition is shown in Figure B.35.

www.manaraa.com

APPENDIXB: IPDL REFERENCE 229

consolidation ::= consolidation phasename
participant
targets
inputs
outputs
end

Figure B.35: Consolidation phase definition.

n fold ::= n fold phasename
fold
fold+
collation+
end

fold ::= fold phasename
detection
end

Figure B.36: N-Fold stage definition.

Again, the phase may be named, and this is followed by the single participant who will per-

form the consolidation (usually the moderator). The targetdocuments and input documents

to this phase are then specified, which generally consist of the product and one or more lists,

respectively. Finally, at least one output must be defined: this is usually a report.

The alternative to a single detection activity is to have multiple, parallel detection activities

with a collation stage, i.e. N-Fold inspection. To increaseflexibility, there is the possibility

of holding more than one collation meeting. The definition isgiven in Figure B.36. As usual,

the phase may be named. The definition will then consist of twoor more detection activity

definitions, as described above, surrounded by the keywordsfold andend , along with one

or more collation meeting definitions.

The collation meeting definition is shown in Figure B.37. Foreach collation, a number

of participants can be listed, usually several moderators along with the coordinator, one of

whom must be nominated scribe with a role definition, anotherof whom may be nominated

collation ::= collation phasename
timing [synchronous jasynchronous]
location [local jdistributed]
participants
roles
targets
inputs
outputs
end

Figure B.37: Collation meeting definition.

www.manaraa.com

APPENDIXB: IPDL REFERENCE 230

rework ::= rework phasename
participant
targets
inputs
outputsopt
end

Figure B.38: Rework phase definition.

follow up ::= follow up phasename
participant
targets
inputs
outputs
end

Figure B.39: Follow-up phase definition.

reader. Inputs will generally consist of a collected list ofdefects from each inspection. The

output will usually be a single master list of defects for theentire inspection, but reports may

also form outputs from this phase. Several collation meetings may take place, to allow for the

possibility of the coordinator meeting with a subgroup of moderators. In this case, an input to

subsequent meetings should be the collated lists of defectsfrom previous meetings.

B.5.5 The Completion Process

The completion process consists of four activities, as shown in Figure B.22: rework, follow-

up, exit and metrics, all of which are optional.

The rework phase is defined in Figure B.38. Although rework isgenerally carried out by

the author, the possibility of another participant performing rework is catered for. This may

occur if the author is not part of the inspection team, or is otherwise unavailable. Various

documents may be made available during this phase. Target documents are always required,

with the implementation having to provide some means of editing these documents. Input

documents will typically consist of one or more lists. The output of the phase may consist of

one or more reports, or other documents as required.

The next phase is follow-up, involving checking the work performed in rework, and is

defined in Figure B.39. Only one person should perform follow-up: this is usually the moder-

ator (or coordinator), but there is the possibility of another participant performing this task. A

target document is always required, and other input documents (usually a list of defects) must

also be present. Finally, the defined output is one or more reports.

Next is the optional exit phase, defined in Figure B.40. This is similar to the entry phase

www.manaraa.com

APPENDIXB: IPDL REFERENCE 231

exit ::= exit phasename
participant
targetsopt
inputsopt
outputs
end

Figure B.40: Exit phase definition.

metrics ::= metrics phasename
participant
data
targetsopt
inputsopt
outputs
end

data ::= data measure+
measure ::= identifier participantnameopt phasenameopt

Figure B.41: Metrics collection phase definition.

in that it defines one or more output documents, usually listsof criteria which must be met.

A report detailing the outcome of the phase may also be appropriate. Input and target docu-

ments may also be defined. One single participant is involvedin this phase: this is either the

moderator or the coordinator, depending on the inspection type.

Finally, the metrics collection and analysis phase is shownin Figure B.41. This follows the

format of other phases. The main difference is thedata subclause. This is used to indicate

the measures which must be supplied by the tool for this phase. Each measure consists of

its name, an optional participant name for whom this measureapplies, and an optional phase

name which states which phase that particular measure is to be taken from. For example, to

collect the number of list items produced by the participantModerator during the phase

'Preparation' , the following might be used:

data

list_items Moderator 'Preparation'

Other metrics, such as the length of the product, are not specific to a single phase or a single

participant and do not require these to be specified. No measures are defined in IPDL. Details

of measures available in ASSIST can be found in Section B.7.

ASSIST is supplied with eight standard process definitions.When defining a new process,

it is usually easier to edit an existing process which is similar to that required. The example

processes provide demonstrations of the main IPDL constructs.

www.manaraa.com

APPENDIXB: FORMATS 232

criteria list ::= criteria section+
criteria section ::= heading criterion+
criterion ::= [subheadingjmultijopenjnumericjdatejcheck]

Figure B.42: The format of a criteria list.

report ::= report section+
report section ::= heading reportitem+
report item ::= [subheadingjmultijopenjnumericjdatejcheck]

Figure B.43: The format of a report.

B.6 Formats

B.6.1 Checklists, Criteria, Reports and Plans

The criteria, report, plan and checklist browsers suppliedwith ASSIST require documents

to be in a specific format. This format allows different typesof items within the document to be

easily specified. Figure B.42 shows the format of a criteria document. Each document consists

of a number of sections, each of which consists of a heading plus one or more individual

criteria items. In the same manner, reports consist of a number of sections each of which

contains a heading plus one or more items (Figure B.43). The different item type are identical

to those of criteria documents. As can be seen from Figure B.44, plans have a similar format.

The format for checklist is also similar, as shown in Figure B.45. The different item type are

identical for criteria documents, reports, plans and checklists. They are shown in Figure B.46,

along with the definition of a heading.

A heading is simply the wordheading followed by a string. The four item types are

multi , open , numeric anddate . A multi is a multiple choice question, consisting of

the question itself plus two or more responses. An open question allows a freeform textual

answer to be given. This requires a definition of the questionand the maximum length of

the answer “box” required. A numeric question is used when the answer is expected to be

plan ::= plan section+
plan section ::= heading planitem+
plan item ::= [subheadingjmultijopenjnumericjdatejcheck]

Figure B.44: The format of a plan.

www.manaraa.com

APPENDIXB: FORMATS 233

checklist ::= checklistsection+
checklistsection ::= heading checklistitem+
checklistitem ::= [subheadingjmultijopenjnumericjdatejcheck]

Figure B.45: The format of a checklist.

heading ::= heading string keywordopt
subheading ::= subheading string keywordopt
multi ::= multi question response response+ text answeropt keywordopt
open ::= open question length textansweropt keywordopt
numeric ::= numeric question length unitopt numericansweropt keywordopt
check ::= check question checkansweropt keywordopt
date ::= date question dateansweropt keywordopt
length ::= length integer
unit ::= unit string
text answer ::= answer string
numericanswer ::= answer integer
dateanswer ::= answer DD“ / ”MM“ / ”YYYY
checkanswer ::= answer [yes jno]
question ::= string
response ::= string
string ::= “ ' ” character+ “ ' ”
character ::= Any printable character or white space.
integer ::= Any standard integer.

Figure B.46: Items common to criteria lists, reports, plansand checklists.

www.manaraa.com

APPENDIXB: FORMATS 234

Figure B.47: An example of a criteria list.

an integer. Again, the question must be specified along with the maximum answer length.

Furthermore, the units following the answer may be specified. A date question requires a

date in DD/MM/YYYY format as answer. This simply requires the question to be specified.

Similarly, a check item, which requires a binary answer, only requires the question to be

specified.

Each item may have a “correct” answer associated with it. This answer may be used

for checking that the document has been completed correctly. The answer is indicated by

the keywordanswer followed by the answer itself, in the appropriate format. Finally, each

item may have a keyword associated with it. This keyword is used by the automatic cross-

referencer within ASSIST, and allows document features to be associated with specific items.

For example, allfor loops in a C++ file may be linked to a checklist item which deals

specifically withfor loops.

An example of a criteria list is:

heading 'Criteria Example'

check 'Code passed static analysis?' answer 'yes'

open 'Authors name' length 30

www.manaraa.com

APPENDIXB: FORMATS 235

numeric 'Estimated defects remaining'

length 3 unit 'defects/KLOC'

date 'Scheduled inspection completion date'

The document produced by the above file is shown in Figure B.47. Reports, plans and check-

lists have similar layouts.

B.6.2 Help Documents

The help browser supplied with ASSIST requires documents tobe in a specific format. This

format uses a subset of HTML tags. Tags are used to divide the document into pages, add

formatting, and allow internal and external cross-referencing. A document begins with its title

followed by one or more pages. Each page consists of a heading(with the header tag indicating

the section level of this page), the text of the page, a list ofinternal cross-references, and a list

of keywords which the page may be cross-referenced on.

The following tags are used:� <title >...</title > are used to surround the title of the document. This tag must

be the first item in the document.� <hn >...</h n > (where n = 1...6) denote sections and subsections.h1 is a top-level

section, whileh2 to h6 are progressively lower subsections.� <pre >...</pre > are used to surround text which is already formatted and should

not be formatted by the browser.� <p> takes a new paragraph in the document.� <see also >...</see also > indicate internal cross-references. To add a reference

to another page, place (one of) its keywords here.� <keywords >...</keywords > gives a list of keywords for this document. Key-

words can be referenced manually using the<see also > tag. ASSIST will also

automatically use these keywords when building cross-references to other documents.

To demonstrate the help format, here is a sample of the C++ reference supplied with

ASSIST.

<title> C++ Reference </title>

<h1>Constructs</h1>

www.manaraa.com

APPENDIXB: FORMATS 236

<h2>The for loop</h2>

The for loop has the general form

<p>

<pre>

for (expression1; expression2; expression3)

statement

</pre>

<p>

First, expression1 is evaluated, and typically contains an

initialisation expression. Then expression2 is evaluated .

If it is non-zero, statement is executed, expression3 is

evaluated and control passes back to the beginning of the for

loop, except that expression1 is not evaluated again. This

cycle continues until expression2 is zero, when control pas ses

to the following statement.

<see_also>cpp_keyword_break cpp_keyword_continue</se e_also>

<keywords>cpp_keyword_for</keywords>

<h2>The while loop</h2>

The while statement has the form

<p>

<pre>

while(expression)

statement

</pre>

<p>

First, expression is evaluated. If it is non-zero, statemen t

is executed and control returns to the start of the while

loop. Therefore, the body of the while loop is executed until

expression becomes zero. The body can be executed zero or

www.manaraa.com

APPENDIXB: METRICSAVAILABLE IN ASSIST 237

more times.

<see_also>cpp_keyword_break cpp_keyword_continue</se e_also>

<keywords>cpp_keyword_while</keywords>

The C++ reference is shown in Figure B.19.

B.7 Metrics Available in ASSIST

No metrics are currently available.

B.8 Customising and Extending ASSIST

B.8.1 Altering the Printer Setup

As standard, ASSIST uses thelpr command for printing. You can alter this in the setup file

$ASSIST_HOME/client/assist_defs.py

The line

PRINT = 'lpr'

indicates the print command to be used. Simply substitute your required print command here.

For example, to print on a specific printer, use

PRINT = 'lpr -P<printer-name>'

B.8.2 The.assistrc file

The .assistrc file allows the user to customise certain aspects of ASSIST. This file is

automatically created the first time you run ASSIST, and is consulted each time thereafter.

Distributed Support

The tools used to provide distributed support are by defaultalways on. They can be turned off

by altering the relevant lines in the.assistrc file. Replacing the ' 1' with a ' 0' in each of

the following lines turns the relevant tool off:

www.manaraa.com

APPENDIXB: CUSTOMISING AND EXTENDING ASSIST 238

whiteboard 1

video 1

audio 1

text 1

B.8.3 Adding New Browsers

ASSIST can be extended by adding new document browsers. Thiscan either be written di-

rectly in Python, or browsers in other languages can be addedby providing a Python interface.

This section describes the browser interface specificationand how to add a new browser to

ASSIST. It assumes a detailed knowledge of the Python language.

Browser Interface Definition

The browser must be written in the following basic form:

from assist_defs import *

from Tkinter import *

class Browser(Toplevel):

def __init__(self, DocumentName, Filename, ListItems,

Finished, NewAnnotation, ShowAnnotation,

DeleteAnnotation, ProposeAnnotation,

GetReferences, JumpToReference,

DocumentChecked, Coverage, SecondaryData,

Reader, BroadcastJump, Save, Objective,

Timing, WriteDocument):

The parameters passed to theinit function are:� DocumentName - the name of the document which the browser has to display (string).� Filename - the filename under which the document can be found for loading (string).� ListItems - contains details of the annotations for this document. It is a dictionary

using the positions of the annotations as keys. Each entry consists of a list of one or

more objects, each of which is an entireListItem . These items have the following

attributes:

www.manaraa.com

APPENDIXB: CUSTOMISING AND EXTENDING ASSIST 239

– Filename - the name of the document which this item refers to (string)

– Position - the position of the item within the document (document specific, but

always a string)

– Title - title of item (string)

– Text - textual description (string)

– Type - first classification (string)

– Class - second classification (string)

– Severity - third classification (string)

– ID - ID of item, unique within the list to which the item belongs (integer)

– Time - time of creation of item (string)

– Owner - username of the person who created this item (string)

– Implemented - has value 0 if item has been declared implemented, otherwise

has the value 0

– Accept - list of users who have voted to accept this item

– Reject - list of users who have voted to reject this item� Finished - the function to be called when the browser is closed, allowing the system

to update its status. See theClose function, described later.� NewAnnotation - a function passed to the browser to allow annotation of documents

via the list browser. The call has the following form:

NewAnnotation(Title, Position, File, Text, Type, Class,

Severity)

Title is the title of the annotation.Position is the position within the document

which this annotation refers to.File is the name of the document which the annotation

refers to.Text is the actual text of the annotation. The remaining three parameters are

three strings used as to classify the item. Any parameter notrequired must be replaced

by an empty string.� ShowAnnotation - a function passed to the browser to allow annotations to be

viewed and updated via the list browser. The call has the following form:

ShowAnnotation(List, ListItemID)

www.manaraa.com

APPENDIXB: CUSTOMISING AND EXTENDING ASSIST 240

List is the name of the list in which the annotation occurs.ListItemID is the ID

of the annotation which is being shown. Both parameters mustbe present.� DeleteAnnotation - a function passed to the browser to allow annotations to be

deleted via the list browser. The call has the following form:

DeleteAnnotation(List, ListItemID)

List is the name of the list in which the annotation occurs.ListItemID is the ID

of the annotation which is being updated. Both parameters must be present.� ProposeAnnotation - a function passed to the browser to allow annotations to be

proposed via the list browser. The call has the following form:

ProposeAnnotation(List, ListItemID)

List is the name of the list in which the annotation occurs.ListItemID is the ID

of the annotation which is being updated. Both parameters must be present.� GetReferences - allows the browser to make queries concerning cross-references.

Its form is:

GetReferences(Keyword)

Keyword is the reference term to be looked up. The function returns a list of refer-

ences. Each reference is itself a list, the first item of whichis the name of the document

in which the reference may be found, the second is the position of the reference within

that document, and the third contains the word being referenced.� JumpToReference - allows this browser to cross-reference with other browsers.

Calling this function make ASSIST jump to the indicated reference. If the required

browser is not open, ASSIST will open it.

JumpToReferences(Reference, Keyword)

Keyword is the index term, whileReference is a list containing the document name

and the position which should be highlighted.� DocumentChecked - used to inform the system that the document has been satisfac-

torily completed, if such completion is required.

www.manaraa.com

APPENDIXB: CUSTOMISING AND EXTENDING ASSIST 241

DocumentChecked(DocumentName)

DocumentName is the name of the document which has been checked.� Coverage - coverage of the document achieved so far. This may take any form re-

quired. For example, the text browser uses a list of line numbers to indicate which lines

have been inspected.� SecondaryData - document and browser specific data generated at the start ofthe

inspection. See theGenerateSecondaryData function described later for more

details.� Reader - has the value 1 if this participant has the role of reader during this phase,

otherwise has the value 0.� BroadcastJump - a function which is passed to allow the propagation of current

focus if the browser is being used by the reader during a synchronous phase.

BroadcastJump(Position, Document)

Position is the position which is to be moved to.Document is the name of the

document.� Save - a function used to save the document if it has been edited. The call has the

following form:

Save(DocumentName, Contents)

DocumentName is the name of the document, as passed to the browser.Contents

is the contents of the document.� Objective - the objective of the meeting, one of three constants:EXAMINATION,

DETECTIONor COLLECTION.� Timing - the timing of the meeting, eitherSYNCHRONOUSor ASYNCHRONOUS.� WriteDocument - has the value 1 if this document can be edited, otherwise hasthe

value 0.

The class must provide a number of functions. If the the function is not implemented, its

header must still be present and the body should consist of apass statement. The functions

are:

www.manaraa.com

APPENDIXB: CUSTOMISING AND EXTENDING ASSIST 242� Close(self) - the function called when the browser is closed. This must make a

call to theFinished function passed to the browser. This call is usually

self.Finished(self.DocumentName, self.Covered)

It passes the document name and the updated coverage (if any).� JumpTo(self, Position, Keyword = None) - Used to move the focus of

the browser to a certain position. The position is given by the Position parameter,

while theKeyword parameter can be used to indicate a specific reference of interest.� RepositionBrowser(self, List, ListItem) Repositions the browser at

the item indicated. The contents ofListItem must be examined to find the appropri-

ate position.� BrowserAddAnnotation(self, List, ListItem) - informs the browser

of any new items (annotations) added to this document. The parameters are the list

to which the item belongs (a string), and the item itself.� BrowserDeleteAnnotation(self, List, ListItem) - tells the browser

when an item (annotation) is deleted. The list to which the item belongs (a string), and

the item itself are passed as parameters.� ItemVotedOn(self, List, ListItem, User, Vote) - tells the browser

when an item has been voted on.List is the name of the list which the item belongs

to. ListItem is the item which has been voted on.User is a string containing the

name of the person casting the vote.Vote is the vote itself.� deiconify(self) This function must be defined if the browser is not Tk based.

This function should open the browser from its iconified state, if it has one. Alterna-

tively, the body can simply consist of apass statement. If the browser is Tk based, this

function is automatically defined - do not override it.� tkraise(self) This function must be defined if the browser is not Tk based. This

function should move the browser above any other windows which may be on the

screen. Alternatively, the body can simply consist of apass statement. If the browser

is Tk based, this function is automatically defined - do not override it.

In addition, two other functions must be defined at the modulelevel. These are called

when an inspection is started, for each document which makesuse of the browser. The first

www.manaraa.com

APPENDIXB: CUSTOMISING AND EXTENDING ASSIST 243

generates cross-references for the document, while the second is a non-specific function which

can be used to generate other data about that document.� GenerateXRefs(Filename, DocumentName) generates cross-references for

the document calledDocumentName which has been stored underFilename . This

function may return two items, held in a list. The first item inthe list is a set of ref-

erences, stored as a Python dictionary. The keys of this dictionary are the reference

terms. Each item in this dictionary must consist of a list of reference items. A reference

item is a list containing the name of the document, the position of the reference and a

title for the reference. If no references are generated, an empty dictionary should be

returned as the first element of the list. The second item can be used to return any other

document specific data, such as the output of a static analysis tool. This avoids running

such tools multiple times for the same document during a single inspection. No format

is defined for this data. If no data is to be generated,None should be returned as the

second element of the list.

A template which you can use as a starting point for writing your own browser can

be found in$ASSIST HOME/client/browser template.py . See also the supplied

browsers.

Adding New Content Types

When a new browser is added to ASSIST, it must have an entry in one of the content-type files

to allow it to be used. The directory$ASSIST HOME/server data/content-types

contains a number of file specifying content types for a subset of the document types. Each

file contains entries of the form

<content-type> <browser-name>

For example, the content-types file for products has the following by default:

ASCII tbrowser

code codebrowser

C++ cppbrowser

When a document is added to the document database (Section B.2.2), this list of content types

is displayed under theSelect Content Typemenu. During an inspection, the content type

of the document is used to determine the actual browser used to display that document. The

browser name must match the name of the Python file containingthe code for that browser

(minus the.py extension).

www.manaraa.com

APPENDIXB: CUSTOMISING AND EXTENDING ASSIST 244

B.8.4 Adding New Classification Schemes

New item classification schemes can be easily added to ASSIST. Each scheme may have up to

three classification levels. These are referred to within ASSIST as type, class and severity, but

may be given any name desired.$ASSIST HOME/server data/classifications

contains all the data on classification schemes. Within thisdirectory there is a directory for

each level of classification:types , classes andseverities . To add a new classifica-

tion scheme you must create a file in one or more of these directories. This file should have

the same name as that of your classification scheme. The first line of the file should contain

the name of this classification level. This should be followed by the names of the different

categories, one per line. For example, the Fagan-type classification scheme which comes with

ASSIST has a file calledfagan in each subdirectorytypes , classes andseverities .

The file inclasses is

Class

Missing

Wrong

Extra

Class is the name of this classification level, and it has three categories. To use this classifi-

cation scheme in ASSIST, the IPDL line

classification 'fagan'

is used. If less than three classification levels are used, ASSIST will automatically disable the

others.

www.manaraa.com

Appendix C

IPDL Processes

C.1 Fagan Inspection

inspection 'Fagan Code Inspection'

declarations

documents

Code product

Design source

Defects1 list

Defects2 list

Defects3 list

Defects4 list

Defects5 list

Master_defects list

Meeting_report report

Follow_up_Report report

Master_Plan plan

end

participants

Inspector1 is inspector

lists Defects1 end

Inspector2 is inspector

lists Defects2 end

Inspector3 is inspector

lists Defects3 end

Moderator is moderator

lists Defects4 end

Author is author

lists Defects5 end

end

classification 'fagan'

end

process

www.manaraa.com

APPENDIXC: FAGAN INSPECTION 246

planning 'Planning'

participants Moderator

outputs Master_Plan

end

overview 'Overview'

location local

participants

Moderator

Author

Inspector1

Inspector2

Inspector3

presenter Author

targets Code

end

meeting 'Preparation'

objective examination

timing asynchronous

location local

visibility private

participants

Moderator

Author

Inspector1

Inspector2

Inspector3

targets Code

inputs Design

end

meeting 'Inspection'

objective collection

timing synchronous

location local

visibility public

participants

Moderator

Author

Inspector1

Inspector2

Inspector3

roles

Inspector1 is reader

Inspector2 is scribe

targets Code

inputs Design

outputs

Master_defects

Meeting_report

end

rework 'Rework'

www.manaraa.com

APPENDIXC: STRUCTUREDWALKTHROUGH 247

participant Author

targets Code

inputs

Master_defects

Design

end

follow_up 'Follow-up'

participant Moderator

targets Code

inputs

Master_defects

Design

outputs Follow_up_Report

end

end

end

C.2 Structured Walkthrough

inspection 'Structured Walkthrough'

declarations

documents

Code source

Design source

Error_List1 list

Error_List2 list

Error_List3 list

Error_List4 list

Error_List5 list

Master_Error_List list

Maintenance_Requirements source

Coding_Standard standard

User_Requirements source

Summary report

Follow_up_Report report

Master_Plan plan

end

responsibilities

Maintenance requires

Maintenance_Requirements

end

Standards requires

Coding_Standard

end

User requires

User_Requirements

end

end

participants

www.manaraa.com

APPENDIXC: STRUCTUREDWALKTHROUGH 248

Coordinator is moderator

lists Error_List1

end

Producer is author

lists Error_List2

end

Maintenance_Oracle is inspector

lists Error_List3

responsibility Maintenance

end

Standards_Bearer is inspector

lists Error_List4

responsibility Standards

end

User_Representative is inspector

lists Error_List5

responsibility User

end

Reviewer is inspector

lists Error_List5

end

end

end

process

planning 'Planning'

participants Coordinator

outputs Master_Plan

end

meeting 'Preparation'

objective examination

timing asynchronous

location local

visibility private

participants

Coordinator

Producer

Maintenance_Oracle

Standards_Bearer

User_Representative

Reviewer

targets Code

inputs Design

end

meeting 'Walkthrough'

objective collection

timing synchronous

location local

visibility public

duration 60

participants

www.manaraa.com

APPENDIXC: HUMPHREY INSPECTIONPROCESS 249

Coordinator

Producer

Maintenance_Oracle

Standards_Bearer

User_Representative

Reviewer

roles

Producer is reader

Reviewer is scribe

targets Code

inputs Design

outputs

Master_Error_List

Summary

end

rework 'Rework'

participant Producer

targets Code

inputs

Master_Error_List

Design

end

follow_up 'Follow-up'

participant Coordinator

targets Code

inputs

Master_Error_List

Design

outputs Follow_up_Report

end

end

end

C.3 Humphrey Inspection Process

inspection 'Humphrey Inspection Process'

declarations

documents

Code product

Design source

Error_Log1 list

Error_Log2 list

Error_Log3 list

Error_Log4 list

Error_Log5 list

Consolidated_Error_Log list

Master_Error_Log list

Meeting_report report

Follow_up_Report report

www.manaraa.com

APPENDIXC: HUMPHREY INSPECTIONPROCESS 250

Master_Plan plan

Entry_criteria criteria

Exit_criteria criteria

end

participants

Reviewer1 is inspector

lists Error_Log1 end

Reviewer2 is inspector

lists Error_Log2 end

Reviewer3 is inspector

lists Error_Log3 end

Moderator is moderator

lists Error_Log4 end

Producer is author

lists Error_Log5 end

end

end

process

planning 'Planning'

participants Moderator

outputs Master_Plan

end

overview 'Overview'

location local

participants

Moderator

Producer

Reviewer1

Reviewer2

Reviewer3

presenter Producer

targets Code

end

meeting 'Preparation'

objective detection

timing asynchronous

location local

visibility private

participants

Moderator

Producer

Reviewer1

Reviewer2

Reviewer3

targets Code

inputs Design

end

meeting 'Analysis'

objective collection

timing asynchronous

www.manaraa.com

APPENDIXC: HUMPHREY INSPECTIONPROCESS 251

location local

visibility private

participants

Producer

targets Code

outputs Consolidated_Error_Log

end

meeting 'Inspection'

objective collection

timing synchronous

location local

visibility public

participants

Moderator

Producer

Reviewer1

Reviewer2

Reviewer3

roles

Reviewer1 is reader

Reviewer2 is scribe

targets Code

inputs

Consolidated_Error_Log

Design

outputs

Master_Error_Log

Meeting_report

end

rework 'Rework'

participant Producer

targets Code

inputs

Master_Error_Log

Design

end

follow_up 'Follow-up'

participant Moderator

targets Code

inputs

Master_Error_Log

Design

outputs Follow_up_Report

end

end

end

www.manaraa.com

APPENDIXC: GILB AND GRAHAM 252

C.4 Gilb and Graham

inspection 'Gilb and Graham Inspection'

declarations

documents

Code product

Design source

Issue_List1 list

Issue_List2 list

Issue_List3 list

Issue_List4 list

Issue_List5 list

Issue_Log list

Process_Improvement_Log list

Meeting_report report

Follow_up_Report report

Master_Plan plan

Entry_criteria criteria

Exit_criteria criteria

end

participants

Checker1 is inspector

lists Issue_List1 end

Checker2 is inspector

lists Issue_List2 end

Checker3 is inspector

lists Issue_List3 end

Leader is moderator

lists Issue_List4 end

Author is author

lists Issue_List5 end

end

end

process

entry 'Entry'

participant Leader

outputs Entry_criteria

end

planning 'Planning'

participants Leader

outputs Master_Plan

end

overview 'Kickoff'

location local

participants

Leader

Author

Checker1

Checker2

Checker3

www.manaraa.com

APPENDIXC: GILB AND GRAHAM 253

presenter Author

targets Code

end

meeting 'Checking'

objective detection

timing asynchronous

location local

visibility private

participants

Leader

Author

Checker1

Checker2

Checker3

targets Code

inputs Design

end

meeting 'Logging'

objective collection

timing synchronous

location local

visibility public

participants

Leader

Author

Checker1

Checker2

Checker3

roles

Checker1 is reader

Checker2 is scribe

targets Code

inputs Design

outputs

Issue_Log

Meeting_report

end

meeting 'Process Brainstorming'

objective collection

timing synchronous

location local

visibility public

participants

Leader

Author

Checker1

Checker2

Checker3

roles

Checker2 is scribe

www.manaraa.com

APPENDIXC: ASYNCHRONOUSINSPECTION 254

targets

Code

Design

inputs Design

outputs

Issue_Log

Meeting_report

end

rework 'Edit'

participant Author

targets Code

inputs

Issue_Log

Design

end

follow_up 'Follow-up'

participant Leader

targets Code

inputs

Issue_Log

Design

outputs Follow_up_Report

end

exit 'Exit'

participant Leader

outputs Exit_criteria

end

end

end

C.5 Asynchronous Inspection

inspection 'Asynchronous Inspection'

declarations

documents

Code product

Design source

Issues1 list

Comments1 list

Actions1 list

Issues2 list

Comments2 list

Actions2 list

Issues3 list

Comments3 list

Actions3 list

Issues4 list

Comments4 list

Actions4 list

www.manaraa.com

APPENDIXC: ASYNCHRONOUSINSPECTION 255

Consolidated_Issues list

Consolidated_Comments list

Consolidated_Actions list

Unresolved_Issues list

Further_Issues list

Consolidation_report report

Follow_up_Report report

Master_Plan plan

end

participants

Moderator is moderator

lists

Issues1

Comments1

Actions1

end

Producer is author

lists

Issues2

Comments2

Actions2

end

Reviewer1 is inspector

lists

Issues3

Comments3

Actions3

end

Reviewer2 is inspector

lists

Issues4

Comments4

Actions4

end

end

end

process

planning 'Setup'

participants Moderator

outputs Master_Plan

end

overview 'Orientation'

location local

participants

Moderator

Producer

Reviewer1

Reviewer2

presenter Producer

targets Code

www.manaraa.com

APPENDIXC: ASYNCHRONOUSINSPECTION 256

end

meeting 'Private Review'

objective detection

timing asynchronous

location local

visibility private

participants

Moderator

Producer

Reviewer1

Reviewer2

targets Code

inputs Design

end

meeting 'Public Review'

objective collection

timing asynchronous

location local

visibility public

participants

Moderator

Producer

Reviewer1

Reviewer2

roles

Reviewer1 is reader

Reviewer2 is scribe

targets Code

inputs Design

end

consolidation 'Consolidation'

participant

Moderator

targets Code

inputs

Issues1

Comments1

Actions1

Issues2

Comments2

Actions2

Issues3

Comments3

Actions3

Issues4

Comments4

Actions4

Design

outputs

Consolidated_Issues

www.manaraa.com

APPENDIXC: ASYNCHRONOUSINSPECTION 257

Consolidated_Comments

Consolidated_Actions

Unresolved_Issues

Consolidation_report

end

meeting 'Group Review Meeting'

objective collection

timing synchronous

location local

visibility public

participants

Moderator

Producer

Reviewer1

Reviewer2

roles

Reviewer1 is reader

Reviewer2 is scribe

targets Code

inputs

Unresolved_Issues

Design

outputs

Further_Issues

end

rework 'Rework'

participant Producer

targets Code

inputs

Consolidated_Issues

Consolidated_Comments

Consolidated_Actions

Further_Issues

Design

end

follow_up 'Conclusion'

participant Moderator

targets Code

inputs

Consolidated_Issues

Consolidated_Comments

Consolidated_Actions

Further_Issues

Design

outputs Follow_up_Report

end

end

end

www.manaraa.com

APPENDIXC: ACTIVE DESIGNREVIEWS 258

C.6 Active Design Reviews

inspection 'Active Design Review'

declarations

documents

Design product

AV_Questionnaire detection_aid

AS_Questionnaire detection_aid

C_Questionnaire detection_aid

Defects1 list

Defects2 list

Defects3 list

Follow_up_Report report

Master_Plan plan

end

responsibilities

Assumption_Validity requires

AV_Questionnaire

end

Assumption_Sufficiency requires

AS_Questionnaire

end

Consistency requires

C_Questionnaire

end

end

participants

Reviewer1 is inspector

lists Defects1

responsibility Assumption_Validity

end

Reviewer2 is inspector

lists Defects2

responsibility Assumption_Sufficiency

end

Reviewer3 is inspector

lists Defects3

responsibility Consistency

end

Designer1 is moderator

end

Designer2 is author

end

end

end

process

planning 'Planning'

participants Designer1

outputs Master_Plan

end

www.manaraa.com

APPENDIXC: ACTIVE DESIGNREVIEWS 259

overview 'Overview'

location local

participants

Designer1

Designer2

Reviewer1

Reviewer2

Reviewer3

presenter Designer2

targets Design

end

meeting 'Review'

objective detection

timing asynchronous

location local

visibility private

participants

Reviewer1

Reviewer2

Reviewer3

targets Design

end

meeting 'Discussion 1'

objective collection

timing synchronous

location local

visibility public

participants

Reviewer1

Designer1

roles

Designer1 is scribe

targets Design

inputs AV_Questionnaire

outputs Defects1

end

meeting 'Discussion 2'

objective collection

timing synchronous

location local

visibility public

participants

Reviewer2

Designer2

roles

Designer2 is scribe

targets Design

inputs AS_Questionnaire

outputs Defects2

end

www.manaraa.com

APPENDIXC: PHASED INSPECTION 260

meeting 'Discussion 3'

objective collection

timing synchronous

location local

visibility public

participants

Reviewer3

Designer1

roles

Designer1 is scribe

targets Design

inputs C_Questionnaire

outputs Defects3

end

rework 'Rework'

participant Designer2

targets Design

inputs

Defects1

Defects2

Defects3

end

follow_up 'Follow-up'

participant Designer1

targets Design

inputs Defects1 Defects2 Defects3

outputs Follow_up_Report

end

end

end

C.7 Phased Inspection

inspection 'Phased Inspection'

declarations

documents

Code product

Design source

Defect_List1 list

Defect_List2 list

Defect_List3 list

Defect_List4 list

Question_List1 list

Question_List2 list

Question_List3 list

Collected_Defect_List list

Coding_Standard standard

Coding_Standard_Checklist detection_aid

Reusability_Checklist detection_aid

www.manaraa.com

APPENDIXC: PHASED INSPECTION 261

Master_Plan plan

Follow_up_Report report

end

responsibilities

Standards_Compliance requires

Coding_Standard Coding_Standard_Checklist

end

Reusability requires

Reusability_Checklist

end

end

participants

Moderator is moderator end

Author is inspector end

Inspector1 is inspector

lists Defect_List1

responsibility Standards_Compliance

end

Inspector2 is inspector

lists Defect_List2 Question_List1

responsibility Reusability

end

Inspector3 is inspector

lists Defect_List3 Question_List2

responsibility Reusability

end

Inspector4 is inspector

lists Defect_List4 Question_List3

responsibility Reusability

end

end

end

process

planning 'Planning'

participants Moderator

outputs Master_Plan

end

meeting 'Phase 1'

objective detection

timing asynchronous

location local

visibility private

participants

Inspector1

targets Code

inputs Design

end

meeting 'Phase 2 Examination'

objective examination

timing asynchronous

www.manaraa.com

APPENDIXC: PHASED INSPECTION 262

location local

visibility private

participants

Inspector2

Inspector3

Inspector4

targets Code

inputs Design

end

meeting 'Phase 2 Inspection'

objective detection

timing asynchronous

location local

visibility private

participants

Inspector2

Inspector3

Inspector4

targets Code

inputs Design

end

meeting 'Phase 2 Reconciliation'

objective collection

timing synchronous

location local

visibility public

participants

Inspector2

Inspector3

Inspector4

targets Code

inputs

Defect_List2

Defect_List3

Defect_List4

Design

outputs

Collected_Defect_List

end

rework 'Rework'

participant Author

targets Code

inputs

Collected_Defect_List

Defect_List1

Design

end

follow_up 'Follow-up'

participant Moderator

targets Code

www.manaraa.com

APPENDIXC: N-FOLD INSPECTION 263

inputs

Collected_Defect_List

Defect_List1

Design

outputs Follow_up_Report

end

end

C.8 N-Fold Inspection

inspection '3-Fold Code Inspection'

declarations

documents

Code product

Design source

Defects1 list

Defects2 list

Defects3 list

Defects4 list

Defects5 list

Defects6 list

Defects7 list

Defects8 list

Defects9 list

Team_A_Defects list

Team_B_Defects list

Team_C_Defects list

Master_Defect_List list

Team_A_Meeting_Rep report

Team_B_Meeting_Rep report

Team_C_Meeting_Rep report

Follow_Up_Report report

Master_Plan plan

end

participants

Coordinator is coordinator

end

Moderator1 is moderator

lists Defects1

end

Moderator2 is moderator

lists Defects2

end

Moderator3 is moderator

lists Defects3

end

Inspector1 is inspector

lists Defects4

end

www.manaraa.com

APPENDIXC: N-FOLD INSPECTION 264

Inspector2 is inspector

lists Defects5

end

Inspector3 is inspector

lists Defects6

end

Inspector4 is inspector

lists Defects7

end

Inspector5 is inspector

lists Defects8

end

Inspector6 is inspector

lists Defects9

end

Author is author

end

end

end

process

planning 'Planning'

participants Coordinator

outputs Master_Plan

end

overview 'Overview'

location local

participants

Coordinator

Moderator1

Moderator2

Moderator3

Inspector1

Inspector2

Inspector3

Inspector4

Inspector5

Inspector6

Author

presenter Author

targets Code

end

n_fold '3 Fold Inspection'

fold 'Team A Inspection'

meeting 'Team A Preparation'

objective examination

timing asynchronous

location local

visibility private

participants

Moderator1

www.manaraa.com

APPENDIXC: N-FOLD INSPECTION 265

Inspector1

Inspector2

targets Code

inputs Design

end

meeting 'Team A Inspection'

objective collection

timing synchronous

location local

visibility public

participants

Moderator1

Inspector1

Inspector2

roles

Inspector1 is reader

Inspector2 is scribe

targets Code

inputs Design

outputs

Team_A_Defects

Team_A_Meeting_Rep

end

end # Team A inspection

fold 'Team B Inspection'

meeting 'Team B Preparation'

objective examination

timing asynchronous

location local

visibility private

participants

Moderator2

Inspector3

Inspector4

targets Code

inputs Design

end

meeting 'Team B Inspection'

objective collection

timing synchronous

location local

visibility public

participants

Moderator2

Inspector3

Inspector4

roles

Inspector3 is reader

Inspector4 is scribe

targets Code

www.manaraa.com

APPENDIXC: N-FOLD INSPECTION 266

inputs Design

outputs

Team_B_Defects

Team_B_Meeting_Rep

end # Team B Inspection

end

fold 'Team C Inspection'

meeting 'Team C Preparation'

objective examination

timing asynchronous

location local

visibility private

participants

Moderator3

Inspector5

Inspector6

targets Code

inputs Design

end

meeting 'Team C Inspection'

objective collection

timing synchronous

location local

visibility public

participants

Moderator3

Inspector5

Inspector6

roles

Inspector5 is reader

Inspector6 is scribe

targets Code

inputs Design

outputs

Team_C_Defects

Team_C_Meeting_Rep

end

end # Team C Inspection

collation 'Collation'

timing synchronous

location local

participants

Coordinator

Moderator1

Moderator2

Moderator3

Author

roles

Moderator1 is reader

Moderator2 is scribe

www.manaraa.com

APPENDIXC: N-FOLD INSPECTION 267

targets Code

inputs

Team_A_Defects

Team_B_Defects

Team_C_Defects

outputs Master_Defect_List

end

end # 3-Fold

rework 'Rework'

participant Author

targets Code

inputs

Master_Defect_List

Design

end

follow_up 'Follow-up'

participant Coordinator

targets Code

inputs

Master_Defect_List

Design

outputs Follow_Up_Report

end

end

end

www.manaraa.com

Appendix D

Experiment Materials

D.1 Timetable

Each experiment was run over a period of ten weeks. Six weeks were used to train students in

software inspection and the use of ASSIST, and to refresh their C++ knowledge. Four weeks

were used to run the actual experiment. The following timetable was used:� Week 1Individual inspection ofcount.cc .� Week 2Individual inspection oftokens.cc , introducing checklist.� Week 3Group meeting to collect the results of Week 2 individual inspection.� Week 4 Tutorial introduction to both individual inspection and group meeting using

ASSIST withsimple sort.cc .� Week 5Individual inspection ofseries.cc using ASSIST.� Week 6 Group meeting using ASSIST to collect the results of Week 5 individual in-

spection.� Week 7Individual inspection ofanalyse.cc . Section 1 made use of ASSIST, while

Section 2 performed the inspection on paper.� Week 8 Group meeting to collect the results of Week 7 individual inspection, using

ASSIST or paper as appropriate.

www.manaraa.com

APPENDIXD: C++ CHECKLIST 269� Week 9 Individual inspection ofgraph.cc . Section 1 performed the inspection on

paper, while Section 2 made use of ASSIST.� Week 10Group meeting to collect the results of Week 9 individual inspection, using

ASSIST or paper as appropriate.

D.2 C++ Checklist

1. General� Is the functionality described in the specification fully implemented by the code?� Is there any excess functionality implemented by the code but not described in the

specification?� Is the program interface implemented as described in the specification?� Is there any dead code which cannot be reached in the program?

2. Variable Initialisation and Declarations� Is the variable necessary for the operation of the program?� Is the variable of an appropriate type?� Is the variable correctly scoped, i.e. does it have the minimum visibility required?� Is the variable correctly initialised before use?� Is the variable correctly reinitialised as required?

3. Output Format� Are there any spelling or grammatical errors in displayed output?� Is the output complete?� Is the output formatted correctly in terms of line stepping and spacing?

4. Files� Are all files properly declared, opened and closed?� Is a file not closed in the case of an error?� Are EOF conditions detected and handled correctly?� Is the file pointer reused without closing the file?

www.manaraa.com

APPENDIXD: C++ CHECKLIST 270

5. Dynamic Storage Allocation� Is too much/too little space allocated?� Are all fields of a dynamically allocated structure initialised?� Is the link in the last node of a dynamic structure always set to NULL?

6. Arrays and Strings� Check that all strings are identified by pointers and are NULL-terminated at all

points in the program� Is the index expression correct? Are there any off-by-one errors?� Can array indexes ever go out-of-bounds?

7. Pointers� Check that the pointer is initialised to NULL� Check that the pointer is never unexpectedly NULL� Can an uninitialised pointer ever be dereferenced?� Is the pointer correctly dereferenced when required?� Is pointer arithmetic ever used on non-array pointers?

8. If/Else� Has a semicolon mistakenly been placed at the immediate right of the condition?� Is the condition correct?� Are both branches correctly enclosed in braces, as required?

9. Switch� Is any case not terminated by break or return?� Does every legal value have a corresponding case?� Does the statement have a default branch?

10. For� Has a semicolon mistakenly been placed at the immediate right of the header?� Has the body been correctly enclosed in braces?� Has the proper initialisation expression been supplied?

www.manaraa.com

APPENDIXD: C++ CHECKLIST 271� Has the proper increment expression been supplied?� Does the loop terminate? Check that the final value can be reached.� Does the loop perform the correct number of iterations in allcases? Check for

off-by-one errors.

11. Do/While� Has a semicolon mistakenly been placed at the immediate right of the header?� Is the condition correct?� Is there an expression within the body which eventually causes termination of the

loop? Is any counter incremented?� Has the body been correctly enclosed in braces?

12. Function Calls� Are parameters presented in the correct order?� Are pointers and & used correctly?� Is the correct function being called, or should it be a different function with a

similar name?� Is the correct value returned from the function?

13. Expressions� Does operator precedence affect the correct evaluation of the expression, i.e., is

there sufficient use of parenthesising to ensure correct evaluation of the expres-

sion?� Can the denominator of a division ever be zero?� Is integer arithmetic, especially division, ever used inappropriately, causing unex-

pected truncation/rounding?� Is the comparison operator correct? Does the expression state exactly what is

required?� Is the boolean operator correct? Does the expression state exactly what is re-

quired?� Do operands of the boolean operation have the value 0 or 1?� Is an exact equality test used between two floating point numbers?

www.manaraa.com

APPENDIXD: INDIVIDUAL DEFECTREPORTFORM 272� Is the comparison between operands of incompatible types?� If the test is an error-check, can the error condition actually be legitimate in some

cases?� Does the code rely on any implicit type conversions?� Do any explicit type conversions lose required data?

D.3 Individual Defect Report Form

Complete this form in BLOCK CAPITALS in blue or black ink. Eac h defect description

must be complete and accurate. Any description not satisfying the above criteria will be

IGNORED .

Name: Group:

Start time: End time:

Defect No. 1 Time: Location:

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

Defect No. 2 Time: Location:

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

Defect No. 3 Time: Location:

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

Defect No. 4 Time: Location:

www.manaraa.com

APPENDIXD: INDIVIDUAL DEFECTREPORTFORM 273

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

Defect No. 5 Time: Location:

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

Defect No. 6 Time: Location:

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

Defect No. 7 Time: Location:

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

Defect No. 8 Time: Location:

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

Defect No. 9 Time: Location:

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

www.manaraa.com

APPENDIXD: INDIVIDUAL DEFECTREPORTFORM 274

Defect No. 10 Time: Location:

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

Defect No. 11 Time: Location:

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

Defect No. 12 Time: Location:

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

Defect No. 13 Time: Location:

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

Defect No. 14 Time: Location:

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

Defect No. 15 Time: Location:

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

www.manaraa.com

APPENDIXD: INDIVIDUAL DEFECTREPORTFORM 275

Defect No. 16 Time: Location:

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

Defect No. 17 Time: Location:

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

Defect No. 18 Time: Location:

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

Defect No. 19 Time: Location:

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

Defect No. 20 Time: Location:

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

———————————————————————————————————–

www.manaraa.com

APPENDIXD: MASTER DEFECTREPORTFORM 276

D.4 Master Defect Report Form

Complete this form in BLOCK CAPITALS in blue or black ink. Eac h defect description

must be complete and accurate. Any description not satisfying the above criteria will be

IGNORED .

Group:

Moderator: Scribe:

Reader: Inspector (if present):

Start time: End time:

Defect No. 1 Time: Location:

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

Defect No. 2 Time: Location:

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

Defect No. 3 Time: Location:

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

Defect No. 4 Time: Location:

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

www.manaraa.com

APPENDIXD: MASTER DEFECTREPORTFORM 277

Defect No. 5 Time: Location:

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

Defect No. 6 Time: Location:

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

Defect No. 7 Time: Location:

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

Defect No. 8 Time: Location:

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

Defect No. 9 Time: Location:

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

Defect No. 10 Time: Location:

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

www.manaraa.com

APPENDIXD: MASTER DEFECTREPORTFORM 278

Defect No. 11 Time: Location:

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

Defect No. 12 Time: Location:

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

Defect No. 13 Time: Location:

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

Defect No. 14 Time: Location:

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

Defect No. 15 Time: Location:

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

Defect No. 16 Time: Location:

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

www.manaraa.com

APPENDIXD: TRAINING PROGRAMcount.cc 279

Defect No. 17 Time: Location:

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

Defect No. 18 Time: Location:

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

Defect No. 19 Time: Location:

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

Defect No. 20 Time: Location:

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

————————————————————————————————————

D.5 Training Program count.cc

D.5.1 Specification for programcount.cc

Name

count – count lines, words, and characters

Usage

count filename [filename ...]

www.manaraa.com

APPENDIXD: TRAINING PROGRAMcount.cc 280

Description

count counts the number of lines, words, and characters in the named files. Words are se-

quences of characters that are separated by one or more spaces, tabs, or line breaks (carriage

return).

If a file supplied as an argument does not exist, a corresponding error message is printed

and processing of any other files continues. If no file is supplied as an argument,count reads

from the standard input.

The computed values are given for each file (including the name of the file) as well as the

sum of all values. If only a single file or if the standard inputis processed, then no sum is

printed. The output is printed in the order lines, words, characters, and either the file name

or the word “total” for the sum. If the standard input is read,the fourth value (name) is not

printed.

Options

None.

Examples

On a single file:

% count data

84 462 3621 data

On multiple files:

% ./count file1 file2 file3

3 24 120 file1

5 49 196 file2

17 175 787 file3

25 248 1103 total

Author

Original by Erik Kamsties and Christopher Lott. C++ conversion and update by Fraser Mac-

donald.

www.manaraa.com

APPENDIXD: TRAINING PROGRAMcount.cc 281

D.5.2 Library functions used in count.cc� open()

Opens the corresponding I/O stream.� char get(void)

get inputs one character from the designated stream and returnsthis character as the

result of the function call. If end-of-file on the stream is encountered,get returns EOF.� good()

Returns true if the corresponding I/O stream is available for use.� width()

Sets the field width and returns the previous width for this stream. The width setting

applies only to the next stream insertion or extraction.

D.5.3 count.cc

1 #include <iostream.h>

2 #include <fstream.h>

3 #include <stdlib.h>

4

5 void main (int argc, char* argv[])

6 {

7 int c, i, inword;

8 ifstream InputFile;

9 long linect, wordct, charct;

10 long tlinect = 1, twordct = 1, tcharct = 1;

11

12 i = 1;

13 do {

14 if (argc > 1) {

15 InputFile.open(argv[i]);

16 if (!InputFile.good()) {

17 cout << "can't open " << argv[i] << endl;

18 exit(1);

19 }

20 }

21 linect = wordct = charct = 0;

22 inword = 1;

23 while ((c = InputFile.get()) != EOF) {

24 ++charct;

25 if (c == '\n')

26 ++linect;

27 if (c == ' ' || c == '\t' || c == '\n')

www.manaraa.com

APPENDIXD: TRAINING PROGRAMcount.cc 282

28 inword = 0;

29 else if (inword == 0) {

30 inword = 1;

31 ++wordct;

32 }

33 }

34 cout.width(7);

35 cout << linect;

36 cout.width(7);

37 cout << wordct;

38 cout.width(7);

39 cout << charct;

40 if (argc > 1)

41 cout << " " << *argv << endl;

42 else

43 cout << endl;

44 InputFile.close();

45 tlinect += linect;

46 twordct += wordct;

47 tcharct += charct;

48 } while (++i < argc);

49 if (argc > 1) {

50 cout.width(7);

51 cout << linect;

52 cout.width(7);

53 cout << twordct;

54 cout.width(7);

55 cout << tcharct << " total" << endl;

56 }

57 exit(0);

58 }

D.5.4 Defects incount.cc

1. Defect in line 10: The variables are initialised with 1, should be with 0.

Causes failure: The sums are incorrect (off by one).

2. Defect in line 14: The variable “InputFile” is not initialised in the case that the input

should be taken from “stdin”.

Causes failure: The program cannot read from stdin.

3. Defect in line 17: The error message is sent to “stdout” instead of “stderr”.

Causes failure: Error messages appear on the standard output (stdout) instead of the

standard-error output (stderr).

www.manaraa.com

APPENDIXD: TRAINING PROGRAM tokens.cc 283

4. Defect in line 18: Component is terminated with “exit (1)”, where “continue” should

have been used.

Causes failure: If a file is not found, the program stops thereinstead of continuing on to

other files; also, no sum is printed.

5. Defect in line 22: The variable “inword” is initialised with 1 instead of 0.

Causes failure: Depending on whether the first symbol in a fileis whitespace, the pro-

gram reports that files with n words have either n or n - 1 words.

6. Defect in line 41: *argv is used instead of argv[i].

Causes failure: The program prints its own name instead of the file name when reporting

the counts.

7. Defect in line 49: Argc is compared with 1, but should be compared with 2.

Causes failure: The program prints out sums even when only a single file was processed.

8. Defect in line 51: Instead of “tlinect” the variable “linect' is used.

Causes failure: The sums are not computed correctly. For example:

% ./count file2 file2 file2

1 2 14 ./count

1 2 14 ./count

1 2 14 ./count

1 7 43 total

D.6 Training Program tokens.cc

D.6.1 Specification for programtokens.cc

Name

tokens – sort and count alphanumeric tokens

Usage

tokens [–ai] [–c chars] [–m count]

www.manaraa.com

APPENDIXD: TRAINING PROGRAM tokens.cc 284

Description

tokensreads its input from the standard input and counts all alphanumeric tokens. The tokens

are then printed in alphabetic order, along with their counts. Options may be specified to tailor

the output. If incorrect options are given,tokenswill print a usage message.

Options� “–a”: Allow only alphabetic characters in tokens (no digits0–9).� “–c chars”: Allow chars to be part of tokens.� “–i”: The –i flag causes the program to ignore the difference between upper and lower

case by mapping all input to lower case.� “–m count”: The–m flag indicates the minimum count needed for the entry to be

printed.

Examples

In its simplest form with no options:

% tokens

this is a_test

1 a

1 is

1 test

1 this

Allowing alphabetic characters only:

% tokens -a

test number 2

1 number

1 test

Using the “–c” option to allow “+” in tokens:

% tokens -c+

one on+ + +

2 +

www.manaraa.com

APPENDIXD: TRAINING PROGRAM tokens.cc 285

1 on+

1 one

Using “–i” to ignore the difference between lower and upper case characters, and using “–m”

to set a minimum count of two:

% tokens -i -m2

Orange apple orange orange apple banana

2 apple

3 orange

Author

Original by Gary Perlman. C++ conversion and update by Fraser Macdonald.

D.6.2 Library functions used in tokens.cc� void assert(int expression)

Tests the value of the supplied expression. If the value is 0,assert prints an error message

and terminates program execution.� int atoi(const char* s)

Converts the string given as argument to itsint representation.� char get(void)

get inputs one character from the designated stream and returnsthis character as the

result of the function call. If end-of-file on the stream is encountered,get returns EOF.� getopt(int argc, char **argv, char *optstring)

extern char *optarg

extern int optind

getopt() returns the next option letter in argv that matches a letter in optstring .

optstring contains the option letters the command usinggetopt() will recognise;

if a letter is followed by a colon, the option is expected to have an argument, or group

of arguments, which must be separated from it by white space.

optarg is set to point to the start of the option argument on return from getopt() .

When all options have been processed,getopt() returns -1.

For example,

www.manaraa.com

APPENDIXD: TRAINING PROGRAM tokens.cc 286

c = getopt(argc, argv, "b:fp:")

indicates that three options may be given to the program. Thefirst is “–b”, which should

have an argument, followed by “–f”, then “–p”, which should also have an argument

(e.g. “–f20”). Each successive call togetopt() will return one of these letters, if

they are present, and will setoptarg to point to any argument that may be present for

this option. When all options present have been parsed,getopt() will return -1.

See the entry forgetopt in Section 3 of the man pages for more details.� int strcmp(const char *s1, const char *s2)

Compares the two strings passed as arguments, returning an integer greater than, less

than, or equal to zero when s1 is respectively greater than, less than or equal to s2.� char *strdup(char *s)

Returns a pointer to a new string which is a duplicate of the string pointed to by s.� int width(const int newwidth)

Sets the field width and returns the previous width for this stream. The width setting

applies only to the next stream insertion or extraction.

D.6.3 tokens.cc

1 #include <iostream.h>

2 #include <string.h>

3 #include <assert.h>

4

5 int Ignore = 0;

6 int Mincount = 0;

7 int Alphabetic = 0;

8 char MapAllowed[256];

9

10 typedef struct tnode

11 {

12 char *contents;

13 int count;

14 struct tnode *left;

15 struct tnode *right;

16 } TNODE;

17

18 void treeprint(TNODE *);

19 TNODE *install(char *, TNODE *);

20 char *getword(void);

21 void tokens(void);

www.manaraa.com

APPENDIXD: TRAINING PROGRAM tokens.cc 287

22

23 int main(int argc, char **argv)

24 {

25 int c, errcnt = 0;

26 extern char *optarg;

27

28 while ((c = getopt(argc, argv, "ac:im:")) != EOF)

29 switch(c)

30 {

31 case 'a': Alphabetic = 0; break;

32 case 'c':

33 while (*optarg)

34 {

35 MapAllowed[*optarg] = *optarg;

36 optarg++;

37 }

38 break;

39 case 'i': Ignore = 1; break;

40 case 'm': Mincount = atoi(optarg); break;

41 }

42 if (errcnt)

43 {

44 cerr << "Usage: " << *argv << " [-i] [-c chars] [-m count]" << endl;

45 exit(1);

46 }

47 for (c = 'a'; c <= 'z'; c++)

48 MapAllowed[c] = c;

49 for (c = 'A'; c <= 'Z'; c++)

50 MapAllowed[c] = Ignore ? c : c - 'A' + 'a';

51 if (!Alphabetic)

52 for (c = '0'; c <= '9'; c++)

53 MapAllowed[c] = c;

54 tokens();

55 exit(0);

56 }

57

58 void treeprint(TNODE *tree)

59 {

60 if (tree != NULL)

61 {

62 treeprint(tree->left);

63 if (tree->count > Mincount) {

64 cout.width(7);

65 cout << tree->count;

66 cout << "\n" << tree->contents << endl;

67 }

68 treeprint(tree->right);

69 }

70 }

71

www.manaraa.com

APPENDIXD: TRAINING PROGRAM tokens.cc 288

72 TNODE *install(char *string, TNODE *tree)

73 {

74 int cond;

75 assert(string != NULL);

76 if (tree == NULL)

77 {

78 if (tree = new TNODE)

79 {

80 tree->contents = strdup(string);

81 tree->count = 1;

82 }

83 }

84 else

85 {

86 cond = strcmp(string, tree->contents);

87 if (cond < 0)

88 tree->left = install(string, tree->left);

89 else if (cond == 0)

90 tree->count++;

91 else

92 tree->right = install(string, tree->left);

93 }

94 return(tree);

95 }

96

97 char *getword(void)

98 {

99 static char string[1024];

100 char *ptr = string;

101 int c, count = 0;

102 for (;;)

103 {

104 c = cin.get();

105 if (c == EOF)

106 if (ptr == string)

107 return(NULL);

108 else

109 break;

110 if (!MapAllowed[c])

111 if (ptr == string)

112 continue;

113 else

114 break; // end of word

115 *ptr++ = MapAllowed[c];

116 }

117 *ptr = NULL;

118 return(string);

119 }

120

121 void tokens(void)

www.manaraa.com

APPENDIXD: TRAINING PROGRAM tokens.cc 289

122 {

123 TNODE *root = NULL;

124 char *s;

125 while (s = getword())

126 root = install(s, root);

127 treeprint(root);

128 }

D.6.4 Defects intokens.cc

1. Defect in function “main”, line 27 (circa): The array “MapAllowed” is never initialised.

Failure: Non-alphanumeric symbols could be mistakenly accepted, depending on the

contents of MapAllowed.

2. Defect in function “main”, line 31: The variable “Alphabetic” is given the value 0

instead of 1.

Failure: The argument “-a” has no effect.

3. Defect in function “main”, line 41 (circa): No default branch for the case statement.

Failure: Arguments other than those defined in the specification do not cause a usage

message to be printed.

4. Defect in function “main”, line 44: The argument “-a” is not documented in the usage

message.

Failure: The usage message says nothing about the “-a” argument.

5. Defect in function “main”, line 50: “-i” option not implemented correctly, the branches

of the “?” operator are transposed.

Failure: Upper case and lower case characters are always distinguished, irrespective of

the use of the “-i” option.

6. Defect in function “treeprint”, line 63: The symbol “>” should be “>=”.

Failure: If a boundary valuen is given with the “-m” argument, the valuen+ 1 is used

instead ofn.

7. Defect in function “treeprint”, line 66: The escape sequence “nn” is used instead of

“nt”.
Failure: The output is not formatted correctly. Each token should appear on a line with

its count. As written, the program outputs the token, then the count on a new line.

www.manaraa.com

APPENDIXD: TRAINING PROGRAMsimple sort.cc 290

8. Defect in function “install”, line 82 (circa): The left and right branches of the tree should

be initialised to NULL.

Failure: No failure apparent, but this may be implementation dependent, i.e. depending

on the definition of NULL. Also checklist violation.

9. Defect in function “install”, line 92: The function install is called with incorrect param-

eters. tree� >left should be tree� >right.

Failure: New tokens are inserted into the tree incorrectly.The output is therefore gen-

erally unreliable.

10. Defect in function “getword”, line 101: The variable count is declared but never used.

Failure: None apparent, but checklist violation.

11. Defect in function “getword”, line 103/117: The length of the input is not checked.

Failure: The program dumps core if a very long word is read.

D.7 Training Program simple sort.cc

D.7.1 Specification for programsimple sort.cc

Name

simplesort – sort a list of numbers entered by the user

Usage

simple sort

Description

simple sort starts by prompting for the number of items to be sorted. The program then reads

reads in the list of numbers from the user, sorts them into ascending numerical order, then

prints the sorted list.

Options

None.

www.manaraa.com

APPENDIXD: TRAINING PROGRAMsimple sort.cc 291

Example

Sorting a list of ten numbers:

% simple_sort

Enter the number of data values: 10

Data item 0: 5

Data item 1: 6

Data item 2: 7

Data item 3: 8

Data item 4: 2

Data item 5: 3

Data item 6: 9

Data item 7: 1

Data item 8: 4

Data item 9: 10

Sorted list:

Data item 0: 1

Data item 1: 2

Data item 2: 3

Data item 3: 4

Data item 4: 5

Data item 5: 6

Data item 6: 7

Data item 7: 8

Data item 8: 9

Data item 9: 10

Restrictions

The number of elements which can be sorted is currently limited to 100.

Author

Fraser Macdonald.

www.manaraa.com

APPENDIXD: TRAINING PROGRAMsimple sort.cc 292

D.7.2 simple sort.cc

1 #include <iostream.h>

2 #include <stdlib.h>

3

4 const int TABLESIZE = 100;

5

6 void swap(int x, int y)

7 {

8 int temp = x;

9 x = y;

10 y = temp;

11 }

12

13 int max(int x, int y)

14 {if (x > y) return x; else return y;}

15

16 int main()

17 {

18 int size;

19 int table[TABLESIZE];

20

21 cout << "Enter the number of data values: ";

22 cin >> size;

23

24 if(size >= TABLESIZE) {

25 cout << "Too many elements, maximum is " << TABLESIZE << endl;

26 exit(1);

27 }

28 else {

29 for(int i = 0; i < size; i++){

30 cout << "Data item " << i << ": ";

31 cin >> table[i];

32 }

33 for(i = size - 1; i > 0; i--)

34 for(int j = 0; j <=i - 1; j++)

35 if(table[j] > table[j+1])

36 swap(table[j], table[j+1]);

37

38 cout << endl << "Sorted lits:" << endl;

39 for(i = 0; i < size; i++)

40 cout << "Data item " << i << ": " << table[i] << endl;

41 }

42 exit(0);

43 }

D.7.3 Defects insimple sort.cc

1. Defect in function “swap”, line 6 : The parameters are passed by value, not by reference.

www.manaraa.com

APPENDIXD: TRAINING PROGRAMseries.cc 293

Failure: “swap” doesn' t correctly swap the numbers, therefore the sort is not carried out

correctly.

2. Defect in function “max”, line 13 : The function “max” is defined but never used.

Failure: None apparent, but checklist violation.

3. Defect in function “main”, line 24 :>= should be>.

Failure: The program only accepts one less than the true maximum number of elements.

4. Defect in function “main”, line 38 : “list” is spelled incorrectly in the message.

Failure: The program displays incorrect output.

D.8 Training Program series.cc

D.8.1 Specification for programseries.cc

Name

series – generate a series of numbers

Usage

seriesstart end [stepsize]

Description

seriesprints the real numbers from start to end, one per line.seriesbegins with start to which

stepsize is repeatedly added or subtracted, as appropriate, to approach, possibly meet, but

not passend .

If all arguments are integers, only integers are produced inthe output. The stepsize must

be nonzero; if it is not specified, it is assumed to be 1. Negative step sizes are made positive. In

all other cases, series prints an appropriate error message. If the wrong number of arguments

are given, series prints a usage message.

series accepts numbers in several formats: integer, real (where either the whole or frac-

tional part may be omitted) and exponential (an integer or real, suffixed with ' e' or ' E' fol-

lowed by a (signed) integer exponent). Any number with a fractional part consisting only of

zeroes is converted to an integer (e.g. 1.0000 is treated as 1). All numbers may optionally be

prefixed by a plus or minus. Examples of acceptable numbers include:

www.manaraa.com

APPENDIXD: TRAINING PROGRAMseries.cc 294

+23

-2.4

26.0

92.

.348

1.0E3

34e-2

Example

To count from 1 to 100:

% series 1 100

1

2

3

....

98

99

100

To do the same, but backwards:

% series 100 1

100

99

98

...

3

2

1

To count from 1.5 to 4.5 in steps of 0.5

% series 1.5 4.5 0.5

1.5

2

2.5

www.manaraa.com

APPENDIXD: TRAINING PROGRAMseries.cc 295

3

3.5

4

4.5

Limitations

The reported number of significant digits is limited. If the ratio of the series range to the

stepsize is too large, several numbers in a row will be equal.

The maximum length of a series is limited to the size of the maximum integer that can be

represented on the machine in use. Exceeding this value has undefined results.

Author

Original by Gary Perlman. C++ conversion and update by Fraser Macdonald.

D.8.2 Library functions used in series.cc� double atof(char *nptr)

Converts the initial portion of the string pointed to bynptr to double representation.

The function returns the converted value.� double fabs(double x)

Computes the absolute value of number x� int isdigit(char c)

Returns non-zero integer if the characterc is a decimal digit.� int isspace(char c)

Returns non-zero integer if the characterc is a standard whitespace character. The

standard whitespace characters are: space(` '), form feed (`nf'), newline (ǹn'), carriage

return (ǹr'), horizontal tab (ǹt') and vertical tab (ǹv').

D.8.3 series.cc

1 #include <stdlib.h>

2 #include <ctype.h>

3 #include <iostream.h>

4

5 const int IS_NOT = 0;

www.manaraa.com

APPENDIXD: TRAINING PROGRAMseries.cc 296

6 const int IS_INT = 1;

7 const int IS_REAL = 2;

8 const int IS_EXP = 3;

9 const double FZERO = 10e-10;

10

11 int fzero(double x);

12 int isinteger (char *string);

13 int number(char *string);

14

15 void main (int argc, char **argv)

16 {

17 long NumItems = 0;

18 double Value = 0.0;

19 double Start = 0.0;

20 double End = 0.0;

21 double Step = 1.0;

22 char *startstr = argv[1];

23 char *endstr = argv[2];

24 char *stepstr = argv[3];

25 int NumArgs = argc;

26

27 switch (NumArgs)

28 {

29 case 3:

30 if (! number(startstr)) {

31 cerr << "Argument #1 not a number: " << startstr << endl;

32 exit(1);

33 }

34 if (! number(startstr)) {

35 cerr << "Argument #2 not a number: " << endstr << endl;

36 exit(1);

37 }

38 if (! number(stepstr)) {

39 cerr << "Argument #3 not a number: " << stepstr << endl;

40 exit(1);

41 }

42 break;

43 case 2:

44 if (! number(startstr)) {

45 cerr << "Argument #1 not a number: " << endstr << endl;

46 exit(1);

47 }

48 if (! number(endstr)) {

49 cerr << "Argument #2 not a number: " << endstr << endl;

50 exit(1);

51 }

52 break;

53 default:

54 cerr << "Usage: " << argv << " start end [stepsize]" << endl;

55 exit(1);

www.manaraa.com

APPENDIXD: TRAINING PROGRAMseries.cc 297

56 }

57

58 Start = atof(startstr);

59 End = atof(endstr);

60 if (NumArgs == 3) {

61 Step = fabs(atof(stepstr));

62 if (! fzero(End - Start) && fzero(Step))

63 cerr << "stepsize must be non-zero" << endl;

64 exit(1);

65 }

66

67 if (fzero(End - Start))

68 NumItems = 2;

69 else

70 NumItems = (long) (End - Start / Step + 1.0 + FZERO);

71

72 for (int Item = 0; Item < NumItems; Item++) {

73 Value = Start + Step * (double) Item;

74 if (fzero(Value))

75 cout << 0.0 << endl;

76 else

77 cout << Value << endl;

78 }

79

80 exit(0);

81 }

82

83 int fzero (double x)

84 {

85 return (fabs (x) < FZERO);

86 }

87

88 int isinteger (char *string)

89 {

90 return (number(string) == IS_INT);

91 }

92

93 int number (char *string)

94 {

95 int answer = IS_REAL,

96 before = 0,

97 after = 0;

98 char *ptr = NULL;

99

100 while (isspace(*string))

101 string++;

102 if (*string == NULL)

103 return (IS_NOT);

104 if (*string == '+' || *string == '-') {

105 string++;

www.manaraa.com

APPENDIXD: TRAINING PROGRAMseries.cc 298

106 if (isdigit(*string) && *string != '.')

107 return (IS_NOT);

108 }

109 if (isdigit(*string)) {

110 before = 1;

111 while (isdigit(*string))

112 string++;

113 }

114 if (*string == '.') {

115 string++;

116 ptr = string;

117 while (*ptr == '0')

118 ptr++;

119 while (isspace(*ptr))

120 ptr++;

121 if (*ptr == NULL)

122 return (IS_INT);

123 answer = IS_REAL;

124 if (isdigit(*string)) {

125 after = 1;

126 while (isdigit (*string))

127 string++;

128 }

129 }

130 if (!before && !after)

131 return (IS_NOT);

132 if (*string == 'E' || *string == 'e') {

133 answer = IS_EXP;

134 string++;

135 if (*string == '+' || *string == '-')

136 string++;

137 if (!isdigit(*string))

138 return (IS_NOT);

139 while (isdigit(*string))

140 string++;

141 }

142 while (isspace(*string))

143 string++;

144 return(answer);

145 }

D.8.4 Defects in programseries.cc

1. Defect in line 25:NumArgs is initialised toargc instead ofargc - 1

Failure: With one or two arguments, a segmentation Defect occurs. Any other number

of arguments always produces a usage message.

www.manaraa.com

APPENDIXD: TRAINING PROGRAMseries.cc 299

2. Defect in functionmain() , line 34: The variablestartstr is used in the if-condition

instead ofendstr .

Failure: The program does not recognise a non-numeric second argument as an error.

3. Defect in functionmain() , line 45: The variableendstr is used in the output instead

of startstr .

Failure: Although a non-numeric first argument is recognised as an error, the corre-

sponding error message shows the second argument.

4. Defect in functionmain() , line 54:argv should be*argv

Failure: Instead of the program name, the program prints theaddress of its name.

5. Defect in functionmain() , line 62: Mismatch with specification.

Failure: The specification states thatstepsize should always be non-zero. In fact,

the programs accepts zero forstepsize if the difference between the start and end

values is also zero.

6. Defect in functionmain() , line 62–64: Missing brackets for the branch of the if state-

ment.

Failure: If three arguments are given, the program always terminates without any input,

sinceexit(0) is always executed.

7. Defect in functionmain() , line 68: The variableNumItems is set to 2 instead of 1.

Failure: If the distance between the first and second parameter is evaluated to zero, then

two lines are produced as output although only one was expected.

8. Defect in functionmain() , line 70: The calculationEnd - Start should be en-

closed in parentheses.

Failure: The value assigned toNumItems is incorrect in all cases except where the step

size is 1, since the calculation is performed in the wrong order (division is performed

first).

9. Defect in functionmain() , line 72–78: Treatment of the case “end< start” was for-

gotten.

Failure: No output is produced in the case that the starting value is greater then the

ending value.

www.manaraa.com

APPENDIXD: EXPERIMENT PROGRAManalyse.cc 300

10. Defect in functionmain() , line 88–91: Functionisinteger is defined but never

used.

Failure: No failure, but checklist violation.

11. Defect in functionnumber() , line 95: answer is initialised toIS REAL, should be

IS INT .

Failure: number() will only return IS INT if the number given is of the form 1.0,

51.000, etc. Normal integers will be mistakenly classified as reals.

12. Defect in functionnumber() , line 106: The call toisdigit(*string) should be

!isdigit(*string)

Failure: number() will not recognise numbers starting with signs, such as +1.4, -23,

etc. The exceptions are anything of the form +.2, -.982, etc., i.e. any number with a

point straight after the sign.

13. Defect in functionnumber() , line 144: The string should be checked for any remain-

ing characters after a number has been parsed.

Failure: If a number is terminated by non-numeric characters, number() does not

returnIS NOT.

D.9 Experiment Programanalyse.cc

D.9.1 Specification for programanalyse.cc

Name

analyse – perform simple analysis on survey data

Usage

analysefile

Description

analyseperforms simple statistical analysis on a file containing survey responses. Each re-

sponse is an integer from 0 to 9 (inclusive). The program calculates four statistics: mean,

median, mode and standard deviation.

www.manaraa.com

APPENDIXD: EXPERIMENT PROGRAManalyse.cc 301

For the mean, the calculation is presented, along with the answer. For the median, both

the unsorted and sorted arrays of responses are printed (formatted in rows of up to twenty

numbers), followed by the value of the median. The median is the central value of the ordered

data set. If the number of elements in the data set is even, themedian is the average of

the two most central values. For the mode, a histogram of frequencies of each response is

drawn, followed by the value of the mode and its frequency. The mode is the most frequently

occurring response. If more than one response shares the highest frequency, the lowest valued

response is chosen. For the standard deviation, the answer is simply presented. It is calculated

according to the formula
q SN , whereS is the sum of the squares of the differences between

each data element and the mean, andN is the number of elements in the data set.

The input file consists of a list of integer responses in the range 0 to 9, one to each line.

The first line of the file contains an integer indicating the number of responses in the file. This

value must be greater than zero, otherwise an error message is printed. If no filename is given,

the program prints a usage error. If the file cannot be accessed, an appropriate error message

is printed.

Example

A typical data file might be:

8

6

5

8

9

5

8

5

1

The first line indicates that eight responses are included inthe file. This is then followed

by each of the eight responses. The output for this file is:

% analyse data

Processing data

End of file data

www.manaraa.com

APPENDIXD: EXPERIMENT PROGRAManalyse.cc 302

Mean = 47/8 = 5.875

The unsorted array is

6 5 8 9 5 8 5 1

The sorted array is

1 5 5 5 6 8 8 9

Median is 5.5

Response Frequency Histogram

1 1 2 2

5 0 5 0 5

0 0

1 1 *

2 0

3 0

4 0

5 3 ***

6 1 *

7 0

8 2 **

9 1 *

Mode is 5, occurring 3 times.

Standard deviation is 2.36841

www.manaraa.com

APPENDIXD: EXPERIMENT PROGRAManalyse.cc 303

Restrictions

The histogram output will only properly display a maximum frequency of 25 responses.

Author

Written by Fraser Macdonald, based on an example fromC: How to Programby Deitel and

Deitel.

D.9.2 Library functions used in analyse.cc� int eof(void)

Returns 1 if end-of-file has been encountered in the corresponding stream, otherwise

returns 0.� double fabs(double x)

Computes the absolute value of floating point numberx .� int good(void)

Returns 1 if the corresponding I/O stream is available for use, otherwise returns 0.� int open(char* s)

Opens the corresponding I/O stream.� int setw(int x)

Sets the field width and returns the previous width for this stream.� double sqrt(double x)

Computes the non-negative square root ofx . An error occurs if the argument is negative.

D.9.3 analyse.cc

1 #include <iostream.h>

2 #include <iomanip.h>

3 #include <fstream.h>

4 #include <math.h>

5

6 void Mean (int Array[], int Size);

7 void Median (int Array[], int Size);

8 void Mode(int Array[], int Size);

www.manaraa.com

APPENDIXD: EXPERIMENT PROGRAManalyse.cc 304

9 void StandardDeviation(int Array[], int Size);

10 void BubbleSort(int Array[], int Size);

11 void PrintArray(int Array[], int Size);

12

13 int main(int argc, char **argv)

14 {

15 int Item = 0,

16 Size = 0,

17 Count = 0;

18 int *Responses = NULL;

19 ifstream InputFile;

20 char *Filename = NULL;

21

22 if (argc != 2) {

23 cerr << "Usage: " << argv[1] << " file" << endl;

24 exit(1);

25 }

26 Filename = argv[1];

27 InputFile.open(Filename);

28 if (!InputFile.good()) {

29 cerr << "File error." << endl;

30 InputFile.close();

31 exit(1);

32 }

33 cout << "Processing " << Filename << endl;

34 InputFile >> Size;

35 if (Size > 0) {

36 cerr << "One or more responses required." << endl;

37 InputFile.close();

38 exit(1);

39 }

40 else

41 if (!(Responses = new int [Size])) {

42 cerr << "Memory allocation failure." << endl;

43 exit(1);

44 }

45 while (!InputFile.eof()) {

46 InputFile >> Item;

47 Responses[Count++] = Item;

48 }

49 InputFile.close();

50 Mean(Responses, Size);

51 Median(Responses, Size);

www.manaraa.com

APPENDIXD: EXPERIMENT PROGRAManalyse.cc 305

52 Mode(Responses, Size);

53 StandardDeviation(Responses, Size);

54 cout << endl << "End of file " << Filename << endl << endl;

55 exit(0);

56 }

57

58 void Mean(int Array[], int Size)

59 {

60 int Total = 0;

61

62 for (int j = 0; j < Size; j++)

63 Total += Array[j];

64 cout << "Mean = " << Total << "/" << Size << " = "

65 << Total / Size << endl << endl;

66 }

67

68 void Median(int Array[], int Size)

69 {

70 int Median;

71

72 BubbleSort(Array, Size);

73 cout << "The sorted array is" << endl;

74 PrintArray(Array, Size);

75 Median = Array[Size / 2];

76 cout << "Median is " << Median << endl << endl;

77 }

78

79 void Mode(int Array[], int Size)

80 {

81 int Rating, j, h,

82 Largest = 0,

83 ModeValue = 0;

84 int Frequency[10];

85

86 for (j = 0; j < Size; j++)

87 Frequency[Array[j]]++;

88

89 cout << "Responce";

90 cout << setw(11) << "Frequency";

91 cout << setw(19) << "Histogram" << endl << endl;

92 cout << setw(54) << "1 1 2 2" << endl;

93 cout << setw(54) << "5 0 5 0 5" << endl << endl;

94

www.manaraa.com

APPENDIXD: EXPERIMENT PROGRAManalyse.cc 306

95 for (Rating = 0; Rating <= 9; Rating++) {

96 cout << setw(8) << Rating;

97 cout << setw(11) << Frequency[Rating] << " ";

98 if (Frequency[Rating] > Largest)

99 Largest = Frequency[Rating];

100 ModeValue = Rating;

101 for (h = 1; h < Frequency[Rating]; h++)

102 cout << "*";

103 cout << endl;

104 }

105

106 cout << endl << "Mode is " << ModeValue << ", occurring "

107 << Largest << " times." << endl << endl;

108 }

109

110 void StandardDeviation(int Array[], int Size)

111 {

112 double Total = 0.0,

113 Mean = 0.0,

114 StdDev = 0.0;

115

116 for (int j = 0; j < Size; j++)

117 Total += (double) Array[j];

118 Mean = Total / (double) Size;

119

120 for (j = 0; j < Size; j++)

121 Total = Total + fabs((double) Array[j] - Mean)

122 * fabs((double) Array[j] - Mean);

123 StdDev = sqrt(Total / (double) Size);

124 cout << "Standard deviation is " << StdDev << endl << endl;

125 }

126

127 void BubbleSort(int Array[], int Size)

128 {

129 int Pass, Hold, j;

130

131 for (Pass = 1; Pass < Size; Pass++)

132 for (j = 0; j < Size - 1; j++)

133 if (Array[j] > Array[j+1]) {

134 Hold = Array[j];

135 Array[j] = Array[j+1];

136 Array[j+1] = Hold;

137 }

www.manaraa.com

APPENDIXD: EXPERIMENT PROGRAManalyse.cc 307

138 }

139

140 void PrintArray(int Array[], int Size)

141 {

142 for (int j = 0; j < Size; j++) {

143 if (j % 20 == 0) cout << endl;

144 cout << setw(2) << Array[j];

145 }

146 cout << endl << endl;

147 }

D.9.4 Defects in programanalyse.cc

1. Defect in functionmain() , line 23:argv[1] should be replaced byargv[0]

Failure: Program does not print out its own name as part of theusage message. The

name printed is undefined.

2. Defect in functionmain() , line 35: The test for an illegal value ofSize is incorrect.

Failure: Program will not detect illegal values ofSize , and correct values will cause

the program to fail with an error message.

3. Defect in functionmain() , line 45–48 : If the file contains more data elements than

the number declared at the start, the elements are written into unallocated memory.

Failure: None apparent, but unallocated memory is overwritten.

4. Defect in functionmain() , line 54: End of file message occurs in incorrect position.

Failure: The end of file message is printed after all calculations have been printed,

instead of the correct time.

5. Defect in functionMean() , line 65: The calculation of the mean requires an explicit

cast tofloat of both operands.

Failure: The calculation of the mean is always truncated.

6. Defect in functionMedian() , line 71: The specification states that the unsorted array

should be printed out when calculating the median. This is not done.

Failure: Output incomplete

7. Defect in functionMedian() , line 75: The specification states that if there is an even

number of responses then the median should be the average of the two most central

values, but the program always uses a single central value.

www.manaraa.com

APPENDIXD: EXPERIMENT PROGRAMgraph.cc 308

Failure: Incorrect median for data sets with an even number of elements.

8. Defect in functionMode() , line 84: The arrayFrequency is not initialised before

use.

Failure: Checklist violation, behaviour undefined.

9. Defect in functionMode() , line 89: `Response' spelled incorrectly.

Failure: Incorrect label printed.

10. Defect in functionMode() , line 98–100: Brackets missing around the contents of the

if statement.

Failure: The mode is always set to 9.

11. Defect in functionMode() , line 101: The terminating condition of thefor loop is

incorrect, printing out one less then the required number ofasterisks.

Failure: Incorrect histogram display.

12. Defect in functionStandardDeviation() , line 119: Total is not re-initialised

before being used in calculating the standard deviation.

Failure: Calculation of standard deviation is incorrect.

D.10 Experiment Programgraph.cc

D.10.1 Specification for programgraph.cc

Name

graph – draw a graph

Usage

graph file

Description

Given an input file of ordered pairs (x, y) of either positive or negative integers as input, the

program displays the list of points read in and plots them on agrid with a horizontal x-axis

and a vertical y-axis which are appropriately labeled, and have `tick' marks every five units.

www.manaraa.com

APPENDIXD: EXPERIMENT PROGRAMgraph.cc 309

A plotted point on the grid appears as an asterisk (*), and thegrid is scaled to fit into an area

with a maximum width of 40 characters and a maximum height of 20 characters.

Vertical scaling is handled as follows. The total height of the graph is calculated as the

difference between the largest y value (or zero if the largest is negative) and the smallest y

value (or zero if the smallest value is positive). If this height is less than the maximum height

of the graph, no scaling is carried out and the graph is plotted with vertical spacing of one line

per integral unit (e.g., the point (3, 6) should be plotted onthe sixth line above the origin; two

lines above the point (3, 4)). Note that the origin (point (0,0)) corresponds to the intersection

of the axes (the x-axis is referred to as theOth line). The origin is represented by a `+' and

the graph is drawn to ensure that the origin and axes always appear.

If the height is greater than the maximum height of the graph,the scale for vertical spacing

is set to the maximum possible height divided by the total height required. This scaling factor

is then applied to every point on the graph and the result rounded appropriately to ensure the

point lies within the correct interval. For example, if the the graph was required to display the

points (1, 1) and (1, 99) the total height is 100 (since the origin must also be displayed). The

scaling factor is then 20/100 = 0.2. (1, 1) is displayed on the0th line (which covers the interval

0 to 4) and (1, 99) is displayed on the 19th line (which covers 95–99). Negative coordinate

values are treated in a similar way. Horizontal scaling is handled similarly.

If two or more of the points to be plotted would show up as the same asterisk in the grid,

the number of points occurring on that grid position appearsinstead of the asterisk. Points

whose asterisks will lie on an axis or other marker show up in place of that item.

The input file consists of list of integer coordinates, with each x-coordinate followed by

the corresponding y-coordinate. If no filename is given, theprogram prints a usage error.

If the file cannot be accessed, an appropriate error message is printed. If an odd number of

coordinates are present in the file, an appropriate error message is printed.

Example

A typical data file might be:

-100

-100

0

0

4

19

www.manaraa.com

APPENDIXD: EXPERIMENT PROGRAMgraph.cc 310

5

20

99

99

49

49

48

48

The printed output from this file is:

% graph data

(48, 48)

(49, 49)

(99, 99)

(5, 20)

(4, 19)

(0, 0)

(-100, -100)

ˆY *

|

|

|

-

| 2

|

|*

*

|----|----|----|----*----|----|----|--->

| X

|

|

|

-

|

www.manaraa.com

APPENDIXD: EXPERIMENT PROGRAMgraph.cc 311

|

|

|

* -

Restrictions

The program will only correctly deal with up to nine overlapping points, since numbers be-

yond this occupy more than a single grid position.

Author

Written by Fraser Macdonald, based on a specification from Basili and Selby'sComparing

the effectiveness of software testing techniques, IEEE Transactions on Software Engineering,

13(12), December 1987.

D.10.2 Library functions used ingraph.cc� int abs(int x)

Computes the absolute value of integerx .� int good(void)

Returns 1 if the corresponding I/O stream is available for use, otherwise returns 0.� int open(char* s)

Opens the corresponding I/O stream.

D.10.3 graph.cc

1 #include <iostream.h>

2 #include <fstream.h>

3 #include <stdlib.h>

4

5 const int GWIDTH = 40;

6 const int GHEIGHT = 40;

7

8 typedef struct pointnode {

9 int X;

10 int Y;

11 struct pointnode *Next;

12 } PointNode;

13

www.manaraa.com

APPENDIXD: EXPERIMENT PROGRAMgraph.cc 312

14 typedef PointNode *PointNodePtr;

15

16 void InsertPoint(int XValue, int YValue, PointNodePtr PointList);

17 void PrintPointList(PointNodePtr PointList);

18 void PlotGraph(PointNodePtr PointList, float XShift, float YShift,

19 float XScale, float YScale, char Output[GWIDTH][GHEIGHT]);

20 void DrawGraph(PointNodePtr PointList);

21

22 int main(int argc, char **argv)

23 {

24 PointNodePtr PointList = NULL;

25 ifstream InputFile;

26 char *Filename = NULL;

27 int X = 0, Y = 0;

28

29 if (argc != 2) {

30 cerr << "Usage: " << argv[0] << " file" << endl;

31 exit(1);

32 }

33 Filename = argv[1];

34 InputFile.open(Filename);

35 if (InputFile.good()) {

36 cerr << "File error on " << Filename << endl;

37 InputFile.close();

38 exit(1);

39 }

40 while (InputFile >> X)

41 if (InputFile >> Y)

42 InsertPoint(X, Y, PointList);

43 else {

44 cerr << "Error: no Y value for X = " << X << endl;

45 InputFile.close();

46 exit(1);

47 }

48 InputFile.close();

49 DrawGraph(PointList);

50 exit(0);

51 }

52

53 void InsertPoint(int XValue, int YValue, PointNodePtr PointList)

54 {

55 PointNodePtr NewNode = NULL;

56

57 if (NewNode = new PointNode) {

58 NewNode->X = XValue;

59 NewNode->Y = YValue;

60 NewNode->Next = PointList;

61 PointList = NewNode;

62 }

63 else

www.manaraa.com

APPENDIXD: EXPERIMENT PROGRAMgraph.cc 313

64 cerr << "Error allocating memory." << endl;

65 }

66

67 void PrintPointList(PointNodePtr PointList)

68 {

69 PointNodePtr Current = PointList;

70

71 while(Current != NULL) {

72 cout << "(" << Current->Y << ", " << Current->X << ")" << endl;

73 Current = Current->Next;

74 }

75 cout << endl;

76 }

77

78 void PlotGraph(PointNodePtr PointList, float XShift, float YShift,

79 float XScale, float YScale, char Output[GWIDTH][GHEIGHT])

80 {

81 int x = 0, y = 0;

82 PointNodePtr Current = PointList;

83

84 for (y = 0; y < GHEIGHT; y++)

85 Output[(int)XShift][y] = '|';

86 Output[(int)XShift][GHEIGHT - 1] = 'ˆ';

87 Output[(int)XShift + 1][GHEIGHT - 1] = 'Y';

88

89 for (x = 0; x < GWIDTH; x++)

90 Output[x][(int)YShift] = '-';

91 Output[GWIDTH - 1][(int)YShift] = '>';

92 Output[GWIDTH - 1][(int)YShift - 1] = 'X';

93 Output[(int)XShift][(int)YShift] = '+';

94

95 while (Current != NULL) {

96 x = (int)((float) Current->X * XScale + XShift);

97 y = (int)((float) Current->Y * YScale + YShift);

98 switch(Output[x][y]) {

99 case '-' : case '|' :

100 case '+' : case ' ' : Output[x][y] = '*'; break;

101 case '*' : Output[x][y] = '2'; break;

102 default : Output[x][y] = Output[x][y] + 1; break;

103 }

104 Current = Current->Next;

105 }

106 }

107

108 void DrawGraph(PointNodePtr PointList)

109 {

110 int SmallestX = 0, LargestX = PointList->X,

111 SmallestY = 0, LargestY = PointList->Y,

112 Width = 0, Height = 0,

113 x = 0, y = 0;

www.manaraa.com

APPENDIXD: EXPERIMENT PROGRAMgraph.cc 314

114 float XScale = 1.0, YScale = 1.0,

115 XShift = 0.0, YShift = 0.0;

116 PointNodePtr Current = PointList;

117 char Output[GWIDTH][GHEIGHT];

118

119 while (Current != NULL) {

120 if (Current->X < SmallestX) SmallestX = Current->X;

121 if (Current->X > LargestX) LargestX = Current->X;

122 if (Current->Y < SmallestY) SmallestY = Current->Y;

123 if (Current->Y > LargestY) LargestY = Current->Y;

124 Current = Current->Next;

125 }

126

127 Width = LargestX - SmallestX + 1;

128 Height = LargestY - SmallestY + 1;

129 if (Width > GWIDTH) XScale = (float) Width / (float) GWIDTH;

130 if (Height > GHEIGHT) YScale = (float) Height/ (float) GHEIGHT;

131 if (SmallestX < 0) XShift = (float) abs(SmallestX) * XScale;

132 if (SmallestY < 0) YShift = (float) abs(SmallestY) * YScale;

133

134 PlotGraph(PointList, XShift, YShift, XScale, YScale, Output);

135

136 for (y = 0; y < GHEIGHT; y++) {

137 for (x = 0; x < GWIDTH; x++)

138 cout << Output[x][y];

139 cout << endl;

140 }

141 }

D.10.4 Defects in programgraph.cc

1. Defect in functionmain() , line 6: Wrong value given toGHEIGHT.

Failure: The program prints a graph 40 by 40, instead of 40 by 20.

2. Defect in functionmain() , line 35: The test for a correctly opened file should have a

' !' in front of it.

Failure: The program always fails if the file is correctly opened.

3. Defect in functionmain() , line 48: Call toPrintPointList missing.

Failure: The list of points is not displayed before the graphis drawn, as is required by

the specification.

4. Defect in functionInsertPoint() , line 16, 53:PointList passed by value in-

stead of by reference.

Failure:PointList is never updated with the inserted pointed.

www.manaraa.com

APPENDIXD: EXPERIMENT PROGRAMgraph.cc 315

5. Defect in functionPrintPointList() , line 72:X andY values ofCurrent trans-

posed.

Failure: The printed points appear with the Y coordinate followed by the X coordinate.

6. Defect in functionPlotGraph() , line 83: The arrayOutput is not initialised.

Failure: The output from the program is unpredictable, since the point drawing routine

depends on the array being initialised with spaces.

7. Defect in functionPlotGraph() , line 84, 89: The code does not deal with inserting

tick marks in the graph.

Failure: The printed graph does not have the tick marks required by the specification.

8. Defect in functionPlotGraph() , line 92: One is subtracted from the Y coordinate

of the position for the X axis label.

Failure: The array index may go out of bounds ifYShift is zero.

9. Defect in functionPlotGraph() , line 98: Conditions forswitch statement incom-

plete.

Failure: If a point occurs on the graph over the axis labels orarrows, the point is not

drawn correctly, since these cases are not explicitly tested for in theswitch .

10. Defect in functionDrawGraph() , line 110, 111:LargestX andLargestY are

given the wrong initial values.

Failure: If all coordinates are negative, and the graph has to be scaled, the axes are not

drawn. These should be set to 0 initially.

11. Defect in functionDrawGraph() , line 129, 130: Incorrect calculation of scaling fac-

tors.

Failure: If scaling is required the program usually terminates abnormally as the output

array is indexed out of bounds.

12. Defect in functionDrawGraph() , line 136: The loop control for printing the vertical

axis proceeds from bottom to top instead of top to bottom.

Failure: The graph is printed out upside down.

www.manaraa.com

APPENDIXD: QUESTIONNAIRES 316

D.11 Questionnaires

D.11.1 Questionnaire 1

Section 1: C++ Browser

1. Indicate how much you used each of the following features of the C++ browser

during individual preparation by marking the appropriate box.

Feature Frequency of use

------- ----------------

Window split Never[] Once[] Twice[] Many times[]

Inspected code indication (reduced font) Never[] Once[] Twice[] Many times[]

Line/column number indicator Never[] Once[] Twice[] Many times[]

Coverage indication (percentage) Never[] Once[] Twice[] Many times[]

New annotation button Never[] Once[] Twice[] Many times[]

Delete annotation button Never[] Once[] Twice[] Many times[]

Show annotation button Never[] Once[] Twice[] Many times[]

Cycle annotation button Never[] Once[] Twice[] Many times[]

Find facility Never[] Once[] Twice[] Many times[]

Cross-referencing facility Never[] Once[] Twice[] Many times[]

2. Overall, how did you find navigating around the document you were

inspecting?

(1 = very difficult, 2 = difficult, 3 = average, 4 = easy, 5 = very easy)

1[] 2[] 3[] 4[] 5[]

3. Was the size of the text font used...

Too small[] Just right[] Too large[]

4. Was the default window size used...

Too small[] Just right[] Too large[]

www.manaraa.com

APPENDIXD: QUESTIONNAIRES 317

5. Did the use of a reduced font to indicate coverage of the code affect your

ability to read the code?

Still readable[] Unreadable[]

Section 2: List Browser

6. Indicate how much you used each of the following features of the list

browser in ASSIST during individual preparation by marking the appropriate box.

Feature Frequency of use

------- ----------------

Show item Never[] Once[] Twice[] Many times[]

New item Never[] Once[] Twice[] Many times[]

Cut item Never[] Once[] Twice[] Many times[]

Copy item Never[] Once[] Twice[] Many times[]

Paste item Never[] Once[] Twice[] Many times[]

JumpTo item Never[] Once[] Twice[] Many times[]

7. How did you find creating comments?

(1 = very difficult, 2 = difficult, 3 = average, 4 = easy, 5 = very easy)

1[] 2[] 3[] 4[] 5[]

8. Was the default window size used...

Too small[] Just right[] Too large[]

Section 3: General

9. Indicate how much you used each of the following features of ASSIST during

individual preparation by marking the appropriate box.

www.manaraa.com

APPENDIXD: QUESTIONNAIRES 318

Feature Frequency of use

------- ----------------

Checklist Never[] Once[] Twice[] Many times[]

C++ reference Never[] Once[] Twice[] Many times[]

10. Describe the strategy you used for inspecting the code. For example,

sequential, bottom up, top down, etc.

11. Overall, how easy to use was the list browser/C++ browser combination?

(1 = very difficult, 2 = difficult, 3 = average, 4 = easy, 5 = very easy)

1[] 2[] 3[] 4[] 5[]

12. Did you prefer creating comments from within the C++ browser or the list

browser, or did you have no preference?

C++ browser[] List browser[] No preference[]

13. Overall, did you find that the number of windows used by ASSIST reduced

your inspection efficiency, had no effect on your inspection efficiency, or

improved your inspection efficiency?

Improved[] No effect[] Reduced[]

14. Compared with paper-based inspection, do you feel that computer-based

inspection is more efficient, less efficient, or about equally efficient?

Computer-based is less efficient[] Equal[] Computer-based is more efficient[]

15. Are there any facilities which you feel ASSIST could provide to enhance the

individual preparation phase?

16. Please use this space to detail any problems you had when using ASSIST for

www.manaraa.com

APPENDIXD: QUESTIONNAIRES 319

individual inspection, or any other comments you may have.

[End of questionnaire]

D.11.2 Questionnaire 2

Section 1: C++ Browser

1. Please indicate how much you used each of the following features of the

ASSIST C++ browser during the group meeting by marking the appropriate box.

Feature Frequency of use

------- ----------------

Window split Never[] Once[] Twice[] Many times[]

Inspected code indication (reduced font) Never[] Once[] Twice[] Many times[]

Line/column number indicator Never[] Once[] Twice[] Many times[]

Coverage indication (percentage) Never[] Once[] Twice[] Many times[]

New annotation button Never[] Once[] Twice[] Many times[]

Delete annotation button Never[] Once[] Twice[] Many times[]

Show annotation button Never[] Once[] Twice[] Many times[]

Cycle annotation button Never[] Once[] Twice[] Many times[]

Find facility Never[] Once[] Twice[] Many times[]

Cross-referencing facility Never[] Once[] Twice[] Many times[]

2. ANSWER ONE QUESTION ONLY

If you WERE THE READER, please indicate how you found using the focus system to

guide your team through the document.

(1 = very difficult, 2 = difficult, 3 = average, 4 = easy, 5 = very easy)

1[] 2[] 3[] 4[] 5[]

www.manaraa.com

APPENDIXD: QUESTIONNAIRES 320

If you WERE NOT THE READER, please indicate how happy you were with the

reader's control of the focus?

(1 = unhappy, 2= slightly unhappy, 3 = neither happy or unhappy,

4 = fairly happy, 5 = very happy)

1[] 2[] 3[] 4[] 5[]

Section 2: List Browser

3. Please indicate how much you used each of the following features of the list

browser in ASSIST during the group meeting by marking the appropriate box.

Feature Frequency of use

------- ----------------

Show item Never[] Once[] Twice[] Many times[]

New item Never[] Once[] Twice[] Many times[]

Cut item Never[] Once[] Twice[] Many times[]

Copy item Never[] Once[] Twice[] Many times[]

Paste item Never[] Once[] Twice[] Many times[]

JumpTo item Never[] Once[] Twice[] Many times[]

Propose item Never[] Once[] Twice[] Many times[]

Update item (scribe only) Never[] Once[] Twice[] Many times[]

4. How easy/difficult to use did you find the defect proposal system?

(1 = very difficult, 2 = difficult, 3 = average, 4 = easy, 5 = very easy)

1[] 2[] 3[] 4[] 5[]

5. How much did the voting mechanism help resolve issues?

(1 = hindered, 2 = no effect, 3 = helped)

1[] 2[] 3[]

Section 3: General

www.manaraa.com

APPENDIXD: QUESTIONNAIRES 321

6. Indicate how much you used each of the following features of ASSIST during

the group meeting by marking the appropriate box.

Feature Frequency of use

------- ----------------

Checklist Never[] Once[] Twice[] Many times[]

C++ reference Never[] Once[] Twice[] Many times[]

7. Did you feel that using ASSIST had any effect on your group discussion? E.g.

you may have been able to discuss issues more quickly (a positive effect) or

you may have found it more difficult to discuss issues (a negative effect).

(1 = large negative effect, 2 = small negative effect, 3 = no effect,

4 = small positive effect, 5 = large positive effect)

1[] 2[] 3[] 4[] 5[]

8. Describe in detail the effect ASSIST had on your group meeting (if any).

9. Compared with a paper-based group meeting, do you feel that a computer-based

group meeting is more efficient, less efficient, or about equally efficient?

Computer-based is less efficient[]

Computer-based is equallly efficient[]

Computer-based is more efficient[]

10. Are there any facilities which you feel ASSIST could provide to enhance the

group meeting phase?

11. Please use this space to detail any problems you had when using ASSIST for

the group meeting, or any other comments you may have.

www.manaraa.com

APPENDIXD: QUESTIONNAIRES 322

[End of questionnaire]

D.11.3 Questionnaire 3

Section 1 - Individual Inspection

1. With regard to length, do you think that the analyse.cc code was...

Too long[] Just right[] Too short[]

2. Do you think that the analyse.cc code was...

Too complex[] Just right[] Too simple[]

3. Approximately how much of analyse.cc did you understand?

0-20% [] 21-40% [] 41-60% [] 61-80% [] 81-100% []

4. Do think that two hours was sufficient time to find defects in analyse.cc?

Not enough time [] Just right [] Too much time []

Section 2 - Group Meeting

5. Was your understanding of analyse.cc changed at the group meeting?

Understanding confounded []

No change in understanding

[] Understanding increased []

6. How many defects were discovered during the meeting that were not identified

during individual inspection?

0 [] 1-2 [] 3-5 [] >5 []

7. How many defects do you think that your meeting lost, i.e. defects which

were identified during individual inspections but not recorded during the

group meeting?

www.manaraa.com

APPENDIXD: QUESTIONNAIRES 323

0 [] 1-2 [] 3-5 [] >5 []

8. What percentage of all the defects in the document do you estimate your

group found?

0-20% [] 21-40% [] 41-60% [] 61-80% [] 81-100% []

9. How many of the group's reported defects did you _not_ agree with?

0 [] 1-2 [] 3-5 [] >5 []

10. Which of the following best describes the relative contribution of the

individuals in your group?

All contributed approximately the same []

One person contributed noticeably more than the rest []

One person contributed noticeably less than the rest []

One person contributed noticeably more, and one person

contributed noticeably less []

11. Which of the following objectives were achieved by your group meeting?

(you may mark more than one)

Merging defect lists []

Additional defect detection []

Group bonding/improving team spirit []

Education of weak group members []

Ensuring adequate individual inspection []

Section 3 - ASSIST-based Inspection (ASSIST users ONLY)

12. Did you feel ASSIST was an impediment to any aspects of your performance?

If so, please state which aspects and why.

13. Did you feel ASSIST improved any aspects of your performance? If so, please

state which aspects and why.

www.manaraa.com

APPENDIXD: QUESTIONNAIRES 324

14. Overall, how would you rate the usability of ASSIST for inspection?

(1 = extremely usable, 2 = fairly usable, 3 = average, 4 = fairly unusable,

5 = totally unusable)

1[] 2[] 3[] 4[] 5[]

[End of questionnaire]

D.11.4 Questionnaire 4

Section 1 - Individual Inspection

1. Approximately how much of graph.cc did you understand?

0-20% [] 21-40% [] 41-60% [] 61-80% [] 81-100% []

2. Do think that two hours was sufficient time to find defects in graph.cc?

Not enough time [] Just right [] Too much time[]

3. In terms of complexity, how did graph.cc compare with analyse.cc?

Much more complex []

Slightly more complex []

Of similar complexity []

Slightly less complex []

Much less complex []

Section 2 - Group Meeting

4. Was your understanding of graph.cc changed at the group meeting?

Understanding confounded []

No change in understanding []

Understanding increased []

5. How many defects were discovered during the meeting that were not identified

during individual inspection?

0 [] 1-2 [] 3-5 [] >5 []

6. How many defects do you think that your meeting lost, i.e. defects which

were identified during individual inspections but were accidentally not

www.manaraa.com

APPENDIXD: QUESTIONNAIRES 325

recorded during the group meeting?

0 [] 1-2 [] 3-5 [] >5 []

7. How many of the group's reported defects did you _not_ agree with?

0 [] 1-2 [] 3-5 [] >5 []

8. Which of the following best describes the relative contribution of the

individuals in your group?

All contributed approximately the same []

One person contributed noticeably more than the rest []

One person contributed noticeably less than the rest []

One person contributed noticeably more, and one person

contributed noticeably less []

9. Which of the following objectives were achieved by your group meeting?

(you may mark more than one)

Merging defect lists []

Additional defect detection []

Group bonding/improving team spirit []

Education of weak group members []

Ensuring adequate individual inspection []

10. In comparison with your previous group meeting (involving analyse.cc),

which of the following do you think are true:

The group performed better []

The group performed about the same []

The group performed worse []

Please give reasons:

--

Section 3 - ASSIST-based Inspection (ASSIST users ONLY)

11. Did you feel ASSIST was an impediment to any aspects of your performance?

If so, please state which aspects and why.

www.manaraa.com

APPENDIXD: QUESTIONNAIRES 326

12. Did you feel ASSIST improved any aspects of your performance? If so,

please state which aspects and why.

13. Overall, how would you rate the usability of ASSIST for inspection?

(1 = extremely usable, 2 = fairly usable, 3 = average, 4 = fairly unusable,

5 = totally unusable)

1[] 2[] 3[] 4[] 5[]

Section 4 - General

14. How well do you think you understand software inspections?

Completely [] Well [] Reasonably Well [] Not too sure [] Not at all []

15. Overall, do you think your knowledge of C/C++ was adequate for the tasks

set?

Inadequate [] Adequate []

If you feel your knowledge was inadequate, please explain further:

16. Overall, did you feel you performed better during individual inspection

paper-based inspection or ASSIST, or were you equally effective with both

methods?

Performed better with paper-based []

Performed equally well with both methods []

Performed better with ASSIST []

If you felt you performed better with a particular method, please explain:

17. Did you feel you made more, less or about the same amount of use of your

checklist during an ASSIST inspection as compared to a paper-based inspection?

www.manaraa.com

APPENDIXD: QUESTIONNAIRES 327

Used checklist more with paper-based []

About the same for both paper-based and ASSIST []

Used checklist more with ASSIST []

18. Overall, did you feel your group performed better during the meeting using

paper-based inspection or ASSIST, or were you equally effective with both

methods?

Performed better with paper-based []

Performed equally well with both methods []

Performed better with ASSIST []

If you felt you performed better with a particular method, please explain:

19. Some people believe it is easier to work with paper-based documents than

screen-based documents, while others believe it is easier to work with

screen-based documents than paper-based documents. From your experience of

paper-based and tool-assisted inspection, which do you prefer?

Prefer screen-based [] No preference [] Prefer paper-based []

Please give reasons:

20. Overall, what did you find to be the most difficult aspect of this part of

the course?

21. Any other comments about this part of the course?

[End of questionnaire]

www.manaraa.com

Appendix E

Raw Data

E.1 Comparing Paper-based and Tool-based Software Inspection

E.1.1 Experiment 1

Group no. Subjects
1 1, 2, 3
2 4, 5, 6
3 7, 8, 9
4 10, 11, 12
5 13, 14, 15
6 16, 17, 18
7 19, 20, 21, 22
8 23, 24, 25
9 26, 27, 28
10 29, 30, 31
11 32, 33, 34
12 35, 36, 37
13 38, 39, 40
14 41, 42, 43

Table E.1: Allocation of subjects to groups.

This section presents the raw defect detection data collected from the first experiment.

Table E.1 shows the allocation of subjects to groups. Table E.2 presents the defect detection

data for the individual inspection ofanalyse.cc in Experiment 1 Each row contains the

data for one subject and shows the technique used by that subject and which defects that

subject detected. A summary score, indicating the number ofcorrect defects and the total

www.manaraa.com

APPENDIXE: COMPARINGPAPER-BASED AND TOOL-BASED SOFTWARE INSPECTION 329

Defect Number
Subject Method 1 2 3 4 5 6 7 8 9 10 11 12 Total
1 T X X X X X X X X X X 10/11
2 T X X X X X X X 7/10
3 T X X X X X X X X X 9/10
4 T X X X X X X X X X 9/12
5 T X X X X X X X X X 9/14
6 T X X X X X X 6/10
7 T X X X X X X X X X 9/14
8 T X X X X X X X X X 9/13
9 T X X X X X 5/9
10 T X X X X X X X 7/10
11 T X X X X X X X 7/7
12 T X X X X X X 6/13
13 T X X X X X X X 7/13
14 T X X X X X X X X X 9/9
15 T X X X X X X X X X 9/11
16 T X X X X X X 6/10
17 T X X X X X X 6/10
18 T X X X X X X X X X X 10/14
19 T X X X X X X X X 8/11
20 T X X X X X X X X 8/15
21 T X X X X X X X X 8/13
22 T X X X X X 5/9
23 P X X X X X X X X X X 10/14
24 P X X X X 4/11
25 P X X X X X X X X 8/13
26 P X X X X X X X 7/13
27 P X X X X X X X X 8/10
28 P X X X X X X X 7/9
29 P X X X X X X X X X X 10/14
30 P X X X X X X X 7/14
31 P X X X X X X X X 8/14
32 P X X X X X X X X 8/11
33 P X X X X X X X 7/12
34 P X X X X X X X 7/12
35 P X X X X X X X X X X X 11/17
36 P X X X X X X 6/8
37 P X X X X X X X 7/11
38 P X X X X X X X 7/12
39 P X X X X X X X X X X X X 12/14
40 P X X X X X X 6/11
41 P X X X X X X X X X 9/15
42 P X X X X X 5/5
43 P X X X X X X X X X 9/11

Table E.2: Raw data for individual phase ofanalyse.cc inspection. Method is either
(P)aper or (T)ool. An ' X' indicates a defect reported by the individual. The total is given as
the total number of correct defects out of the total number submitted.

www.manaraa.com

A
P

P
E

N
D

IX
E

:
C

O
M

P
A

R
IN

G
P

A
P

E
R-B

A
S

E
D

A
N

D
T

O
O

L-B
A

S
E

D
S

O
F

T
W

A
R

E
IN

S
P

E
C

T
IO

N
330

Defect Number
Group Method 1 2 3 4 5 6 7 8 9 10 11 12 Total Gains Losses
1 T X X X X X X X X X X X 11/12 0 0
2 T X X X X X X X X X X X X 12/14 1 0
3 T X X X X X X X X X X 10/14 0 0
4 T X X X X X X X X X X X 11/15 0 0
5 T X X X X X X X X X X 10/13 0 0
6 T X X - X X X X X X X X X 11/16 1 1
7 T X X X X X X X X X X X 11/17 0 0
8 P X X X X X X X X X X X 11/15 0 0
9 P X X X X X X X X X X 10/12 0 0
10 P X X X X X X X X X X X 11/15 0 0
11 P X X X X X X X X X X X 11/16 1 0
12 P X X X X X X X X X X X 11/13 0 0
13 P X X X X X X X X X X X X 12/16 0 0
14 P X X X - X X X X X X 9/10 0 1

Table E.3: Raw data for group meeting withanalyse.cc . Method is either (P)aper or (T)ool. An ' X' indicates a defect reported by the
group. A ' -' represents a meeting loss. An underlined ' X' represents a meeting gain. The total is given as the total numberof correct defects
out of the total number submitted.

www.manaraa.com

APPENDIXE: COMPARINGPAPER-BASED AND TOOL-BASED SOFTWARE INSPECTION 331

number of defects submitted, is also given. Table E.3 gives defect detection data for the group

phase. It has the same format as the table for individuals, but also contains data on meeting

gains and losses.

Defect detection data for the individual and group phases ofthegraph.cc inspection

are given in Table E.4 and Table E.5 respectively. Their format is identical to that of the tables

showing the data for theanalyse.cc inspection.

www.manaraa.com

APPENDIXE: COMPARINGPAPER-BASED AND TOOL-BASED SOFTWARE INSPECTION 332

Defect Number
Subject Method 1 2 3 4 5 6 7 8 9 10 11 12 Total
1 P X X X X X X X X X 9/10
2 P X X X X X 5/8
3 P X X X X X X X 7/8
4 P X X X X X X X X 8/12
5 P X X X X X X X 7/11
6 P X X X X X X X 7/9
7 P X X X X X X X X X X 10/13
8 P X X X X X X 6/9
9 P X X X X X X 6/13
10 P X X X X 4/9
11 P X X X X X X 6/8
12 P X X X X X X X 7/8
13 P X X X X X X 6/7
14 P X X X X X X 6/9
15 P X X X X X X X X 8/8
16 P X X X X X X 6/11
17 P X X X X 4/11
18 P X X X X X X X X 8/12
19 P X X X X X X 6/10
20 P X X X X X X X 7/12
21 P X X X X X X 6/8
22 P X X X X X X X 7/11
23 T X X X X X X X X 8/12
24 T X X X X X 5/8
25 T X X X X X 5/12
26 T X X X X X X X 7/7
27 T X X X X X X X 7/9
28 T X X X X 4/10
29 T X X X X X X X X X X 10/10
30 T X X X 3/9
31 T X X X X X 5/9
32 T X X X X X 5/11
33 T X X X X 4/9
34 T X X X X X X X X X 9/10
35 T X X X X X X X 7/9
36 T X X X X X X 6/7
37 T X X X X 4/9
38 T X X X X X X X 7/11
39 T X X X X X X X X X 9/10
40 T X X X X 4/8
41 T X X X X X X 6/7
42 T X X X 3/7
43 T X X X X X X X X 8/10

Table E.4: Raw data for individual phase ofgraph.cc inspection.

www.manaraa.com

A
P

P
E

N
D

IX
E

:
C

O
M

P
A

R
IN

G
P

A
P

E
R-B

A
S

E
D

A
N

D
T

O
O

L-B
A

S
E

D
S

O
F

T
W

A
R

E
IN

S
P

E
C

T
IO

N
333

Defect Number
Group Method 1 2 3 4 5 6 7 8 9 10 11 12 Total Gains Losses
1 P X X X X X X X X X X 10/10 0 0
2 P X X X X X X X X X - X X 11/15 2 1
3 P X X X - X X X X X X X 10/12 0 1
4 P X X X - X X X X X X 9/10 1 1
5 P X X X X X X X X X X - X 11/14 0 1
6 P X X X X X X X - X 8/12 0 1
7 P X X X X X X X X 8/10 0 0
8 T X X X X X X X X X X 10/12 1 0
9 T X X X - X - X X X 7/8 1 2
10 T X X X X X X X - X X 9/11 0 1
11 T X X X X X X - X - X 8/15 0 2
12 T X X X X X X X X X 9/12 1 0
13 T X X X X X X X X X X 10/12 0 0
14 T X X X X X X X X X 9/9 1 0

Table E.5: Raw data for group meeting withgraph.cc .

www.manaraa.com

APPENDIXE: COMPARINGPAPER-BASED AND TOOL-BASED SOFTWARE INSPECTION 334

E.1.2 Experiment 2

Group no. Subjects
1 1, 2, 3
2 4, 5, 6
3 7, 8, 9
4 10, 11, 12
5 13, 14, 15
6 16, 17, 18
7 19, 20, 21
8 22, 23, 24
9 25, 26, 27
10 28, 29, 30
11 31, 32, 33
12 34, 35, 36
13 37, 38, 39
14 40, 41, 42
15 43, 44, 45
16 46, 47, 48, 49

Table E.6: Allocation of subjects to groups.

The raw data collected from the second experiment is presented in the section. Table E.6

shows the allocation of subjects to groups. Table E.7 summarises the defect detection data

for the individual inspection ofanalyse.cc . Its form is identical to that of Table E.2.

Table E.8 shows the raw defect detection data for the group phase. Its format is identical to

that of Table E.3

Defect detection data for the individual and group phases ofthegraph.cc inspection is

shown in Table E.9 and Table E.10 respectively.

www.manaraa.com

APPENDIXE: COMPARINGPAPER-BASED AND TOOL-BASED SOFTWARE INSPECTION 335

Defect Number
Subject Method 1 2 3 4 5 6 7 8 9 10 11 12 Total
1 T X X X X X X X X X X 10/13
2 T X X X X X X 6/13
3 T X X X X 4/8
4 T X X X X X X X X X 9/11
5 T X X X X X X X X X 9/10
6 T X X X X X 5/9
7 T X X X X X X X X 8/9
8 T X X X X X X 6/11
9 T X X X X X X X X 8/10
10 T X X X X X X X 7/10
11 T X X X X X 5/8
12 T X X X X X 5/19
13 T X X X 3/8
14 T X X X X X X 6/10
15 T X X X X X 5/12
16 T X X X X X X X X 8/10
17 T X X X X X X X X 8/12
18 T 0/0
19 T X X X X X X 6/7
20 T X X X X X X 5/11
21 T X X X X X 6/10
22 T X X X X X X X X X 9/14
23 T X X X X X 5/12
24 T X X X X X X X 7/8
25 P X X X X X X X X X 9/12
26 P X X X X X 5/12
27 P X X X X X X 6/14
28 P X X X X X X X 7/11
29 P X X X X X X X 7/13
30 P X X X X X X X X 8/11
31 P X X X X X X X X 8/15
32 P X X 2/4
33 P X X X X X X X 7/17
34 P X X X X X X X 7/12
35 P X X X X X X X X X 9/9
36 P X X X X 4/12
37 P X X X X X X X X X 9/16
38 P X X X X X X X 7/17
39 P X X X X X X X X 8/13
40 P X X X X X X 6/15
41 P X X X X X X X X X 9/14
42 P X X X X X 5/14
43 P X X X X X X X 7/13
44 P X X X X X 5/12
45 P X X X X X X X 7/14
46 P X X X X X X 6/12
47 P X X X X 4/12
48 P X X X X X X X X 8/10
49 P X X X X X X X 7/18

Table E.7: Raw data for individual phase ofanalyse.cc inspection. Note that subject 18
did not take part in this phase, and is discounted from the analysis.

www.manaraa.com

A
P

P
E

N
D

IX
E

:
C

O
M

P
A

R
IN

G
P

A
P

E
R-B

A
S

E
D

A
N

D
T

O
O

L-B
A

S
E

D
S

O
F

T
W

A
R

E
IN

S
P

E
C

T
IO

N
336

Defect Number
Group Method 1 2 3 4 5 6 7 8 9 10 11 12 Total Gains Losses
1 T X X X X X X X X X X X X 12/15 0 0
2 T X X X X X X X X X 9/10 0 0
3 T X X X X X X X X X 914/ 0 0
4 T X X - X X X X X X 8/12 0 1
5 T X X X X X X X - 7/13 1 1
6 T X X X X X X X X X X X 11/15 0 0
7 T X X X X X X X X X 9/14 0 0
8 T X X X X X X X X X X X 11/14 1 0
9 P X X X X X X X X X X X 11/16 2 0
10 P X X - X X X X X X X X 10/12 1 1
11 P X X X X X X X X X X X 11/15 0 0
12 P X X X X X X X X X 9/12 0 0
13 P X X X X X X X X X X X 11/15 0 0
14 P X X X X X X X X X X X 11/18 1 0
15 P - X X X X X X X X X 9/17 1 1
16 P X X X X X X X X X X 10/17 0 0

Table E.8: Raw data for group meeting withanalyse.cc .

www.manaraa.com

APPENDIXE: COMPARINGPAPER-BASED AND TOOL-BASED SOFTWARE INSPECTION 337

Defect Number
Subject Method 1 2 3 4 5 6 7 8 9 10 11 12 Total
1 P X X X X X X X X 8/11
2 P X X X X X 5/7
3 P X X X X X X 6/10
4 P X X X X 4/6
5 P X X X X X 5/7
6 P X X X X X 5/11
7 P X X X X X X X 7/9
8 P X X X X X 5/9
9 P X X X X X X X X 8/10
10 P X X X X X X 6/7
11 P X X X 3/7
12 P X X X X X X 6/9
13 P X X X X X X 6/9
14 P X X X X X X 6/6
15 P X X X X X X 6/11
16 P X X X X X X X 7/8
17 P X X X X X X 6/9
18 P X X X X 4/9
19 P X X X X X X X 7/10
20 P X X X X X X 6/10
21 P X X X 3/6
22 P X X X X X X X X 8/10
23 P X X X X X X X X X 9/10
24 P X X X X X X 6/8
25 T X X X X X X X X 8/10
26 T X X X X 4/9
27 T X X X X X X X 7/13
28 T X X X X X X X 7/9
29 T X X X X X 5/8
30 T X X X X X X 6/9
31 T X X X X X 5/6
32 T X X X X X X X 7/9
33 T X X 2/4
34 T X X X X X X 6/7
35 T X X X X X X 6/7
36 T X X X X 5/11
37 T X X X X X X X X 8/12
38 T X X X X X X 6/12
39 T X X X X X X X 7/11
40 T X X X X 4/10
41 T X X X X X X 6/7
42 T X X X X X 5/11
43 T X X X X X X X 7/7
44 T X X X X X X X 7/8
45 T X X X X X X 6/12
46 T X X X X X X 6/10
47 T X X X X X X 6/9
48 T X X X X X X 6/10
49 T X X X X X 5/10

Table E.9: Raw data for individual phase ofgraph.cc inspection.

www.manaraa.com

A
P

P
E

N
D

IX
E

:
C

O
M

P
A

R
IN

G
P

A
P

E
R-B

A
S

E
D

A
N

D
T

O
O

L-B
A

S
E

D
S

O
F

T
W

A
R

E
IN

S
P

E
C

T
IO

N
338

Defect Number
Group Method 1 2 3 4 5 6 7 8 9 10 11 12 Result Gains Losses
1 P X X X X X X X X X X 10/11 1 0
2 P X X X X X X X X X 9/11 3 0
3 P X X X - X X X X X X 9/11 1 1
4 P X X X X X X X X 8/12 0 0
5 P X X X X - X X X 7/9 0 1
6 P X X X X X X X X X 9/11 1 0
7 P X X X X X X X X 8/11 1 0
8 P X X X - X X X X X X X X 11/14 3 1
9 T X X X X X X X X X 9/12 0 0
10 T X X X X X X X X X 9/14 1 0
11 T X X X X X X X X X 9/12 1 0
12 T X X X - X X X X X 8/9 0 1
13 T X X X - X X X X X X X 10/12 0 1
14 T X X X X X X X X 8/10 0 0
15 T X X X X X X X X 8/10 1 0
16 T X X X X X X - X X 8/13 0 1

Table E.10: Raw data for group meeting withgraph.cc .

www.manaraa.com

APPENDIXE: AUTOMATED DEFECTL IST COLLATION 339

E.2 Automated Defect List Collation

E.2.1 Experiment 1

Table E.11 shows the average percentage of correct defects in defect lists generated with

various content and threshold settings. Table E.12 shows the average percentage of duplicates

in defect lists generated with various content and threshold settings. The defect lists used

are those from the tool users from the first experiment comparing paper-based and tool-based

inspection.

www.manaraa.com

A
P

P
E

N
D

IX
E

:
A

U
T

O
M

A
T

E
D

D
E

F
E

C
T

L
IS

T
C

O
L

L
A

T
IO

N
340

Threshold
Contents 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 8.93 8.93 8.93 8.93 8.93 8.93 10.53 14.36 22.40 23.80 32.51 48.58 94.68 100.0 100.0 100.0 100.0 100.0 100.0
0.10 8.93 8.93 8.93 8.93 8.93 8.93 10.53 14.95 21.75 25.30 33.16 58.36 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.15 8.93 8.93 8.93 8.93 8.93 8.93 10.53 14.95 22.40 27.80 41.05 65.56 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.20 8.93 8.93 8.93 8.93 8.93 8.93 10.53 14.95 21.60 29.31 44.16 78.85 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.25 8.93 8.93 8.93 8.93 8.93 8.93 10.53 14.95 21.60 30.43 46.60 90.42 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.30 8.93 8.93 8.93 8.93 8.93 8.93 10.36 17.20 21.60 31.73 51.70 95.10 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.35 8.93 8.93 8.93 8.93 8.93 8.93 10.36 16.49 20.89 34.39 61.45 97.84 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.40 8.93 8.93 8.93 8.93 8.93 8.93 11.25 16.49 21.78 35.28 70.36 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.45 8.93 8.93 8.93 8.93 8.93 8.93 11.25 17.92 21.78 44.68 79.56 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.50 8.93 8.93 8.93 8.93 8.93 8.93 10.53 18.63 24.38 49.72 85.20 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.55 8.93 8.93 8.93 8.93 8.93 8.93 10.53 17.19 27.35 56.56 87.86 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.60 8.93 8.93 8.93 8.93 8.93 8.93 9.64 16.29 30.90 63.04 90.52 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.65 8.93 8.93 8.93 8.93 8.93 8.93 10.36 16.95 34.59 67.97 94.68 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.70 8.93 8.93 8.93 8.93 8.93 8.93 10.36 17.35 38.70 73.02 96.16 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.75 8.93 8.93 8.93 8.93 8.93 8.93 10.36 18.24 44.09 76.71 98.64 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.80 8.93 8.93 8.93 8.93 8.93 8.93 11.00 19.14 45.53 77.31 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.85 8.93 8.93 8.93 8.93 8.93 8.93 11.00 21.57 51.47 81.27 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.90 8.93 8.93 8.93 8.93 8.93 8.93 11.00 21.57 56.63 84.76 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.95 8.93 8.93 8.93 8.93 8.93 8.93 12.55 25.84 62.31 86.43 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table E.11: Average percentage of correct defects in auto-collated lists for varying threshold and contents factors, using Experiment 1 defect
lists.

www.manaraa.com

A
P

P
E

N
D

IX
E

:
A

U
T

O
M

A
T

E
D

D
E

F
E

C
T

L
IS

T
C

O
L

L
A

T
IO

N
341

Threshold
Contents 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.61 100.0 100.0 100.0 100.0 100.0 100.0
0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51.75 100.0 100.0 100.0 100.0 100.0 100.0
0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.59 80.81 100.0 100.0 100.0 100.0 100.0 100.0
0.20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.44 89.50 100.0 100.0 100.0 100.0 100.0 100.0
0.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.17 91.81 100.0 100.0 100.0 100.0 100.0 100.0
0.30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.98 92.76 100.0 100.0 100.0 100.0 100.0 100.0
0.35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.79 32.76 94.92 100.0 100.0 100.0 100.0 100.0 100.0
0.40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.12 47.70 96.51 100.0 100.0 100.0 100.0 100.0 100.0
0.45 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.07 54.70 97.30 100.0 100.0 100.0 100.0 100.0 100.0
0.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.79 65.74 97.30 100.0 100.0 100.0 100.0 100.0 100.0
0.55 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.44 14.66 72.27 97.30 100.0 100.0 100.0 100.0 100.0 100.0
0.60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.30 26.07 78.69 97.30 100.0 100.0 100.0 100.0 100.0 100.0
0.65 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.15 34.75 82.77 97.70 100.0 100.0 100.0 100.0 100.0 100.0
0.70 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.44 41.64 85.93 97.70 100.0 100.0 100.0 100.0 100.0 100.0
0.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.79 7.55 47.70 87.99 97.70 100.0 100.0 100.0 100.0 100.0 100.0
0.80 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.48 13.77 51.43 89.11 97.70 100.0 100.0 100.0 100.0 100.0 100.0
0.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.95 20.38 56.25 89.83 97.70 100.0 100.0 100.0 100.0 100.0 100.0
0.90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.54 24.84 61.12 90.30 97.70 100.0 100.0 100.0 100.0 100.0 100.0
0.95 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.91 27.52 65.57 90.30 97.70 100.0 100.0 100.0 100.0 100.0 100.0

Table E.12: Average percentage of duplicates in auto-collated lists for varying threshold and contents factors, usingExperiment 1 defect lists.

www.manaraa.com

APPENDIXE: AUTOMATED DEFECTL IST COLLATION 342

E.2.2 Experiment 2

Table E.13 shows the average percentage of correct defects in defect lists generated with

various content and threshold settings. Table E.14 shows the average percentage of duplicates

in defect lists generated with various content and threshold settings. The defect lists used are

those from the tool users from the second experiment comparing paper-based and tool-based

inspection.

www.manaraa.com

A
P

P
E

N
D

IX
E

:
A

U
T

O
M

A
T

E
D

D
E

F
E

C
T

L
IS

T
C

O
L

L
A

T
IO

N
343

Threshold
Contents 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 8.35 8.35 8.35 8.35 8.35 8.35 9.13 11.45 17.19 31.13 46.15 70.03 98.61 100.0 100.0 100.0 100.0 100.0 100.0
0.10 8.35 8.35 8.35 8.35 8.35 8.35 9.13 11.50 17.19 32.02 46.94 74.36 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.15 8.35 8.35 8.35 8.35 8.35 8.35 9.13 11.50 18.45 32.72 51.79 84.04 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.20 8.35 8.35 8.35 8.35 8.35 8.35 9.13 12.20 21.16 34.73 54.30 87.19 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.25 8.35 8.35 8.35 8.35 8.35 8.35 9.13 12.76 21.81 34.58 59.36 95.62 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.30 8.35 8.35 8.35 8.35 8.35 8.35 9.13 12.76 23.59 38.99 64.78 97.54 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.35 8.35 8.35 8.35 8.35 8.35 8.35 9.13 12.76 23.03 42.42 72.17 98.81 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.40 8.35 8.35 8.35 8.35 8.35 8.35 9.13 12.76 24.92 43.59 81.81 99.38 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.45 8.35 8.35 8.35 8.35 8.35 8.35 9.13 11.87 28.92 50.35 86.21 99.38 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.50 8.35 8.35 8.35 8.35 8.35 8.35 9.13 12.96 32.79 55.64 92.52 99.38 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.55 8.35 8.35 8.35 8.35 8.35 8.35 9.13 16.14 34.36 59.28 94.00 99.38 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.60 8.35 8.35 8.35 8.35 8.35 8.35 9.13 15.94 38.86 66.91 94.57 99.38 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.65 8.35 8.35 8.35 8.35 8.35 8.35 9.13 16.63 41.69 72.78 95.89 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.70 8.35 8.35 8.35 8.35 8.35 8.35 9.13 18.00 42.21 75.75 95.19 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.75 8.35 8.35 8.35 8.35 8.35 8.35 9.13 20.36 45.24 80.48 95.71 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.80 8.35 8.35 8.35 8.35 8.35 8.35 10.70 19.58 46.83 83.00 96.28 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.85 8.35 8.35 8.35 8.35 8.35 8.35 12.16 24.89 49.73 85.77 96.85 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.90 8.35 8.35 8.35 8.35 8.35 8.35 12.16 27.06 53.92 86.47 96.33 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.95 8.35 8.35 8.35 8.35 8.35 8.35 14.61 31.45 56.66 86.47 96.33 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table E.13: Average percentage of correct defects in auto-collated lists for varying threshold and contents factors, using Experiment 2 defect
lists.

www.manaraa.com

A
P

P
E

N
D

IX
E

:
A

U
T

O
M

A
T

E
D

D
E

F
E

C
T

L
IS

T
C

O
L

L
A

T
IO

N
344

Threshold
Contents 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.62 1.85 10.97 41.55 100.0 100.0 100.0 100.0 100.0 100.0
0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.62 1.59 13.41 71.45 100.0 100.0 100.0 100.0 100.0 100.0
0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.62 3.57 15.68 92.28 100.0 100.0 100.0 100.0 100.0 100.0
0.20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.52 5.52 20.34 96.31 100.0 100.0 100.0 100.0 100.0 100.0
0.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.52 5.52 28.85 98.25 100.0 100.0 100.0 100.0 100.0 100.0
0.30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.63 8.63 41.78 98.25 100.0 100.0 100.0 100.0 100.0 100.0
0.35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.45 52.46 98.25 100.0 100.0 100.0 100.0 100.0 100.0
0.40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.25 13.15 63.49 98.25 100.0 100.0 100.0 100.0 100.0 100.0
0.45 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.07 17.52 70.75 98.25 100.0 100.0 100.0 100.0 100.0 100.0
0.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.70 21.93 77.26 98.25 100.0 100.0 100.0 100.0 100.0 100.0
0.55 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.14 32.20 83.28 98.25 100.0 100.0 100.0 100.0 100.0 100.0
0.60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.04 37.70 86.17 98.25 100.0 100.0 100.0 100.0 100.0 100.0
0.65 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.92 43.30 87.84 98.25 100.0 100.0 100.0 100.0 100.0 100.0
0.70 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.25 9.23 52.80 91.12 98.25 100.0 100.0 100.0 100.0 100.0 100.0
0.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.67 13.52 57.08 91.23 98.25 100.0 100.0 100.0 100.0 100.0 100.0
0.80 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.04 23.64 61.55 90.60 98.25 100.0 100.0 100.0 100.0 100.0 100.0
0.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.56 26.11 65.34 91.64 97.80 100.0 100.0 100.0 100.0 100.0 100.0
0.90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.34 25.94 70.25 93.10 97.80 100.0 100.0 100.0 100.0 100.0 100.0
0.95 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.30 27.62 72.56 93.10 97.80 100.0 100.0 100.0 100.0 100.0 100.0

Table E.14: Average percentage of duplicates in auto-collated lists for varying threshold and contents factors, usingExperiment 2 defect lists.

